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Abstract. In recent years, many wavelets formulas were constructed for vertices functions

of weighted graphs. In addition to the fractional wavelets, spectral graphs play important

role in function approximation. In this paper, we define a fractional wavelet transforms in

terms of discrete graph Laplacian matrix. We study general properties of fractional spectral

graph wavelet transform (FRSGWT) in order to achieve the existence of best approximation

of functions defined on vertices. Therefore, we prove direct and inverse theorems to get

degree of approximation with upper and lower bounds in terms of modulus of continuity.

These theoretical results grantees that the approximation error implements well if applied

in various fields.

1. Introduction

Moduli of smoothness play a big role in estimating the degree of approxima-
tion, for example [2, 3, 19]. In particular, modulus of continuity is used earlier
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for the same proposes but different spaces, see [12]. Fourier and wavelets are
transforms play important roles in signal processing.

In recent years, many generalizations were presented for Fourier and wavelets
transformation, see [15]. In addition, the extension of Fourier transforms and
wavelet to the fractional domain led to the creation of the fractional Fourier
transform (FRFT) and fractional wavelets. The fractional order of FRFT,
which is a free parameter provides generalization and greater flexibility more
than the classical Fourier transform, as in [4].

The study of FRFT is divided roughly into three main research areas. First
is the use of FRFT for a variety of signal processing problems [5], including
compression, filtering, image encryption, pattern recognition, digital water-
marking, antennas, radar, and sonar, edge detection, as well as communica-
tion. Second, FRFT’s discrete algorithms see [6, 18, 17], and third, expanding
the fractional idea to include other transformations, as in the fractional Fourier
transforms. Mendlovic et al. [16] present first the fractional wavelet transform
(FRWT) by cascading FRFT and regular wavelet transform. The authors in
[21] presented a new family of wavelets in terms of fractional order, Shi in
[20] also introduced a new class of fractional wavelet transforms. Generally,
fractional transforms give more accurate results for signal filtering [5], image
recognition [13], and better image segmentation results [14], better image com-
pression ratios [23], and better image watermarking [8] performances since the
fractional order here is an additional key that can be used. In order to extend
fractional graphs resulting graph Fourier transform (GFT) and graph wavelet
transform (GWT), discrete signal processing was conducted which combines
both domains, graph transforms, and fractional transforms, [9, 11].

2. Preliminaries

FRFT with order ϑ is the decomposition of a function g according to κϑ,
that is,

g̃ϑ (s) = 〈g|κϑ〉 =

∫ ∞
−∞

g (x)κϑ (x, s) dx, (2.1)

where κϑ, is the fractional Fourier kernel, and

κϑ (x, s) =


Mϑe

( j
2(x2+s2)cotϑ−jxscscϑ), ϑ 6= nπ,

δ (x− s) , ϑ = 2nπ,

δ (x+ s) , ϑ = (2n+ 1)π,

(2.2)

Mϑ =

√
1− jcotϑ

2π
, (2.3)
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where ϑ represents the transform rotation angle of the transform and δ repre-
sents direct distribution is introducing by the following in [4]:

g (x) = 〈g̃ ϑ , κϑ〉 =

∫ +∞

−∞
g̃ ϑ (s)κ∗ϑ (x, s) ds. (2.4)

The spectral expansion of the kernel κϑ is given by [22]:

κϑ (x, s) =

∞∑
`=0

e(−j ϑ` )ξ`(s)ξ`(x), (2.5)

where ξ`(x) is the `th order normalized Hermite function see [4, 15], which is
the eigen-function of the Fourier transform.

To define (FRWT), we first define ϑ-order as in [22].
Let

W ϑ
g (s, a) =

∫ ∞
−∞

g (x)ψ∗ϑ,s,a (x) dx, (2.6)

where

ψϑ,s,a (x) = e
− j

2

(
x2−a2(x−a

s )
2
)

cotϑψs,a (x) (2.7)

with

ψs,a (x) =
1

s
ψ
(
x− a

s

)
,

and e is the fractional order.

W ϑ
g (s, a) = (T sϑg) (a) =

√
2π

1− jcotϑ

∫ ∞
−∞

e
j
2
s2u2cotϑg̃ϑ (u) ψ̃∗ϑ (su)κ

∗
ϑ (u, a) du,

(2.8)
where g̃ϑ stands for the ϑ - order FRFT of g.

Now we define spectral graph fractional wavelet transforms (SGFRWT),
but first the graph fractional Laplacian operator L ϑ is define as

Lϑ = υRυD, (2.9)

where 0 < ϑ ≤ 1 and the power matrix is given by

υ = [υ0, υ1, . . . , υN−1] = χϑ (2.10)

with χ the inverse graph Fourier transform matrix.

R = diag ([γ0, γ1, . . . , γN−1]) = Λ ϑ , (2.11)

that is,

γi = λϑi , i = 0, 1, . . . , N − 1. (2.12)
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The forward SGFRFT of a signal g defined on the set of vertices V of the
graph G is define by

g̃ϑ (i) =
〈
g, χ ϑ

i

〉
=

N∑
n=1

g (n) υ∗i (n) , i = 0, 1, . . . , N − 1. (2.13)

So SGFRFT inverse is defined by

g (n) = 〈g̃ϑ, υ∗i 〉 =

N−1∑
i=0

g̃ϑ (i) υi (n) , n = 1, . . . , N. (2.14)

SGFRWT operator T rgϑ is as follow:

Wf (ϑ, s, n) =
(
T sgϑf

)
(n) =

N∑
m=1

f (m)ψ∗ϑ,s,n (m) = 〈f, ψϑ,s,n〉 , n = 1, . . . , N,

(2.15)
where

T sgϑ = g (sLϑ) , (2.16)

and

ψϑ,s,n (m) =
N−1∑
`

g
(
sλϑ`

)
γ` (m) γ∗` (n), m = 1, . . . , N. (2.17)

Define Ω to be the set of all SGFRWT that are generated by a graph G and
a kernel κϑ from (2.15).

The best approximation of f ∈ L2[a, b] by a SGFRWT h ∈ Ω given by

En(g) = inf
h∈Ω
‖g − h‖ . (2.18)

In our work, to study the degree of best approximation of functions from
L2[a, b], we need the following definition of modulus of continuity from [7].

ωf ([a, b] , δ) = sup
x,y∈[a,b]

{|f (x)− f(y)| : |x− y| ≤ δ} . (2.19)

3. FRSGW Transform properties

Now, we provide some of the main important properties of FSGWT, in-
cluding inversion, scaling and location. Considering that they are the main
characteristics of wavelets, so it is important to study them in the case of frac-
tional spectral graph. For the case of continuous functions, authors in [10],
studied those properties with several applications in image processing. In [1],
Lp spaces were studied for the same target, and got strong results in Lp.
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3.1. Approximation of inverse FSGWT. For any FSGWT, with kernel
κϑ ∫ ∞

0

|κϑ (x)|2

x
dx = Cκϑ <∞

and κϑ (0) = 0, f ∈ Lp, we have

1

Cκϑ

N−1∑
n=1

∫ ∞
0

Wf (ϑ, t, n)ψϑ,t,n (m)
dt

t
= f (m)− f̂(0)χ0 (m) .

3.2. Small scales. First, we need to show the approximation effect of the
kernel κϑ on the wavelet that generates.

Theorem 3.1. Let κϑ and κ̃ϑ be the kernels of the wavelets ψϑ,t,n = T tκϑδn and

ψ̃ϑ,t,n = T tκ̃ϑδn, respectively. If for all λ ∈ [0, λN−1], with ‖κϑ(tλ)− κ̃ϑ (tλ)‖ ≤
C(t, ϑ), then ∥∥∥ψϑ,t,n − ψ̃ϑ,t,n∥∥∥ ≤ C(t, ϑ).

Proof. From Equation (2.17), and Parseval inequality 〈f, g〉 =
〈
f̂ , ĝ
〉

, we have∥∥∥ψϑ,t,n (m)− ψ̃ϑ,t,n (m)
∥∥∥2

=

∥∥∥∥∥
N−1∑
i=0

υi (m)κϑ

(
tλϑi

)
υ∗i (n)−

N−1∑
i=0

υi (m) κ̃ϑ

(
tλϑi

)
υ∗i (n)

∥∥∥∥∥
2

≤
N−1∑
i=0

∥∥∥∥∥
N−1∑
i=0

υi (m)
(
κϑ

(
tλϑi

)
− κ̃ϑ

(
tλϑi

))
υ∗i (n)

∥∥∥∥∥
2

≤ C(t, ϑ)
N−1∑
i=0

|υi (m) υ∗i (n)|2

≤ C(t, ϑ)

N−1∑
i=0

|υi (m)|2 ≤ C(t, ϑ),

where the last inequality comes from
∑

i |υi (m)|2 = 1, with complete orthog-
onal basis υi. �

The following theorem is proved in [1] for any Lp SGWT, here is a special
case for the usual norm in R2. However, it is a generalization for general
fraction ϑ.



424 H. Almurieb, Z. Sharba and J. Theyab

Theorem 3.2. Let κϑ ∈ L
(r+1)
p , κϑ (0) = 0, κϑ

(k) (0) = 0 for all k < r , and

κϑ
(r)(0) = C 6= 0. Assume that there is some τ > 0, with λ ∈

[
0, τλϑN−1

]
that

satisfies
∥∥κϑ(r+1)

(
λϑ
)∥∥ ≤ C. Then, for κ̃ϑ(tλϑ) = C(tλϑ)

r

r! we have

C (t) =
∥∥∥κϑ (tλϑ)− κ̃ϑ (tλϑ)∥∥∥ ≤ C tr+1λϑ,r+1

N−1

(r + 1)!

for all t < τ .

Now, we present the main result about localization, we note that if κϑ is
approximately.

Theorem 3.3. If κϑ satisfies Theorem 3.2 with τ and C. Let m,n ∈ V (G)
with dG(m,n) > r, r ∈ N. Then

ψϑ,t,n(m)

‖ψϑ,t,n‖
≤ Ct

for some constant C.

Proof. Set κ̃ϑ(λ) = κϑ
(r)(0)
r! λϑ,r and ψ̃ϑ,t,n = T tκ̃ϑδn, then by Lemma 5.2 in

[10],

ψ̃ϑ,t,n (m) =
κϑ

(r) (0)

r!
tr

N−1∑
i=0

κ̃ϑ

(
tλϑi

)
χ∗i (n)χi (m) = 0,

hence, by Theorems 3.2 and 3.1, we get∥∥∥ψϑ,t,n(m) − ψ̃ϑ,t,n(m)
∥∥∥ = ‖ψϑ,t,n(m)‖ ≤ tr+1

λϑ,r+1
N−1

(r + 1)!
C,

also, by hypothesis ∥∥∥ψ̃ϑ,t,n∥∥∥ = tr
κϑ

(r) (0)

r!
‖Lrδn‖ .

But, by Theorem 3.1, ∥∥∥ψϑ,t,n − ψ̃ϑ,t,n∥∥∥
p
≤ C

tr+1λϑ,r+1
N−1

(r + 1)!
.

Now, by triangle inequality, we obtain the result

ψϑ,t,n (m)

‖ψϑ,t,n‖
≤

ψϑ,t,n (m)∥∥∥ψ̃ϑ,t,n∥∥∥− ∥∥∥ψt,n − ψ̃t,n∥∥∥ ,
≤

λϑ,r+1
N−1

(r+1)!

κϑ(r)(0)
r! ‖Lrδn‖ − t

λϑ,r+1
N−1

(r+1)!

Ct = Ct.

�
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3.3. FRSGWT Polynomial approximation. Now, we approximate L2 func-
tions, then we estimate the rate of best approximation by FRSGWT in terms
of modulus of continuity. First, we prove the following result.

Theorem 3.4. Let λϑmax ≥ λϑN−1 be any upper bound on the fractional spec-
trum of Lϑ,r for fixed s > 0. Then for any polynomial approximation P (x) of
κϑ(sx) the generated FSGWT by P satisfies∥∥∥Wf (ϑ, s, n)− W̃f (ϑ, s, n)

∥∥∥ ≤ C ‖f‖ω (κϑ, δ) .

Proof. Let κϑ ∈ L2(R). Then there is a polynomial P that satisfies

‖P (x)− κϑ(sx)‖ < ω (κϑ, δ) .

Define Wf (ϑ, s, n) = (κϑ)n and W̃f (ϑ, s, n) = {(P (Lϑ,r)f)}n.
Now, by Theorem 3.1, and Cauchy Schwarz inequality, we get∥∥∥Wf (ϑ, s, n)− W̃f (ϑ, s, n)

∥∥∥
=

∥∥∥∥∥
N−1∑
i=0

f̂(i)ψ∗ϑ,r,n (m)−
N∑
m=1

f̂(i)ψ∗ϑ,r,n (m)

∥∥∥∥∥
=

∥∥∥∥∥
N−1∑
i=0

κϑ

(
sλϑi

)
f̂(i)υi (m) υ∗i (n)−

N−1∑
i=0

P (λϑi )f̂(i)υi (m) υ∗i (n)

∥∥∥∥∥
≤

∥∥∥∥∥
N−1∑
i=0

(
κϑ

(
sλϑi

)
− P

(
λϑi

))(
f̂ (i) υi (m) υ∗i (n)

)∥∥∥∥∥
≤

N−1∑
i=0

‖κϑ (sm)− p (m)‖
∥∥∥f̂ (i) υi (m) υ∗i (n)

∥∥∥
≤ C ‖f‖ω (κϑ, δ) .

�

The following result presents the direct theorem that specifies an upper
bound of the degree of approximation

Corollary 3.5. For any f ∈ L2(R), we have

‖f −Wf (ϑ, s, n)‖ ≤ Cω (f, δ) ,

where, some Wf ∈ Ω from (2.15).

Proof. Choose W̃f of form (2.15), that satisfies Theorem 3.4,∥∥∥Wf (ϑ, s, n)− W̃f (ϑ, s, n)
∥∥∥ ≤ Cω (f, δ) .
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Then

‖f −Wf (ϑ, s, n)‖ ≤ C
(∥∥∥f − W̃f (ϑ, s, n)

∥∥∥+
∥∥∥Wf (ϑ, s, n)− W̃f (ϑ, s, n)

∥∥∥) ,
< Cω (f, δ) .

�

The following result analyzes the lower bound of the best approximation to
obtain a comprehensive picture of the optimal approximation,

Theorem 3.6. For any f ∈ L2(R),Wf ∈ Ω from (2.15), we have

ω (f, δ) ≤ ‖f −Wf (ϑ, s, n)‖ .

Proof. For m < n, let

‖Wf (ϑ, s, n)−Wf (ϑ, s,m)‖ ≤ CEn (f) .

Now, take b = max
{
i : 2−i < n

}
, then by Theorem 3.4, and by properties

of modulus of continuity, we get

ω (f, δ) ≤ C (ω (f −Wf (ϑ, s, n) , δ) + ω (Wf (ϑ, s, n) , δ)) ,

≤ C
(
‖f −Wf (ϑ, s, n)‖+ ω

(
Wf

(
ϑ, s, 2i

)
−Wf

(
ϑ, s, 2i−1

)
, 2−b

))
,

≤ C

(
ω (f, t) +

n∑
m=2

(m+ 1)Em (f)

)
,

≤ CEn (f) .

�

4. Conclusions

In this study, we extended the problem of FRSGWT. The fundamental
contribution can be summarized as follow:

(1) A new type of FRSGWT approximation has been studied in terms of
discrete graph Laplacian matrix.

(2) A new versions of direct and inverse theorems are proved.

As a conclusion, the new defined FRSGWT provides an alternative operator
for the graph signal processing. For further research, we could study approxi-
mation of Lp functions by FRSGWT in terms of smoothness of functions. So
that, modulus of smoothness could be a good replacement of the modulus of
continuity that give faster approach to best approximation.

Acknowledgments: The author thanks for the support of Rambhai Barni
Rajabhat University.
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