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Abstract. In this paper, we investigate the Hyers-Ulam stability, generalized Hyers-Ulam

stability, Mittag-Leffler-Hyers-Ulam stability and generalized Mittag-Leffler-Hyers-Ulam sta-

bility of general linear differential equations of first order with constant coefficients by using

El-Zaki transform method. Moreover, the Hyers-Ulam stability constants of these differential

equations are obtained. Some examples are given to illustrate our main results.

1. Introduction

In [45], Ulam proposed the universal Ulam stability problem. When is it
true that by slightly changing the hypotheses of a theorem one can still assert
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that the thesis of the theorem remains true or approximately true? In [11],
Hyers gave the first confirmatory answer to the question of Ulam for additive
functional equations in Banach spaces. Hyers result has since then seen many
significant generalizations, both in terms of the control condition used to define
the concept of approximate solution [4, 6, 9, 12, 22, 23, 24, 39, 42, 44].

A generalization of Ulam’s problem was recently proposed by replacing
functional equations with differential equations: The differential equation
φ
(
f, x, x′, x′′, · · · , x(n)

)
= 0 has the Hyers-Ulam stability if for a given ε > 0

and a function x such that∣∣∣φ(f, x, x′, x′′, · · · , x(n))∣∣∣ ≤ ε,
there exists a solution xa of the differential equation such that |x(t)− xa(t)| ≤
K(ε) and

lim
ε→0

K(ε) = 0.

If the preceding statement is also true when we replace ε and K(ε) by φ(t)
and ϕ(t), where φ, ϕ are appropriate functions not depending on x and xa
explicitly, then we say that the corresponding differential equation has the
generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

Obloza seems to be the first author who has investigated the Hyers-Ulam
stability of linear differential equations [35, 36]. Thereafter, in 1998, Alsina
and Ger [2] investigated the Hyers-Ulam stability of differential equations.
They proved in [2] the following theorem.

Theorem 1.1. Assume that a differentiable function f : I → R is a solution
of the differential inequality ‖x′(t)− x(t)‖ ≤ ε, where I is an open subinterval
of R. Then there exists a solution g : I → R of the differential equation
x′(t) = x(t) such that for any t ∈ I, we have ‖f(t)− g(t)‖ ≤ 3ε.

This result of Alsina and Ger [2] has been generalized by Takahasi et al.
[43]. They proved in [43] that the Hyers-Ulam stability holds true for the
Banach space-valued differential equation y′(t) = λy(t). Indeed, the Hyers-
Ulam stability has been proved for the first order linear differential equations
in more general settings [14, 15, 16, 17, 26]. In 2006, Jung [18] investigated
the Hyers-Ulam stability of a system of first order linear differential equations
with constant coefficients by using matrix method. In 2007, Wang, Zhou and
Sun [46] studied the Hyers-Ulam stability of a class of first-order linear differ-
ential equations. Rus [41] discussed four types of Ulam stability: Hyers-Ulam
stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and
generalized Hyers-Ulam-Rassias stability of the ordinary differential equation

u′(t) = A(u(t)) + f(t, u(t)), t ∈ [a, b].
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In 2014, Alqifiary and Jung [3] proved the generalized Hyers-Ulam stability
of linear differential equation of the form

x(n)(t) +
n−1∑
k=0

αk x
(k)(t) = f(t)

by using the Laplace transform method, where αk are scalars and x and f are n
times continuously differentiable function and of the exponential order, respec-
tively. The Hyers-Ulam stability of differential equations has been investigated
by many authors in [1, 5, 7, 8, 10, 13, 20, 21, 25, 27, 28, 29, 30, 32, 33, 37, 38]
and the Hyers-Ulam stability of differential equations has been given attention.

Recently, Murali, Selvan and Park [34] investigated the Hyers-Ulam stability
of the linear differential equation using Fourier transform method (see also
[31, 40]).

Motivated and connected by the above results, our main aim is to study
the Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Mittag-Leffler-Hyers-
Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of the first or-
der homogeneous linear differential equation of the form

x′(t) + l x(t) = 0 (1.1)

and the non-homogeneous linear differential equation

x′(t) + l x(t) = r(t) (1.2)

by using a new transform method, namely, the El-Zaki transform method,
where l is scalar, x(t) and r(t) are continuously differentiable functions.

2. Preliminaries and basic notations

In this section, we introduce some standard notations and definitions which
will be useful to prove our main results.

Throughout this paper, F denotes the real field R or the complex field C.
A function f : (0,∞) −→ F is said to be of exponential order if there exists a
constants A,B ∈ R such that |f(t)| ≤ AetB for all t > 0.

For each function f : (0,∞) → F of exponential order, let us consider the
set A, which is defined by

A =
{
f(t) : ∃M, |f(t)| < Me|t|/kj , k1 and k2 > 0, t ∈ (−1)j × [0,∞)

}
,

where the constant M must be finite while k1 and k2 may be infinite. The
El-Zaki transform is defined by

E{f(t)} = ξ

∫ ∞
0

f(t) e−t/ξ dt = F (ξ), t ≥ 0, ξ ∈ (−k1, k2),
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in which the variable ξ in the El-Zaki transform is used to factor the variable
t in the argument of the function f , specially for f(t) in A.

For given Lebesgue integrable functions f and g on (−∞,+∞), let S denote
the set of x for which the Lebesgue integral

h(x) =

∞∫
−∞

f(t) g(x− t) dt

exists. This integral defines a function h on S called the convolution of f and
g. We also write h = f ∗ g to denote this function.

Definition 2.1. ([19]) The Mittag-Leffler function of one parameter is denoted
by Eν(t) and defined as

Eν(t) =

∞∑
k=0

tk

Γ(νk + 1)
,

where t, ν ∈ C and Re(ν) > 0.
If we put ν = 1, then the above equation becomes

E1(t) =
∞∑
k=0

tk

Γ(k + 1)
=
∞∑
k=0

tk

k
= et.

Definition 2.2. ([19]) The generalization of Eν(t) is defined as a function

Eν,ϑ(t) =
∞∑
k=0

tk

Γ(νk + ϑ)
,

where t, ν, ϑ ∈ C, Re(ν) > 0 and Re(ϑ) > 0.

Now, we give the definition of Hyers-Ulam stability and generalized Hyers-
Ulam stability of the differential equations (1.1) and (1.2).

Definition 2.3. ([34]) The linear differential equation (1.1) is said to have
the Hyers-Ulam stability if there exists a constant K > 0 with the following
property: For every ε > 0 such that there exists a continuously differentiable
function x(t) satisfying the inequality

|x′(t) + l x(t)| ≤ ε, (2.1)

there exists some y : (0,∞)→ F satisfying the differential equation (1.1) such
that |x(t) − y(t)| ≤ Kε, for all t > 0. We call such K as the Hyers-Ulam
stability constant for (1.1).
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Definition 2.4. ([34]) We say that the non-homogeneous linear differential
equation (1.2) has the Hyers-Ulam stability if there exists a continuously dif-
ferentiable function x(t) satisfying the following condition: For every ε > 0,
there exists a positive constant K such that

|x′(t) + l x(t)− r(t)| ≤ ε, (2.2)

there exists a solution y : (0,∞)→ F satisfying the differential equation (1.2)
such that |x(t)− y(t)| ≤ Kε, for all t > 0. We call such K as the Hyers-Ulam
stability constant for the differential equation (1.2).

Definition 2.5. ([34]) We say that the homogeneous linear differential equa-
tion (1.1) has the generalized Hyers-Ulam stability if there exists a constant
K > 0 with the following property: For every ε > 0 and a continuously differ-
entiable function x(t) such that there exists φ : (0,∞)→ (0,∞) satisfying the
inequality

|x′(t) + l x(t)| ≤ φ(t)ε, (2.3)

there exists some y : (0,∞)→ F satisfying the differential equation (1.1) such
that |x(t) − y(t)| ≤ K φ(t)ε for all t > 0. We call such K as generalized
Hyers-Ulam stability constant for (1.1).

Definition 2.6. ([34]) The differential equation (1.2) is said to have the gen-
eralized Hyers-Ulam stability if there exists a positive constant K with the
following condition: For every ε > 0, a continuously differentiable function
x(t) and a function φ : (0,∞)→ (0,∞) satisfying the inequality

|x′(t) + l x(t)− r(t)| ≤ φ(t)ε, (2.4)

there exists a solution y : (0,∞) → F satisfies the differential equation (1.2)
such that |x(t)−y(t)| ≤ K φ(t)ε for all t > 0. We call such K as the generalized
Hyers-Ulam stability constant for the differential equation (1.2).

Finally, we give the definitions of Mittag-Leffler-Hyers-Ulam stability and
generalized Mittag-Leffler-Hyers-Ulam stability of the differential equations
(1.1) and (1.2).

Definition 2.7. ([34]) We say that the differential equation (1.1) has Mittag-
Leffler-Hyers-Ulam stability if there exists a constant K > 0 with the following
property: For every ε > 0 and a continuously differentiable function x(t)
satisfying the inequality

|x′(t) + l x(t)| ≤ εEν(t), (2.5)

where Eν(t) is the Mittag-Leffler function, there exists some y : (0,∞) → F
satisfying the differential equation (1.1) such that |x(t)− y(t)| ≤ KεEν(t) for
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all t > 0. We call such K as the Mittag-Leffler-Hyers-Ulam stability constant
for (1.1).

Definition 2.8. ([34]) We say that the non-homogeneous differential equation
(1.2) has the Mittag-Leffler-Hyers-Ulam stability if there exists a positive con-
stant K > 0 with the following condition: For every ε > 0 and a continuously
differentiable function x(t) such that

|x′(t) + l x(t)− r(t)| ≤ εEν(t), (2.6)

where Eν(t) is the Mittag-Leffler function, there exists a solution y : (0,∞)→
F satisfying the differential equation (1.2) such that |x(t)−y(t)| ≤ KεEν(t) for
all t > 0. We call such K as the Mittag-Leffler-Hyers-Ulam stability constant
for the differential equation (1.2).

Definition 2.9. ([34]) We say that the differential equation (1.1) has the gen-
eralized Mittag-Leffler-Hyers-Ulam stability if there exists a constant K > 0
with the following property: For every ε > 0 and a continuously differen-
tiable function x(t) such that there exists φ : (0,∞) → (0,∞) satisfying the
inequality

|x′(t) + l x(t)| ≤ φ(t)εEν(t), (2.7)

where Eν(t) is the Mittag-Leffler function, there exists some y : (0,∞) → F
satisfying the differential equation (1.1) such that |x(t)−y(t)| ≤ K φ(t)εEν(t)
for all t > 0. We call such K as generalized Mittag-Leffler -Hyers-Ulam sta-
bility constant for (1.1).

Definition 2.10. ([34]) We say that the differential equation (1.2) has the gen-
eralized Mittag-Leffler-Hyers-Ulam stability if there exists a positive constant
K with the following condition: For every ε > 0, a continuously differentiable
function x(t) and a function φ : (0,∞)→ (0,∞) satisfying the inequality

|x′(t) + l x(t)− r(t)| ≤ φ(t)εEν(t), (2.8)

where Eν(t) is the Mittag-Leffler function, there is a solution y : (0,∞) → F
satisfying the differential equation (1.2) such that |x(t)−y(t)| ≤ K φ(t)εEν(t)
for all t > 0. We call such K as the generalized Mittag-Leffler-Hyers-Ulam
stability constant for the differential equation (1.2).

3. Hyers-Ulam stabilities
of the linear differential equation (1.1)

In this section, we prove the different types of Hyers-Ulam stability of the
homogeneous linear differential equations (1.1) by using El-Zaki transform.
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Firstly, we investigate the Hyers-Ulam stability of first order homogeneous
differential equation (1.1).

Theorem 3.1. The homogeneous linear differential equation (1.1) is Hyers-
Ulam stable.

Proof. Assume that x(t) is a continuously differentiable function satisfying
the inequality (2.1). Let us define a function p : (0,∞) −→ F such that
p(t) := x′(t) + l x(t) for each t > 0. In view of (2.1), we have |p(t)| ≤ ε.
Taking El-Zaki transform to p(t), we get

P (ξ) := E{p(t)} = E{x′(t) + l x(t)} = E{x′(t)}+ l E{x(t)}

=
X(ξ)

ξ
− ξ x(0) + l X(ξ).

Thus

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ)

1 + lξ
. (3.1)

Put y(t) = e−lt x(0). Then y(0) = x(0). Taking El-Zaki transform to y(t), we
get

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
. (3.2)

Thus, we have

E{y′(t) + l y(t)} = E{y′(t)}+ l E{y(t)}

=
Y (ξ)

ξ
− ξ y(0) + l Y (ξ).

Using (3.2), we have E{y′(t) + l y(t)} = 0. Since E is one-to-one operator,
y′(t) + l y(t) = 0. Hence y(t) is a solution of the differential equation (1.1).

Set Q(ξ) =
ξ

(1 + lξ)
. Then the equality E{q(t)} =

ξ

1 + lξ
implies that q(t) =

E−1
(

ξ

1 + lξ

)
. Plugging (3.1) into (3.2), we can obtain

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}.
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Consequently, E{x(t)−y(t)} = E{p(t)∗q(t)} which gives x(t)−y(t) = p(t)∗q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣

≤ |p(t)|
∣∣∣∣∫ ∞
−∞

q(t− s) ds
∣∣∣∣

≤ Kε,

where K =
∣∣∣∫∞−∞ q(t− s) ds∣∣∣ and the integral exists for each value of t. This

shows that the homogeneous linear differential equation (1.1) has the Hyers-
Ulam stability. �

In analogy with Theorems 3.1, we bring the following generalized Hyers-
Ulam stability result for the differential equation (1.1). We include some
parts of the proof for the sake of completeness.

Theorem 3.2. The differential equation (1.1) has the generalized Hyers-Ulam
stability.

Proof. Let x(t) be a continuously differentiable function satisfying the inequal-
ity (2.3). Defining a function p : (0,∞) −→ F through p(t) =: x′(t)+ l x(t) for
each t > 0, we have |p(t)| ≤ φ(t)ε. Taking El-Zaki transform to p(t), we get

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ)

1 + lξ
. (3.3)

If y(t) = e−lt x(0), then y(0) = x(0) and hence

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
. (3.4)

Thus,

E{y′(t) + l y(t)} = E{y′(t)}+ l E{y(t)} =
Y (ξ)

ξ
− ξ y(0) + l Y (ξ).

It follows from (3.4) that E{y′(t) + l y(t)} = 0 and so y′(t) + l y(t) = 0. This
means that y(t) is a solution of the differential equation (1.1).

On the other hand, for Q(ξ) =
ξ

(1 + lξ)
, we have E{q(t)} =

ξ

1 + lξ
and

consequently q(t) = E−1
(

ξ

1 + lξ

)
. The relations (3.3) and (3.4) necessitate

that

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}
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which implies that E{x(t)− y(t)} = E{p(t) ∗ q(t)}. Therefore,

x(t)− y(t) = p(t) ∗ q(t).

Similar to the proof of Theorem 3.1, one can show that we have

|x(t)− y(t)| ≤ Kφ(t)ε,

where K =
∣∣∣∫∞−∞ q(t− s) ds∣∣∣ for which the integral exists for each value of t

and φ(t) is an integrable function. Therefore, we get the desired result. �

Now, we establish the Mittag-Leffler-Hyers-Ulam stability of the differential
equations (1.1) by using El-Zaki transform.

Theorem 3.3. The homogeneous differential equation (1.1) has the Mittag-
Leffler-Hyers-Ulam stability.

Proof. Suppose that x(t) is a continuously differentiable function satisfying
the inequaty (2.5). Let p : (0,∞) −→ F be a function defined by p(t) :=
x′(t) + l x(t) for each t > 0. In view of (2.5), we have |p(t)| ≤ εEν(t). Taking
El-Zaki transform to p(t), we get

P (ξ) := E{p(t)} = E{x′(t) + l x(t)} = E{x′(t)}+ l E{x(t)}

=
X(ξ)

ξ
− ξ x(0) + l X(ξ).

Thus,

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ)

1 + lξ
. (3.5)

Put y(t) = e−lt x(0). Then y(0) = x(0). Taking El-Zaki transform to y(t), we
get

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
. (3.6)

Thus

E{y′(t) + l y(t)} = E{y′(t)}+ l E{y(t)} =
Y (ξ)

ξ
− ξ y(0) + l Y (ξ).

Using (3.6), we have E{y′(t) + l y(t)} = 0. Since E is one-to-one operator,
y′(t) + l y(t) = 0. Hence y(t) is a solution of the differential equation (1.1).

Set Q(ξ) =
ξ

(1 + lξ)
. Then the equality E{q(t)} =

ξ

1 + lξ
implies that q(t) =
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E−1
(

ξ

1 + lξ

)
. Plugging (3.5) into (3.6), we can obtain

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}.

Consequently, E{x(t)− y(t)} = E{p(t) ∗ q(t)}, which gives x(t)− y(t) = p(t) ∗
q(t). Taking modulus on both sides and using |p(t)| ≤ εEν(t), we have

|x(t)−y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣ ≤ |p(t)| ∣∣∣∣∫ ∞

−∞
q(t− s) ds

∣∣∣∣ .
Choose K =

∣∣∣∫∞−∞ q(t− s) ds∣∣∣. Since the integral exists for each value of t,

|x(t)− y(t)| ≤ KεEν(t).

Then by the virtue of Definition 2.7, the homogeneous linear differential equa-
tion (1.1) has the Mittag-Leffler-Hyers-Ulam stability. �

In analogy with Theorem 3.3, we bring the following generalized Mittag-
Leffler-Hyers-Ulam stability result for the differential equation (1.1). We in-
clude the proof for the sake of completeness.

Corollary 3.4. The differential equation (1.1) has the generalized Mittag-
Leffler-Hyers-Ulam stability.

Proof. Let x(t) be a continuously differentiable function satisfying the inequal-
ity (2.7). We prove that there is a positive constant K independent of ε and
x such that

|x(t)− y(t)| ≤ Kφ(t)εEν(t)

for some y(t) satisfying the differential equation (1.1).
Defining a function p : (0,∞) −→ F through p(t) =: x′(t) + l x(t) for each

t > 0, we have |p(t)| ≤ φ(t)εEν(t). Then by using the same technique as in
the proof of Theorem 3.3, one can easily obtain

|x(t)−y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣ ≤ |p(t)| ∣∣∣∣∫ ∞

−∞
q(t− s) ds

∣∣∣∣ .
Choose K =

∣∣∣∫∞−∞ q(t− s) ds∣∣∣. Since the integral exists for each value of t and

φ(t) is an integrable function,

|x(t)− y(t)| ≤ Kφ(t)εEν(t).

Therefore, we get the desired result. �
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4. Hyers-Ulam stabilities
of the linear differential equation (1.2)

In this section, we study the various types of Hyers-Ulam stability of the
differential equation (1.2) by using El-Zaki transform. Firstly, we investigate
the Hyers-Ulam stability for (1.2).

Theorem 4.1. The differential equation (1.2) has the Hyers-Ulam stability.

Proof. Suppose that x(t) is a continuously differentiable function satisfying
the inequality (2.2). Consider the function p : (0,∞) −→ F defined by

p(t) := x′(t) + l x(t)− r(t)

for all t > 0 that |p(t)| ≤ ε. Taking El-Zaki transform to p(t), we get

E{p(t)} = E{x′(t) + l x(t)− r(t)}.

In other words, P (ξ) := E{x′(t)}+lE{x(t)}−E{r(t)} = X(ξ)
ξ −ξ x(0)+l X(ξ)−

R(ξ). The last equality implies that

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ) + ξR(ξ)

1 + lξ
. (4.1)

Put Q(ξ) =
ξ

(1 + lξ)
. Then E{q(t)} =

ξ

1 + lξ
and hence q(t) = E−1

(
ξ

1 + lξ

)
.

Set y(t) = e−lt x(0) + (r(t) ∗ q(t)). Once more, by taking El-Zaki transform
on both sides of the last equality, we get

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
+R(ξ) Q(ξ). (4.2)

On the other hand,

E{y′(t) + l y(t)} =
Y (ξ)

ξ
− ξ x(0) + l Y (ξ).

Then, by using (4.2), we have E{y′(t) + l y(t)} = R(ξ) = E{r(t)} and thus
y′(t) + l y(t) = r(t). Hence y(t) is a solution of the differential equation (1.2).
In addition, by applying (4.1) and (4.2) we obtains

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}.
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Therefore, E{x(t)−y(t)} = E{p(t)∗q(t)} which implies x(t)−y(t) = p(t)∗q(t).
Furthermore,

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣

≤ |p(t)|
∣∣∣∣∫ ∞
−∞

q(t− s) ds
∣∣∣∣

≤ Kε,

where K =
∣∣∣∫∞−∞ q(t− s) ds∣∣∣ and the integral exists for all values of t. This

completes the proof. �

Now, for the non-homogeneous linear differential equation (1.2), we have
the following result.

Theorem 4.2. The differential equation (1.2) is generalized Hyers-Ulam sta-
ble.

Proof. We firstly consider a continuously differentiable function x(t) satisfying
(2.4). Define the function p : (0,∞) −→ F via p(t) =: x′(t) + l x(t)− r(t) for
each t > 0. Then |p(t)| ≤ φ(t)ε. It is not hard to check that

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ) + ξR(ξ)

1 + lξ
. (4.3)

For Q(ξ) =
ξ

(1 + lξ)
, we have E{q(t)} =

ξ

1 + lξ
implies that

q(t) = E−1
(

ξ

1 + lξ

)
.

Letting y(t) = e−lt x(0) + (r(t) ∗ q(t)) and taking El-Zaki transform on both
sides, we get

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
+R(ξ) Q(ξ). (4.4)

On the other hand, E{y′(t)+l y(t)} = Y (ξ)
ξ −ξ x(0)+l Y (ξ). The relation (4.4)

implies that E{y′(t) + l y(t)} = R(ξ) = E{r(t)} and thus y′(t) + l y(t) = r(t),
that is, y(t) is a solution of the differential equation (1.2).

Applying now (4.3) and (4.4), we get

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}.

E{x(t)− y(t)} = E{p(t) ∗ q(t)} which gives x(t)− y(t) = p(t) ∗ q(t). The rest
of the proof is similar to the previous results. �



ELzaki transform and Ulam stability of differential equations 459

In the oncoming result, we prove the Mittag-Leffler-Hyers-Ulam stability
of the non-homogeneous linear differential equation (1.2) by using El-Zaki
transform method.

Theorem 4.3. The non-homogeneous linear differential equation (1.2) has
the Mittag-Leffler-Hyers-Ulam stability.

Proof. Suppose x(t) is a continuously differentiable function satisfying (2.6).
Consider the function p : (0,∞) −→ F defined by p(t) := x′(t) + l x(t)− r(t)
for all t > 0 that |p(t)| ≤ εEν(t). Taking El-Zaki transform to p(t), we get

E{p(t)} = E{x′(t) + l x(t)− r(t)}.

In other words,

P (ξ) := E{x′(t)}+ lE{x(t)} − E{r(t)} =
X(ξ)

ξ
− ξ x(0) + l X(ξ)−R(ξ).

The last equality implies that

E{x(t)} = X(ξ) =
ξ2 x(0) + ξ P (ξ) + ξR(ξ)

1 + lξ
. (4.5)

Put Q(ξ) =
ξ

(1 + lξ)
. Then E{q(t)} =

ξ

1 + lξ
and hence q(t) = E−1

(
ξ

1 + lξ

)
.

Set y(t) = e−lt x(0) + (r(t) ∗ q(t)). Once more, by taking El-Zaki transform
on both sides of the last equality, we get

E{y(t)} = Y (ξ) =
ξ2 x(0)

1 + lξ
+R(ξ) Q(ξ). (4.6)

On the other hand, E{y′(t) + l y(t)} =
Y (ξ)

ξ
− ξ x(0) + l Y (ξ). Then, by

(4.6), we have

E{y′(t) + l y(t)} = R(ξ) = E{r(t)}
and thus y′(t) + l y(t) = r(t). Hence y(t) is a solution of the differential
equation (1.2). In addition, by applying (4.5) and (4.6) we obtains

E{x(t)} − E{y(t)} = X(ξ)− Y (ξ) =
ξ P (ξ)

1 + lξ
= P (ξ) Q(ξ) = E{p(t)} E{q(t)}.

Therefore, E{x(t)− y(t)} = E{p(t) ∗ q(t)} which implies that

x(t)− y(t) = p(t) ∗ q(t).

Furthermore,

|x(t)−y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣ ≤ |p(t)| ∣∣∣∣∫ ∞

−∞
q(t− s) ds

∣∣∣∣ .
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Choose K =
∣∣∣∫∞−∞ q(t− s) ds∣∣∣. Since the integral exists for all value of t and

|p(t)| ≤ εEν(t), we have

|x(t)− y(t)| ≤ KεEν(t).

This completes the proof. �

By using the same methodology in Theorem 4.3, we have the following
generalized Mittag-Leffler-Hyers-Ulam stability for (1.2). We include some
parts of the proof for the sake of completeness.

Corollary 4.4. The non-homogeneous differential equation (1.2) has the gen-
eralized Mittag-Leffler-Hyers-Ulam stability.

Proof. Suppose that x(t) is a continuously differentiable function satisfying
the inequality (2.8). We prove that there is positive constant K independent
of ε and x such that

|x(t)− y(t)| ≤ Kφ(t)εEν(t)

for some y(t) which is a solution of the differential equation (1.2).
Defining a function p : (0,∞) −→ F by p(t) =: x′(t) + l x(t)− r(t) for each

t > 0, we have |p(t)| ≤ φ(t)εEν(t). Then by using the same technique as in
the proof of Theorem 4.3, we can easily get

|x(t)−y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∫ ∞
−∞

p(t) q(t− s) ds
∣∣∣∣ ≤ |p(t)| ∣∣∣∣∫ ∞

−∞
q(t− s) ds

∣∣∣∣
and choosing K =

∣∣∣∫∞−∞ q(t− s) ds∣∣∣ for which the integral exists for each value

of t and φ(t) is an integrable function, we get

|x(t)− y(t)| ≤ Kφ(t)εEν(t).

Therefore, we get our desired result. �

5. Examples

We close this paper by some examples as applications to illustrate the main
results.

Example 5.1. Consider the non-homogeneous differential equation:

x′(t) + x(t) = 2 cos t, x(0) = 1. (5.1)

Using Theorem 4.1, we have |x′(t)+x(t)−2 cos t| ≤ ε, where x is a continuously
differentiable function. Let p(t) = x′(t)+x(t)−2 cos t for each t > 0. We have
|p(t)| ≤ ε. Taking El-Zaki transform to p(t), we get

P (ξ) =
X(ξ)

ξ
− ξ x(0)+X(ξ)−E{2 cos t} =

X(ξ)

ξ
− ξ x(0)+X(ξ)− 2ξ2

1 + ξ2
.
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Consequently, X(ξ) =
ξ

1 + ξ

(
P (ξ) + ξ +

2ξ2

1 + ξ2

)
. Let Q(ξ) =

ξ

(1 + ξ)
.

Then E{q(t)} =
ξ

(1 + ξ)
. On the other hand, we have a solution function

y(t) = e−tx(0) + [(2 cos t) ∗ q(t)] with x(0) = y(0). Once more, by taking
El-Zaki transform, we obtain

E{y(t)} = Y (ξ) =
ξ2

(1 + ξ)
+

2ξ2

1 + ξ2
Q(ξ).

In addition, E{y′(t) + y(t)} = 2E{cos t}. Since E is one-to-one operator,
y′(t) + y(t) = 2 cos t and hence y(t) is a solution of the differential equa-
tion (5.1). Now, Theorem 4.1 implies that |x(t) − y(t)| ≤ Kε. Therefore, the
non-homogeneous differential equation (5.1) has the Hyers-Ulam stability.

Example 5.2. Let us take the first order differential equation:

x′(t) + 3 x(t) = t (5.2)

with initial condition x(0) = 1. Applying Theorem 4.1, we have |x′(t) +
3 x(t) − t| ≤ ε, where x is a continuously differentiable function. Let p(t) =
x′(t) + 3 x(t)− t for each t > 0 and |p(t)| ≤ ε. Now, taking El-Zaki transform
to p(t), we obtain

P (ξ) =
X(ξ)

ξ
− ξ x(0) + 3 X(ξ)− ξ3.

Thus X(ξ) =
ξ

1 + 3ξ

(
P (ξ) + ξ + ξ3

)
. Put Q(ξ) =

ξ

(1 + 3ξ)
. Then E{q(t)} =

ξ

(1 + 3ξ)
. We have a solution function y(t) = e−3tx(0) + [t ∗ q(t)] with x(0) =

y(0) and also taking El-Zaki transform, we get

E{y(t)} = Y (ξ) =
ξ2

(1 + 3ξ)
+ ξ3 Q(ξ).

Furthermore, E{y′(t)+y(t)} = E{t}, which implies that y′(t)+y(t) = t. Hence
y(t) is a solution of the differential equation (5.2). Then, by Theorem 4.1, we
obtain that |x(t)− y(t)| ≤ Kε. Therefore, the differential equation (5.2) is the
Hyers-Ulam stable.

Remark 5.3. We note that the above examples are also true when we replace
ε and Kε with φ(t)ε and Kφ(t)ε, respectively, where φ(t) does not depend on
x and y explicitly. In this case, we see that the corresponding differential
equations has the generalized Hyers-Ulam stability.
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Remark 5.4. We note that the above examples are also true for Mittag-
Leffler function. That is, we can easily obtain that the corresponding differen-
tial equations has the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler
generalized Hyers-Ulam stability.

6. Conclusion

We have proved the Hyers-Ulam stability, generalized Hyers-Ulam stabil-
ity, Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler generalized Hyers-
Ulam stability of the linear differential equations of first order with constant
coefficient using El-Zaki transform method. That is, we established the suf-
ficient criteria for Ulam’s stability of the linear differential equation of first
order with constant coefficients using El-Zaki transform method. Addition-
ally, this paper also provides another method to study the Hyers-Ulam stability
of differential equations. Also, this paper shows that the El-Zaki transform
method is more convenient to study the Ulam’s stability problem for the linear
differential equation with constant coefficient.
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