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1. Introduction

The theory of stability is an important branch of the qualitative theory of
differential equations. Alsina and Ger [4] investigated the stability of differen-
tial equation x′ = x. They proved the following celebrated theorem.

Theorem 1.1. ([4]) Let ε > 0 and f : I → R be a differentiable function,
which satisfies the following differential inequality |x′(t) − x(t)| ≤ ε for all
t ∈ I, where I is an open interval of R. Then there is a solution g : I → R of
x′(t) = x(t) such that for all t ∈ I, we have |f(t)− g(t)| ≤ 3ε.

This result was generalized by Takahasi et al. [21], who proved the Hyers-
Ulam stability for the Banach space valued differential equation y′(t) = λy(t).
Moreover, the Hyers-Ulam stability was proved for the first order linear differ-
ential equations in more general settings [7, 8, 9] and higher orders in [12, 14].
See [5, 6, 11] for more information on the stability of functional equations and
applications.

In 2014, Alqifiary and Jung [2] investigated the Hyers-Ulam stability of

x(n)(t) +

n−1∑
k=0

αk x
(k)(t) = f(t),

by using the Laplace transform method (see also [15, 20]).

In 2019, Murali and Ponmana Selvan [17] investigated the Hyers-Ulam sta-
bility of the linear differential equation using Fourier transform method (see
also [13]). Recently, Rassias, Murali and Ponmana Selvan [19] established
the Mittag-Leffler-Hyers-Ulam stability of the first and second order linear
differential equations by applying Fourier transforms.

Recently, the Hyers-Ulam stability of general first order linear differential
equations with constant coefficients of homogeneous and non-homogeneous
types was proved with the help of Mahgoub integral transform in [10].

Very recently, Murali, Ponmana Selvan, Park and Lee [18] proved differ-
ent forms of Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam stability of
the second order differential equation of the form u′′ + µ2u = q(t) by using
Aboodh (integral) transform. By applying Aboodh transform, various forms
of Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam stability of the first
order differential equation were proved in [16].

The Hyers-Ulam stability of differential equations has been given attention
and it was established by many authors. Motivated and connected by the
above results, our main aim is to more efficiently prove the Hyers-Ulam sta-
bility of the higher order linear differential equation. That is, we establish the
Hyers-Ulam stability of the higher order linear differential equations of the
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form

x(n)(v) +

n−1∑
κ=0

aκx
(κ)(v) = φ(v) (1.1)

for all v ∈ I, x(v) ∈ Cn(I) and φ(v) ∈ C(I), I = [a, b], −∞ < a < b <∞, by
using the Aboodh transform method.

2. Preliminaries

In this section, we introduce some standard notations and definitions which
will be very useful to obtain our main results.

A function f : (0,∞) → R is said to be of exponential order if there exist
constants A,B ∈ R such that |f(t)| ≤ AetB for all t > 0.

Let f and g be Lebesgue integrable functions on (−∞,+∞). Let S denote
the set of x for which the Lebesgue integral

h(x) =

∞∫
−∞

f(t) g(x− t) dt

exists. This integral defines a function h on S called the convolution of f and
g. We also write h = f ∗ g to denote this function.

Definition 2.1. ([1, 3]) The Aboodh (integral) transform is defined, for a
function of exponential order f(t), by

A{f(t)} =
1

v

∞∫
0

f(t) e−vt dt = F (v),

provided that the integral exists for some v, where v ∈ (k1, k2). A is called
the Aboodh (integral) transform operator. Here 0 < k1 < +∞ and k2 may be
finite or infinite.

Theorem 2.2. ([1, 3]) Let F (v) be the Aboodh transform of f(t). Then,

(i) A{f ′(t)} = v F (v)− f(0)

v
.

(ii) A{f ′′(t)} = v2 F (v)− f ′(0)

v
− f(0).

(iii) A{f (n)(t)} = vn F (v)−
n−1∑
k=0

f (k)(0)

v2−n+k
.

Now, we give a definition of Hyers-Ulam stability of the differential equation
(1.1).
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Definition 2.3. ([17]) We say that the differential equation (1.1) has the
Hyers-Ulam stability if there exists a constant L > 0 satisfying the following
condition: For every ε > 0 and an n times continuously differentiable function
x(v) satisfying the inequality∣∣∣∣∣x(n)(v) +

n−1∑
κ=0

aκx
(κ)(v)− φ(v)

∣∣∣∣∣ ≤ ε
for all v ∈ I, there exists some xa ∈ Cn(I) satisfying

x(n)a (v) +
n−1∑
κ=0

aκx
(κ)
a (v) = φ(v)

and |x(v)− xa(v)| ≤ Lε for all v ∈ I. We call such L as the Hyers-Ulam
stability constant for (1.1).

3. Hyers-Ulam stability

Lemma 3.1. Let P1(u) = a0 + a1u + a2u
2 + · · · + anu

n and P2(u) = b0 +
b1u+ b2u

2 + · · ·+ bmu
m where m and n are nonnegative integers with m < n

and aj , bj are scalars. Then there exists an infinitely differentiable mapping
ψ : (0,∞)→ R such that

A(ψ) =
P2(u)

P1(u)
(R(u) > ρP1)

and

ψ(i)(0) =

{
0, i = 0, 1, . . . , n−m− 3,
bm
an
, i = n−m− 2,

where ρP1 = max{R(u) : P1(u) = 0}. Here R(u) denotes the real part of u.

Proof. Let

P1(u) = an(u− u1)n1(u− u2)n2 · · · (u− uκ)nκ ,

where ui are complex numbers for i = 1, 2. . . . , κ and nj is an integer with
n = n1 + · · ·+ nκ. Then we have

P2(u)

P1(u)
=

κ∑
i=1

ni∑
j=1

δij
(u− ui)j

,

where δij are scalars. Let

χij(v) =
vj−2

(j − 2)!
euiv,
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where i = 1, 2, . . . , κ and j = 1, 2, . . . , ni. Let

ψ(v) =

κ∑
i=1

ni∑
j=1

δijχij(v).

Applying the Aboodh transform to ψ(v), we get

A(ψ) =
P2(u)

P1(u)

for all u with R(u) > ρ, where ρ = max{R(ui) : i = 1, 2, . . . , κ}. By Maclau-
rin’s series, we have

ψ(v) = ψ(0) + ψ′(0)v + · · ·+ ψ(n−1)(0)

(n− 1)!
vn−1 + χ(v),

where

χ(v) =
∞∑
i=n

ψ(i)(0)

i!
vi.

Note that A(χ) =
Ω(u)

un+2
, where Ω is a complex function. Then

A(ψ) =
ψ(0)

u2
+
ψ′(0)

u3
+
ψ′′(0)

u4
+ · · ·+ ψ(n−1)(0)

ψn+1
+

Ω(u)

un+2
.

Hence,

ψ(0)

u2
+
ψ′(0)

u3
+
ψ′′(0)

u4
+ · · ·+ ψ(n−1)(0)

ψn+1
+

Ω(u)

un+2
=

b0 + b1u+ · · ·+ bmu
m

a0 + a1u+ · · ·+ am+τum+τ
,

where τ = n −m. Assume that τ ≥ 3. Multiplying both sides of the above
equation by u2, u3, · · · , uτ and taking u→∞, we get

ψ(0) = ψ′(0) = · · · = ψ(τ−3)(0) = 0 and ψτ−2(0) =
bm
an
.

This completes the proof. �

Lemma 3.2. Let n > 1 be an integer and φ : (0,∞) → R be a continuous
function and P1(u) be a complex polynomial of degree n. Then there exists an
n times continuously differentiable function χ : (0,∞)→ R such that

A(χ) =
A(φ)

P1(u)
(R(u) > max{ρP1 , ρj}),

where ρP1 = max{R(u) : P1(u) = 0} and ρj is the abscissa of convergence for

φ. In particular, it holds that χ(i)(0) = 0 for all i = 0, 1, 2, . . . , n− 2.
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Proof. Let P2(u) =
1

u
and P1(u) = a0 + a1u + · · · + anu

n. Then there exists

an infinitely differentiable function ψ : (0,∞)→ R such that

A(ψ) =
1
u

P1(u)
(R(u) > ρP1)

and ψ(i)(0) = 0 if i = 0, 1, 2, . . . , n − 3 and ψ(n−2)(0) = 1
an

. Now we define

χ = ψ ∗ φ. Then we obtain A(χ) = A(φ)
P1(u)

and

χ′(t) = ψ(0)φ(v) +

∫ v

0
ψ′(v − ν)φ(ν)dν =

∫ v

0
ψ′(v − ν)φ(ν)d(ν),

χ(i)(v) = ψ(i−1)(0)φ(v) +

∫ v

0
ψ(i)(v − ν)φ(ν)dν =

∫ v

0
ψ(i)(v − ν)φ(ν)dν

for all i = 1, 2, . . . , n− 2 with χ(0) = χ′(0) = · · · = χ(n−2) = 0. �

Theorem 3.3. Let a be a scalar. If a function x : (0,∞)→ R satisfies

|x′(v) + ax(v)− φ(v)| ≤ ε (3.1)

for all v > 0 and for each ε > 0, then there exists a solution xa : (0,∞) → R
of the differential equation

x′(v) + ax(v) = φ(v) (3.2)

such that

|xa(v)− x(v)| ≤

{
εv, R(a) = 0
(1−e−R(a)v)ε

R(a) , R(a) 6= 0

for all v > 0.

Proof. Let ζ(v) = x′(v) + ax(v)− φ(v) for all v > 0. Then we get

A(ζ) = uA(x)− x(0)

u
+ aA(x)−A(φ)

and so

A(x)−
x(0)
u +A(φ)

u+ a
=
A(ζ)

u+ a
. (3.3)

Let xa(v) = x(0)e−av+(E−a∗φ)v, where E−a(v) = e−av. Then xa(0) = x(0)
and

A(xa) =
x(0)
u +A(φ)

u+ a
=

xa(0)
u +A(φ)

u+ a
, (3.4)

A[x′a(v) + axa(v)] = uA(xa)−
xa(0)

u
+ aA(xa) = A(φ).
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Since A is injective, x′a(v)+axa(v) = φ(v). Therefore, xa is a solution of (3.2).
Using (3.3) and (3.4), we have

A[E−a ∗ ζ] =
A(ζ)

u+ a
.

We obtain A(x)−A(xa) = A[E−a ∗ ζ] and x(v)− xa(v) = (E−a ∗ ζ)(v).
By (3.1), we get |ζ(v)| ≤ ε and by convolution, we obtain

|x(v)− xa(v)| = |(E−a ∗ ζ)(v)| ≤ εe−R(a)v

∫ v

0
eR(a)νdν.

This completes the proof. �

Theorem 3.4. Let a0, a1, . . . , an−1 be scalars, where n > 1 is an integer.
Then there exists a constant N > 0 such that for each function x : (0,∞)→ R
satisfying ∣∣∣∣∣x(n)(v) +

n−1∑
κ=0

aκx
(κ)(v)− φ(v)

∣∣∣∣∣ ≤ ε (3.5)

for all v > 0 and for each ε > 0, there exists a solution xa : (0,∞)→ R of the
differential equation

x(n)(v) +
n−1∑
κ=0

aκx
(κ)(v) = φ(v) (3.6)

such that

|xa(v)− x(v)| ≤ εN eav

a
for all v > 0 and a > max{0, ρ, ρj}, where ρj was defined in Lemma 3.2 and
ρ = max{R(uκ) : κ = 1, 2, . . . , n}.

Proof. Using integration by parts repeatedly, we get

A[x(n)] = unA(x)−
n−1∑
j=0

un−2−jx(j)(0)

for any integer n > 0. Let an = 1. So x0 is a solution of (3.6) if and only if

A(φ) = (a0 + ηn,0(u))A(x0)−
n−1∑
j=0

ηn,j(u)
x
(j)
0 (0)

u2
, (3.7)

where ηn,j(u) =
n∑

κ=j+1
aκu

κ−j for j = 0, 1, 2, . . . , n− 1. We consider

χ(v) = xn(v) +
n−1∑
κ=0

aκx
(κ)(v)− φ(v)
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for all v > 0. Then

A(χ) = (a0 + ηn,0(u))A(x)−
n−1∑
j=0

ηn,j(u)
x(j)(0)

u2
−A(φ).

Hence, we get

A(x)− 1

a0 + ηn,0(u)

n−1∑
j=0

ηn,j(u)
x(j)(0)

u2
+A(φ)

 =
A(χ)

a0 + ηn,0(u)
. (3.8)

Let ρj be the abscissa of convergence for φ. Let u1, u2, . . . , un be the roots of
the polynomial ηn,0 and let

ρ = max{R(uκ) : κ = 1, 2, . . . , n}. (3.9)

For all u with R(u) > max{ρ, ρj}, we define

∆(u) =
1

a0 + ηn,0(u)

n−1∑
j=0

ηn,j(u)
x(j)(0)

u2
+A(φ)

 . (3.10)

By Lemma 3.2,

A(φ0) =
A(φ)

a0 + ηn,0(s)
(3.11)

for all u with R(u) > max{ρ, ρj} and

φ0(0) = φ′0(0) = · · · = φ
(n−2)
0 (0) = 0

for j = 1, 2, . . . , n− 1. So

ηn,j(u)

a0 + ηn,0(u)
=

1

uj
−

∑j
κ=0 aκu

κ

uj (a0 + ηn,o(u))
(3.12)

for all u with R(u) > max{0, ρ}. By Lemma 3.1,

P2(u) =

j∑
κ=0

aκu
κ

and

p1(u) = uj (a0 + ηn,0(u)) .

For differentiable function ψj , we have

A(ψj) =

j∑
κ=0

aκu
κ

uj (a0 + ηn,o(u))
(3.13)
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and ψj(0) = ψ′j(0) = · · · = ψ
(n−2)
j = 0. Let

φj(v) =
vj

(j)!
− ψj(v)

u2
(3.14)

for j = 1, 2, . . . , n− 1. Then we get

φ
(i)
j (0) =

{
0, i = 0, 1, 2, . . . , j − 2, j, j + 1, . . . , n− 2,

1, i = j − 1.

If we define

xa(v) =
n−1∑
j=0

xj(0)φj(v) + φ0(v),

then we get x
(i)
a (0) = x(i)(0), for all i = 0, 1, 2, . . . , n− 2.

Using (3.10), (3.11), (3.12), (3.13), (3.14) and A(xa) = ∆(u), we get

A(xa) =
1

a0 + ηn,0(u)

n−1∑
j=0

ηn,j(u)
x
(j)
a (0)

u2
+A(ψ)

 (3.15)

for all u with R(u) > max{0, ρ, ρj}.
Now using (3.7) we get x0 is a solution of (3.6). Again by (3.8) and (3.15),

we get

A(x)−A(xa) =
A(χ)

a0 + ηn,0(u)

and so

|x(v)− xa(v)| =
∣∣∣∣A−1( A(χ)

a0 + ηn,0(u)

)∣∣∣∣
for v > 0. By the definition of χ and (3.5), it holds that |χ(v)| ≤ ε for all
v > 0 and so

|A(χ)| ≤
∫ ∞
0

∣∣e−uv∣∣ |χ(v)|dv ≤ ε

R(u)
(3.16)

for all u with R(u) > 0.
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Finally, it follows from the formula for the inverse Aboodh transform that

|x(v)− xa(v)| =
∣∣∣∣A−1( A(χ)

a0 + ηn,0(u)

)∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ ∞
−∞

(a+ ix)e(a+ix)tA(χ)(a+ ix)

a0 + ηn,0(a+ ix)
dx

∣∣∣∣∣
≤ 1

2π

∫ ∞
−∞

eav
ε

a

|a+ ix|
|a0 + ηn,0(a+ ix)|

dx

≤ εeav

2πa

∫ ∞
−∞

|a+ ix|
|a0 + ηn,0(a+ ix)|

dx

≤ εN eav

a

for all v > 0 and any a > max{0, ρ, ρj}, where

N =
1

2π

∫ ∞
−∞

|a+ ix|
|a0 + ηn,0(a+ ix)|

dx <∞

since n > 1 is an integer. �

4. Conclusion

Using the Aboodh transform, we proved the Hyers-Ulam stability of the
nth order linear differential equation

x(n)(v) +

n−1∑
κ=0

aκx
(κ)(v) = φ(v).
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