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1. INTRODUCTION

Due the wide application of inequalities, integral inequalities for example
in the study of existence and the uniqueness of the solutions of differential
equations, integral equations, in optimization problems where the objective
function is convex or h-convex and the constraints are given by fractional
integral inequalities. It is natural to study integral inequalities involving frac-
tional calculus.

Fractional calculus generalizes derivative and integral operations to non-
integer orders, providing a more flexible approach to modeling complex phe-
nomena.

In recent years, fractal and fractional problems in mathematics, especially
fractional integral inequalities involving h-convex functions have garnered sig-
nificant attention due to their broad applications across optimization, differen-
tial equations, signal processing, and related areas. Researchers have explored
various inequalities to establish connections with existing theories and un-
cover new insights. Notable works such as [5, 7, 14, 16, 20, 21] have utilized
Riemann-Liouville and Hadamard [9, 15, 19] integrals and their generaliza-
tions.

Wu Y. [18] investigated fractional integral inequalities for h-convex func-
tions, providing applications to differential equations and integral equations.

Pachpatte [12] contributed to understanding these inequalities by deriving
explicit bounds and highlighting the importance of h-convexity.

Bashiret al. [4] explored Hermite-Hadamard type inequalities for h-convex
functions, demonstrating applications in special functions and integral trans-
forms.

These inequalities are powerful tools for analyzing the properties of func-
tions, normed vector spaces, and measure spaces. Their understanding and
application are crucial to many fundamental results and theorems in various
areas of mathematics.

This work aims to provide a comprehensive understanding of fractional inte-
gral inequalities involving h-convex functions and their significance in various
mathematical domains. It establishes new inequalities, explores their applica-
tions, and contributes to advancing theoretical frameworks.

2. PRELIMINARIES

Definition 2.1. Let I C R be an interval and ¢ : I — R, h : [0,1] — (0, 00)
be nonnegative functions, h % 0. The function ¢ is said h-convex if

¢(pc+ (1 = p)d) < h(p)o(c) + h(1 — p)p(d) (2.1)
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holds for all ¢,d € I and p € (0,1]. If (2.1) is reversed ¢ is said h-concave.

Remark 2.2. The class of convex functions is a special case of h-convex
functions, where h(t) = t for all ¢. Similarly, the class of concave functions
is a special case of h-concave functions with h(t) = —t. By choosing different
functions for h, one can obtain various subclasses of h. The s-convex functions
(in the second sence), Godunova-Levin functions and P-functions, which are
obtained by taking in (2.1) h(t) = t°(s € (0.1)),h(t) = 1/t and h(t) = 1,
respectively [11, 17, 20, 21].

Example 2.3. Let h : (0,00) — (0,00), defined by h(z) = z=/2 and f :
[a,b] — R
: a+b
1, if x# %

f(x):{QS/Q’ i sz‘””

2
we verify that f is not convex, but it is A- convex.

Definition 2.4. ([13]) Let 0 < 0 < A < oo, and ¢ € L]0, A]. Then the
RiemannLiouville fractional integrals of ¢ of order p > 0 with § > 0 are
defined by

T o(s) = 1“(1u) /:(5 — ) let)dt, s>6 (2.2)
and
A
JK_¢(s) = F(lﬂ)/s (t — )P Lf(t)dt, s <A, (2.3)

where D(p) = [(° t*" e tdt, p > 0, is the Gamma function. We set
J)p=J_¢=09.

Our objective in this work is to establish some estimates for a more general
fractional integral operator than the Riemann-Liouville fractional integral us-
ing the h-convexity property of functions (see, Theorem 3.3 and 3.14) which
are symmetric about the midpoint, as well as of absolute values of ordinary
derivative (see, Theorem 3.9).

Remark 2.5. The class of convex functions is a special case of h-convex
functions, where h(t) = t for all ¢. Similarly, the class of concave functions
is a special case of h-concave functions with h(t) = —t. By choosing different
functions for h, one can obtain various subclasses of h. The s-convex functions
(in the second sence), Godunova-Levin functions and P-functions, which are
obtained by taking in (2.1) h(t) = t°(s € (0.1)),h(t) = 1/t and h(t) = 1,
respectively [11, 17, 20, 21].
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3. MAIN RESULTS

Definition 3.1. Let 0 < d < A < 00,1 < >0,v > 1. Let F*” Dbe

U,w

the integral operator defined from L([d, ]) [ ,A]) as follows:

P oo = o [0 ] (3.)

and

w(s) [A vl
Filao) = poy [ - | ewuoa 62

where u and w are locally integrable, nonnegative functions. We set

0,1 0,1 .
3% 1,1; 5+¢ F1,1;A—¢ = 0.

Remark 3.2. (1) If v = 1,w(s) = u(s) = 1, then the operator F’fll coin-
cides with the classical Riemann-Liouville fractional integral operator
JH.
(2) For p > 0,v > 1, necessary and sufficient conditions for the bound-
edness and compactness of the integral operator Fi . from L, to
L4,0 <p,q < oo are found (see [6], Theorem 3.1, Theorem 4.1).

Theorem 3.3. Let py, 2 > 1 and v1,v5 > 1. Let ¢ : [0; A] — R be a nonneg-
ative h-convez function, where h is Lebesque integrable on (0,1). Assume that
u s non-decreasing on [0, s| and non-increasing on [s, A], for s € (§, A). Then
the following inequality

| P00 | TR P o)
u(s)w(s) (ln g)’/l 1 <IHA)I/2—1

S

1
< 4(5) (s — )™ + (A — 5] /O Bl — 2)dz

1
T (B0)(s — 6" + SAY(A — 5)P2) /0 h(z)dz (3.3)
holds.

Proof. Let s € (4, A). Firstly, let us examine the function ¢ on the interval
[4, s]. Therefore, for all t € [4, s], the following inequality

u(t) [1n ] " <u(s) 3] "l smt (3.4



Estimates for fractional integrals of Riemann-Liouville type 433

holds. Due to the h-convexity of ¢, we write

o) <n (225) 60) +1 (£23) oo 3.5)

Multiplying (3.4),(3.5) side to side and integrating the result over [0, s|, we
get

/5 () ] " s~ L g(n)de

< u(s)(s — 3y [n2]" 1 {¢(s) /01 h(1 = 2)dz + 6(5) /01 h(z)dz}, (3.6)

that is,

D(a)FEL, 6(5) < u(s)ls) [0 5] (s — o
thus

1 1
« {qs(s)/o h(l—z)dz+¢(5)/0 h(z)dz}, (3.7)
T(u1)F, s 6(s)

! 1
w(5)ls) [Ingrl [ < (s—o)" {¢( )/0 h(1—z)dz+¢(5)/0 h(z)dz}'
(3.8)

Now let pg, 9 > 1. Then for ¢ € [s, A] the following inequalities

u(t) [m J T e < u(e) [m ] “alge @39

and
o) <n (5= )o@ +n(5=0) ot (3.10)

hold. And we proceed as in the first step. Thus it results that

T (p12) ZZVZA?Q) S < (A5 {¢(s) /01 h(1 — 2)dz + $(A) /01 h(z)dz} :

ushote) [

S

(3.11)
By adding (3.8) and (3.11), we get (3.3). O
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Corollary 3.4. By setting py = po =p > 1 and vy =vo =v > 1 in (3.3), we
get

P | Fuissr 05) | Fudia 0(5)
u(s)w(s) (ln g)yil <ln A) v

S

1
< ()(5 — 6V + (A — 5)H] /0 h(1 — 2)dz

1
+ (¢(0)(s — )" + ¢(A)(A — s)“)/o h(z)dz. (3.12)

Corollary 3.5. By choosing in (3.12) u =1, w =1,h(x) =z and v = 1, then

D(u) (JE 6(s) + Th_o(s)) < ¢(s) (s — o) +2 (A —s)H

$(0)(s = )" + (A)(A — s)*
5 .

_l’_

(3.13)

J+A
Corollary 3.6. If we choose p = 1 and taking s = % in (3.13), then we

A
Al—(5/5 (1)t < %qﬁ (‘”;A> ) ng(m. (3.14)

have

Remark 3.7. For puy, o > 0, v1,v5 < 1, and if ¢ is h-concave function, u is
decreasing on [d, s], increasing on [s, A] for s € (§, A), then (3.3) is reversed.

Example 3.8. The following example shows the validity of the inequality
established. Let ¢ : [5;A] — Ry, ¢(t) = 1 and h(t) = t*;k < 1,t > 0. Let
p>1,v=2u=1w=1. Then we verify easly that ¢ is h-convex. Hence
from Corollary 3.4, we have the estimates

2 1\(s
F(u)(F{f1§+1)( ) < (s— )~ {/01(1 —z)kdz + /01 dez} (3.15)

1,
"5

and

() (Fl'ea_1)(s) N " b
A < (A-ys) {/0 (1—2) dz+/ozdz} (3.16)

In —
s



Estimates for fractional integrals of Riemann-Liouville type 435

or
s S s 1[0
st Sar = ln—/ s — )FtLdt
/5( ) ¢ I o 5( )
2 s
< —0)Pln= )
< k+1(8 J) ln(;, (3.17)
A A’ A
/(t—s)“lln g — B =3) lnA—lf (t— syt~ Lt
s s p s s
2 A
<= (A-—s)"In=. 1
—k:+1( s) " (3.18)
For s = +Aand k=1, we get
S+A -1
2 [+ A " I+ A A—-6\" d+A
_ In( —— < 1 1
/5 (2 t) n<2t>dt_< . ) R ERt)
and

A p—1 m
S+ A 2t ) 2A
-T2 M < (20 w2 2
AEA( 2 ) i A —< 2 > i A (3:20)

Theorem 3.9. Let py, po,v1,v5 > 1. Let ¢ : [§; A] — R be a non-negative
differentiable function. Let u,w be locally integrable, non-negative functions.
Also suppose that u is absolutely continuous, non-decreasing on [, s| and non-
increasing on [s,Al], for s € (0,A). If |¢'| is h-convex, then

o +1 y 5 ,
I (Pt g - P ot
w(s) (ln 5)

D(p2 +1) vot1 L Lug+1
+ o (Pt + mFat e+ PRt ofs)
w(s) <1n )
s

= (@(0)u(8)(s = 0)" + o(A)u(A)(A = 5)2) | (3.21)
<1¢'(s)| ((A — g)katl (ln é)AQ + (s — o) tt <ln Z)Vl) /01 h(1 - z)dz
+ (]qb’(A)\(A — syt (m é) e @)(s — syt (1n ;)) /0 h(2)dz
u(t)

holds, where u' is the usual derivative of u and (u/t)(t) denote —~
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Proof. First step: For s € (6, A) consider the function ¢ on the interval [9, s|.
Hence for p1,v1 > 0 and t € [4, s| the following inequality

In ﬂ Tty (s -ty < [In g} " u(s) (s — gyt (3.22)

holds. Due to the h-convexity of |¢/|, it results that for ¢ € [4, s]

~(n(555) 19O +n(E5) 1)) < 0'0)
<h (225 ) 1001+ n (i) 1) (3.23)

Multiplying (3.22) and the right side of (3.23) and integrating the result over
[0, s]. Then we have

/5 T u(t)(s — 1y [m ﬂ " (t)dt

V1

< u(s)(s—o)tt [ln g] (3.24)

< (10l [ b1 = 2)dz +16/0) / 1 ez

By integrating by parts, we obtain

/5 " ut) (s — (0 2)" oty

S

= —6(0) (n3)" u(@)(s — o)

S

- /5 (1n Z)Vl (1) (s — ) o(t)di

vy

u(t) (s — t)" L o(t)dt



Estimates for fractional integrals of Riemann-Liouville type 437
Using Definition 3.1 and inequality (3.25), it follows that

I +1 v v 1 v
U ) (Rt L - R 6(5) — p(6u(o)(s — "
w(s) (ln 5)

1 1
< u(s)(s — oy <|<z>/<s>| | ra=sa+ o) [ h(z)dz). (3.26)

By considering the left hand side of (3.23), we deduce a similar inequality

~u(s)(s — 6+ [ 3]” <y¢ y/ (1= 2)dz + |65 y/ )
§/;u(t)(s—t)’“ 2] oyt (3.27)

By combining the resulting inequality and (3.26), we obtain

Tr 1 v v v
M (Fﬁlﬁj S 51+_F“1,:15+1+1> ¢(s) = p(6)u(d)(s — )™

1 1
< u(s)(s — syt (|¢'<s>| /0 W1 - 2)dz + 8(6)] /O h(z)dz>. (3.28)

Last step: Let t € [s,A], po > 0,5 > 0, and taking in account that |¢/| is
h-convex. Then it follows that

(t — sy <ln D YA s <ln A) N (3.29)

S

) (” (2_ ) ()l + ( i__i) ¢’<A>\) (3.30)
<@(t)<h (2:2) |6/(s)] +h (i‘_i) ¢/ (A)].

The rest is similar to the first step. Consequently

and

T 1
e (Rt Bl e 4RI o) p(A)u(A) (A )

o (u2)"
< u(s)(A —5“2+1<|¢) |/ (1—2)dz+|f'(A |/ > (3.31)

By triangular inequality, by adding inequalities (3.28) and (3.31), the required
inequality holds. O
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As special cases, we have the following corollaries,

Corollary 3.10. By setting pu1 = po = p,v1 = vy = v, h(t) =t",r € (0,1] in
(3.21), then

’F(M—Fl)([FuvH LY —F#HVH*‘FJ:ZX Ly Ly +F,Z+1u+1]¢>($)

w(s)u(s) uw5+ u/tw;d+ T u,wid+ u/tw;A—
- u(ls) <<(A _s)htln f)ﬁ w(A)p(A) + (s — §) 1 In (g) u(5)¢)(5)> ‘
(A — s (In Ay + (s —&6)* ! (In )"
sws)\( ( 32+1 )
(A — s)ptt lné ’ s— 51t (2
+1¢'(2) " S - ) i 5):+ fl ) (3.32)
holds.

Corollary 3.11. If we choose u=1,v=1,v =0, and r =1 in (3.32), then
ID(k+1) (J5,6(5) + Ty o(s)) — (A = s)'(A) + (s = 8)") ¢(6)]  (3.33)

— s s — ! — s)tt s— !
< (BT T gy B ) =D

holds.

)
Corollary 3.12. On letting x = and p =1 1in (3.33), then

‘ /f )t — >+f<>' (3.34)
< B2 oy (B2) [+ i@+ 176

18 valid.

We need the following result.

Lemma 3.13. Assume that ¢ : [0,A] — R is h-convex function and ¢ is
A
. Then

p (MQA) < oh (;) o), z€5,A] (3.35)

symmetric about

s valid.
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Proof. We have

Hence,

Theorem 3.14. Let py > 0,9 > 0,v1,v9 > 1. Let ¢ : [§; A] = R be a non-
negative h-convex function, where h is Lebesgue integrable on (0,1). Let u,w

be integrable and non-negative functions, w(d) # 0,w(A) # 0. Also suppose

5+ A
that u is monotonic on [§, A], for s € (8, A). If ¢ is symmetric about z )

then it follows that

(1) If u is increasing, then
u(9)

S o ) s ) (2
2

Dl + DF IR 0(8)  Tlue + D) F2T 57 0(A)

= (6 * o(A)
< u(A) <(A ) (ln ?) o + (A — §)H2 Tl <ln ?)Vﬂ)

« <¢(5) /0 BYREON /0 "h1 z)dz)
holds (3.36)
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(2) If wis decreasing, then

2:(<A1>> / "t — gy <ln §>V1_1+(A e <ln ?)Wl dt]cp <‘5+2A>
§ F(2u1+1)ﬂjlj NO(0)  T(ua+ )T 0RH(A)
8 (o) i w(A)

< u(6) ((A — gyl <ln ?) S (A — §)r2t (m ?>V2_1>

« <¢(5) /0 "hie) + 6(A) /0 a1 —z)dz)
is valid. (3.37)

Proof. (1) We start by the case u is increasing. For t € [0, A]l, ug > 0,1 > 1,
we have

(t— gy (m (’;) ") < (A sy <ln ?) ) (3.38)

" o0 < h (5 75) 00) + 4 575) 04 o

Multiplying inequalities (3.38),(3.39) side to side, and integrating the result
over [, A]. It follows that

/f(t gy <1n ;)ml w(t)p(t)dt

< (A — gt <ln ?)Vllu(A) <¢(5) /01 h(z) + ¢(A) /01 h(1 — z)dz) .
(3.40)

From which, we have

T (py + DFLL X" 6(0)
w(d)

u(A)(A =gyt <ln ?)ml(m) /01 h(z) + ¢(A) /O1 h(1 — z)dz> .

On the other hand for ¢ € [0, A], we have

(3.41)

(A — ) <ln ?) o u(t) < (A — )= <ln ?) - u(A). (3.42)
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By multiplying (3.39) and (3.42) and integrating the result over [d, A], we get

D(p2 + DF 572 6(A)

w(A)

< u(A)(A - )=t (ln ?)Wl <¢(5) /O 1 h(z) + ¢(A) /O 1 h(1 — z)dz> .
(3.43)

By adding (3.41) and (3.43), it results that

D(py+ DFIAG(0)  Tlug + DFET20(A)

0T
< u(h) ((A — gyt <ln ?) o + (A = g)r2tt <ln ?)W_l)

X <¢(5) /0 1 h(z) + 6(A) /0 1 h(1— z)dz> . (3.44)

Using Lemma 3.13, we have

’ <6+2A> u(8)(t — 5)" <1n §>V1—1
< 2h (;) ot u(t)(t — 5™ <1n Z;)Vl_l’ -

integrating (3.45) over [J, A], we get

w(8)é (‘”f) /f(t _gym <1n ;)Vl_l dt

—u <1> (i + 1) FLLAY 6(0)

2 v(9)

(3.46)

Similarly, we have

¢ <6+2A> w() (A — t)H2 <1n ?>u2_1

<on <2> S(H)u()(A — 1) <ln >V2_1 , (3.47)
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integrating (3.47) with respect to t over [, A], we get

u(8)6 <‘5+2A) /JA(A e <ln ?)Wl dt

o (L T(ug + DFE2F20(A)
- 2 v(A)

Adding (3.46) and (3.48), we obtain

0+ A) /f(A — k2 <ln ?)Wl + (t— o) <ln ;)ml dt]

o (5

1\ [T+ DFEA6(0)  D(pa + DF2E26(A)

(3.48)

, (3.49)

combining (3.44) and (3.49), we have

SO0 () o ety

(%5)

2
_ Dl + DFUER"0(6) | Dl + DL 0(A)
: w(0) i w(d)

< u(A) <(A g+l (m ?)m_l + (A — gyt <ln ?) V2_1>

« <¢(5) /01 h(z) + 6(A) /01 h(l—z)dz).

(2) Similar proof for the case u decreasing. O

Corollary 3.15. By setting p1 = po = b and v1 = vo = v, we obtain

u(5) /JA(A e (m ?)H b= <ln ;)H dt] ¢ <5+2A)

1
o (2>

FLLR-_00) Pl o)
sr(u+1)< 0 (9) + W(Z) )

< 2u(A)(A - g+ <ln ?) - <¢(5) /01 h(z) + ¢(A) /01 h(1 — z)dz) .

(3.50)
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Example 3.16. The following example illustrates the validity of estimates.
Let ¢ : [6;A] = Ry, ¢(t) = 1 and hy(t) = tF k < 1, > 0. Let g > 0,v > 1,
u=1,w = 1. We verify that

(1) ¢ is hg-convex.
O+ A

(2) ¢ is symmetric about

Hence from Corollary 3.15, we get the estimates

/f(A iy <ln ?)H +(t— ) (m §>V_1 dt]

<T(u+1) (F*;j}g_ 1(6) + FU 15 1(A))

< 2(A —5)rft (ln ?)“ (/01 2F 4 /01(1 — z)kdz) . (3.51)

1
21—k

Or
1 A A v—1 A A v—1
- A p— < —_ 1M p—
21—‘“/5 (A—1) (mt) _/6 (A—1) (mt) dt
- +1 v—1
A= (A
- k+1 1)
and

21% /(f(t Y <ln Z;)H < /f(t ) (m ;)V_ldt

<2(A_5)#+ lé v—1
=Tkt s '

Take the change of variables t =6 + (A —d)e ™ and t = A — (A — d)e™ ",
we get

0o N v—1
S/ e~z [m <1 + Aé 56—90)] dx (3.52)
0
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and
1 & Ae” vl
- (D7 |y =2
ﬂ%A ¢ [nAﬁ—A+J d
o Ae* vl
< Dz =2 .
_/0 e [nAex—A—i—é dz (3.53)
—— (In— :
“k+1 0
For v = 2,
1 / e_(p“+1)$1n56 +A_5d$§/ e_('u“+1)$1H66 +A—(de
21-k [, de” 0 Je”
< 2 4,4
Skl s
and
1 & Ae* & Ae*
1 ey, B <t/“ ey, BT
ﬂ%A ¢ MR At S ¢ N Ner At
< 2 | A
n—.
“k+1 6

Taking k = 1, we get

F(\) ::/ e_Azlnwde ln%()\>0)
0

der
and
o0 Ae” A
-z
= In ——— dx <lIln — .
G(N) /0 e nAem—A+(5d$—n6(/\>0)
The functions F,G are the Laplace transforms of f(x) = %, g(z) =

Aeffezﬂ;, respectively.

Corollary 3.17. If we choose w = 1,w = 1,v = 1 and taking h(x) = x in
(3.15), then the inequality

1 0+ A I(p+1)
e (50) <3

< 20) +2¢(A)

(I8 0(0) + 35 0(a)
(3.54)

holds.
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Remark 3.18. On letting 1 — 0 in (3.54), we get the inequality of Hermite-

Hadamard
s <A+5) < Al 5/Aq§(t)dt < HB) +00) (3.55)
- 4

2 2

4. CONCLUSIONS

In this study, we have introduced a new fractional integral operator with a
logarithmic kernel and two parameters, incorporating two non-negative weight
functions. Focusing on h-convex functions in fractional integral inequalities,
we deepen our understanding and extend the utility of h-convex functions in
fractional calculus. By looking at these functions in fractional calculus. No-
tably, we derive some estimates and bounds for Laplace transform of functions,
(see examples ), also are obtained integral inequalities involving Riemann-
Liouville integrals and the classical Hermite-Hadamard inequality.

In conclusion, our research contributes to mathematical analysis by ad-
dressing challenges in h-convexity and fractional calculus, opening avenues for
exploration at the intersection of integral and classical inequalities. We expect
that the ideas and techniques of the paper may stimulate further research in
this field.
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