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Abstract. In this article, we introduce the concept of antiderivation in complex algebras
and investigate the Hyers-Ulam stability of antiderivation in Banach algebras A, associated
to the p-functional inequality:

[fle+T+v)=flo+v)=flo+T-v)+ flo—v)|
Slp(flo—7m+v)=flo+v) = flo—T=v)+ flo V)|

for all o,7,v € A with |p| < 1 by using the fixed point method.

1. INTRODUCTION

The concept of stability was started of Ulam [33], followed by Hyers [18, 19]
and it has been widely studied in mathematics and functional equations(see
19, 25, 26, 27, 29, 32]).
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In the past years, a number of articles and research have been published
on several extensions and applications of the stability to a number of map-
pings and functional equations, for instance, additive mappings, quadratic
mappings, homomorphism and derivation mappings and system of functional
equations(see [1, 3, 4, 9, 12, 15, 31]).

In old years, the stability of various functional equations have been ex-
tensively established by many of reaserchers and there are many interesting
results, containing Hadamard homomorphism, ternary antiderivation addi-
tive mappingsand system of functional equations concerning this problem(see
2, 5, 6, 7, 8, 13, 21, 28, 30]).

The fixed point technique is one of the methods that can be used to study
the stability of functional equations, system of functional equations(see for
instance [10, 11, 12, 16, 23]).

Assume that A is a complex Banach algebra. A C-linear mapping D : A —
A is a derivation if D satisfies

D(o71) = D(0)T + o D(1)
for all o, 7 € A.
For o,7,v € A, we consider the following inequality
[flo+T+v)=flot+v)—flo+T—v)+ flo—v)
<lp(flo=m+v)=flo+v)=flo—T—v)+ fle-v)l,  (11)
where |p| < 1.
In this paper, suppose that A is a complex Banach algebra and p is fixed

complex number with 0 < |p| < 1.
2. STABILITY OF (1.1)
Applying the fixed point method, we show the stability of (1.1).
Lemma 2.1. If a mapping f : A — A satisfies f(0) =0 and
Ifo+7+v) = f(o+v) — flo+7—v)+ (o —)]
<lp(flo=7+v)=flo+v)=flo—7—v)+ flo —v)) (2.1)
for all o,7,v € A, then the mapping [ : A — A is additive.

Proof. Suppose that f: A — A satisfies (2.1). Replacing 7 by —7 in (2.1), we
get
[flo—7+v)=flot+v)—flo—T—v)+ flo -V
<llp(flo+7+v)=flo+v) = flo+7—v)+ flo—v))l (2.2)
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for all o, 7,v € A. Using (2.1) and (2.2) yields
[flo+T+v)=flo+tv)—flo+7—v)+ flo—V)
<|P(flo+r+v)=flo+v) = flo+T—v)+ flo—v))|
and so
flo+7+v)—flo+v)—flo+T7—v)+ flo—v)=0 (2.3)
for all o, 7,v € A, since |p| < 1.
Letting v = o in (2.3), then

fQRo+71)— f(20) — f(r) =0, o, 7€ A
Thus, f is additive. O

Theorem 2.2. Assume that ¥ : A3 — [0,00) is a function such that there is
an L <1 with

o TV L
\IJ(— T f><f\11 2.4
27272 —_ 2 (U7T7V) < )

for all o,7,v € A. Suppose that f : A — A is a mapping satisfying f(0) =0
and
[fle+7+v)=flot+v)=flo+T—v)+ flo—v)[+]|p[¥(o,—Tv)
<l|lp(flo =7 +v)=flo+v)=flo—T—v)+[f(o - v))H+\I/(o—,r,u<)2 .

for all o,7,v € A. Then there is a unique additive mapping 6 : A — A such
that

L o o
I1#0) = 60)l < 57— % (57 3) (2.6)

forall o € A.
Proof. Replace 7 by —7 in (2.5), we have
[flo—7+v)=flot+v)=flo—T—v)+ flo—v)|+|p[¥(o,7,v)

<llp(flo+7+v)=flo+v) = flo+7—v)+ flo—v))ll+ ¥(o,—7v)
(2.7)
for all o, 7,v € A. From (2.5) and (2.7), we arrive at

[flo+T+v)=flo+v)—flo+T7—v)+ flo—v)|<¥(o,T,v) (28)
for all o, 7,v € A.

Letting 0 = v = § and 7 = u in (2.8), then we have
1F2u) =2/ ()] < ¥ (5.u.5) (2:9)

for all u € A.
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Setting
Q:={h: A— A:h(0)=0}
and define d : Q x Q@ — R by

d(g,h) = inf {n € R+ : |lglo) = hlo)]| < n¥ (Z,0,7) Vo € A},

and taking inf ) = +oo. It is easy to show that (0, d) is complete(see [22]).
W define the linear mapping J : Q — Q by

Jg(o) :==2g (%)

for all o € A.
Let g, h € Q be given such that d(g,h) = ¢. Then

lg(o) (@) < ¥ (Z.0.5)

for all o € A. Hence

for all o € A. Thus d(g,h) = € implies that d(Jg(o), Th(c)) < Le. Hence
d(Tg(o), Th(o)) < Ld(g,h)
for all g, h € Q. From (2.9), we see that

=2 G) < v (559

<L (2.0.9)
_— 2 2 ) 0—7 2
for all o € A. So d(f,Jf) < &.
By alternative fixed point theorem in [14] there exists a mapping § : A — A
satisfying the following;:

(1) ¢ is a fixed point of 7, that is,

o
5(0) = 26 (5) (2.10)
for all o € A. The mapping ¢ is a unique fixed point of J in the set
0={geQ:d(fg) < oo}
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It follows that 0 is a unique mapping satisfying (2.10) such that there
is an 7 € (0, 00) satisfying

1£(e) = (@)l < n¥ (3.0.5)

for all o € A.
(2) Since h_)m a(grf,6) =0,

lim 2" f (%) = §(0) (2.11)

n—o0

for all o € A.
(3) d(f,0) < 2-d(f, T f), which implies

I£0) =) < 5= (5. 5)

for all o € A.
It follows from (2.4) and (2.5) that

|o(c+T7+4+v)—0(c+v)—d(c+T—v)+ (0 —v)|

o+T1T+Vv o+v o+T1T—V o—Vv
() o (5) o () o ()|
. n o—T+V o+v oO—T—V o—vVv
s |1 (5=5) 1 (52%) 1 (=)~ ()|

im 2" o T L) _ g T v
2 (Q(Q”’Q”’TL v (2n’2n’2n>>

<|lp(d(o =7 +v)=d(c+v) = (0 =7 —v)+ (0 —v))|

= lim 2"
n—oo

3

IN

[\)

for all o, 7,v € A. Therefore by Lemma 2.1, the mapping J is additive. O

Corollary 2.3. Let f : A — A be a mapping satisfying f(0) =0 and
[flo+7+v)=flo+v)—flo+T—v)+ flo—v)
<lp(flo=7+v)=flo+v)=flo—T—v)+ flo —v))|
+ (1= 1p) (o[l + 1721 + [1°]])

for all o,7,v € A. Then there exists a unique additive mapping 6 : A — A
such that

1£(o) = d(0)]| < [lo]?
forall o € A.
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Proof. The proof follows from Theorem 2.2 by taking ¥(o,7,v) = |o?| +
|[72||+||v?|| for all o, 7,v € A. Choosing L = %, we gain the desired result. [

Corollary 2.4. If a mapping f : A — A fulfills f(0) =0 and
[flo+T+v)=flo+v)—flo+T—v)+f(o -V
Slp(flo =7 +v)=flo+v) = flo—7=v)+flo—v))[+1 = |p])[orv]

for all o,7,v € A, then there is a unique additive mapping 6 : A — A such
that

1£(o) = 8(o)] < llof®
for all o € A.

Proof. This proof follows from Theorem 2.2 by setting ¥(o, 7,v) = ||oTv|| for
all o,7,v € A. Choosing L = %, we gain the desired result. O

Corollary 2.5. Assume that f : A — A is an odd mapping satisfying
lflo+74+v)—flo+v)—flo+T—v)+ flo—v)| (2.12)
<lp(flo=74+v)=flot+v)—=flo—7—v)+ flo—v))ll+ (1= |p])]ov]
for all o,m,v € A. Then f is additive.
Proof. Putting o = 0 in (2.12), we deduce that
If(r+v) = fv) = f(r =)+ f(=v)]
<llp(f(=m+v) = f(v) = f(=T =) + f(=V))l (2.13)
for all 7,v € A. Replace 7 by —7 in (2.13) to get
[f(=7+v) = fv) = f(=T =v) + f(=v)]
<llp(f(r+v) = fv) = f(r =v) + F(=V))ll (2.14)
for all 7,v € A. From (2.13) and (2.14), it follows that
fo+v)=f) = fr=v)+ f(=v) =0
for all 7,v € A. Applying the oddness of the mapping f we see that
o+ 7)+ fr =) = 2f(v) = 0
for all 7,v € A. This means that the mapping f is additive. 0
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3. STABILITY OF ANTIDERIVATION IN BANACH ALGEBRAS

First, we introduce concept antiderivation in algebras and by applying the
fixed point technique, we study the stability of antiderivation related to (1.1)
in Banach algebras.

Definition 3.1. Let A be a complex algebra. A C-linear mapping Z : A — A
is named an antiderivation if

I(o)I(r) =Z(Z(o)T) + Z(0Z(T)), o, T € A.

Example 3.2. Let P, be the set of all polynomials of degree n with complex
coeflicients and

H={peP,|p(0) =0, n e N}.
Define Z: H — H by

n

7 (2: 19,@“) = Z ;i'jlaznﬂ

~k=0

and Z(0) = 0. Then Z is an antiderivation.

Example 3.3. Let C'(R) be the set of every continuous functions on R.
Define 7 : C(R) — C(R) by

I(f(x)) = /0 " ft)at

for all x € R. Then 7 is an antiderivation.

Lemma 3.4. ([24]) Assume that A is a complex Banach algebra and f: A —
A is an additive mapping such that f(\o) = Af(c) for each A € T := {¢ €
C:[¢] =1} and every o € A. Then f is C-linear.

Definition 3.5. ([17]) A double sequence {7y} converges to L and we write
limy, ;m—00 Yn,m = L if for each € > 0 there exists an integer /N such that for
every n,m > N,

h/n,m - L’ <e.

If no such number L exists, we say that {7y} diverges.

Theorem 3.6. Suppose that ¥ : A% — [0,00) is a function such that there is
an L <1 with
TV

U(o,7,v) < 2LV (5, 3 5) (3.1)
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forallo,t,ve A. Let f: A— A be a continuous function satisfying f(0) =0
and

INf(o+T4+v) = fMo+v)) = fNo+T—0))+ Af(oc—v) (3.2)

<pAflo=74+v) = f(AMo+v)) = f(AMo =T —v)) + Af(o —v))|
+ VY (o,7,v) — |p|¥ (o, —T,V),

1f (@) f(T) = f(f(o)T) = fla f(T))I| < ¥(o,T,0) (3.3)
for all X € T' and all o,7,v € A, and, in addition, {f,(0)} = {5 f(2"0)}
converges uniformly for all o € A, double sequences {ﬁf(f(Q”a)ZmT)} and

{Qnimf(Q”Jf(QmT))} are convergent for all o,7 € A. Then there is a unique
continuous antiderivation T : A — A such that

1 o o
I1#0) =T < 57— 5% (57 73) (3.4)

forall o € A.
Proof. Letting 7 by —7 in (3.2), we obtain
Ao =7 +v) = f(Mo+v) = f(Ao =7 —v)) + Af(o —v)| + |p|¥(o, T,v)
<llp(Aflo+7+v) = f(Ao+v)) = f(Mo+7—v))+ Af(o —v))]
+¥(o,—T,v) (3.5)
for all A € T! and all o, 7,v € A. From (3.2) and (3.5), we deduce that
[Af(o+7+v) = f(Ao+v) = f(Ao+7—v)+Af(o —v)|

< ¥(o,T,V) (3.6)
for all A € T! and all o, 7,v € A.
Setting 0 = §,7 =u, v = —% and A = 1 in (3.6), we have
u u
- <V (=, u—— .
I (2w) = 2 (w)| < ¥ (50, —5) (3.7)
for all u € A.
Define the function d : 2 x Q — R by
o o
= 1 . — < — _—
d(0,w) mf{n ER, : [0(c) — w(a)|| < ¥ (2,0, 2) Vo e A},

where
Q:i={w: A— A:w(0) =0}
and inf ) = +o0. Then it is easy to prove that (£2,d) is complete(see [22]).
Define the linear mapping 7 : €2 — € as follows:

J0(0) = %e (20), ocA
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Assume that w, 6 € Q is given so that d(w,0) = ¢. Then

(o) ~ 6| < e¥ (F.0.~F)

for all o € A. Thus,

1 1
170(0) - T(o)] = |[202a) — Lo(20)
< g\I/(O', 20,—0)
o o
< Le¥ (5.0.-3)

for all o € A. Therefore d(6,w) = ¢, it follows that d(J0(o), Jw(o)) < Le.
Hence,

A(T6(0), T(0)) < Ld(w,0)
for all 0, w € Q. Using (3.7) yields

S 1\1’ (g707_g>

|01~ 3100 < 5o (5

forallc € Aand so d(Jf, f) < %
By alternative fixed point theorem(see [14]), there exists a mapping Z : A —
A satisfying the following:

(1) Z is a fixed point of 7, that is,

1
Z(o) = 51(20) (3.8)
for all 0 € A. The mapping 7 is a unique fixed point of J in the set
©={0ec E:d(f,0) <oo}.

This shows that Z is a unique mapping fulfilling (3.8) such that there
is an 7 € (0, 00) satisfying

1£(0) =Z(0)| < ¥ (F.0.-3) . o
(2) Since Jgrgod(j"f, Z)=0,
Tim zin f(20) = T(0), oA (3.9)
(3) d(f,Z) < {27d(f,Tf), it follows that
1 o o
150) =T < 5r—p¥ (30-3) o€A
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From (3.1) and (3.6), we gain
IN(oc+T74+v)—Z(No+v)—ZANo+7—v))+ (o —v)

= lim 2%H>\f(2”(a Fr41) = FA2 (o + 1))
— fA2 o +7 =) + Af(2"(0 —v))||

1
< lim 2—\11(2”0, 2", 2"v)

~ n—oo 2N

< lim L"¥(o,T,v)

n—0o0
for all A € T! and all o € A. Since L < 1,
Mo+7+v)—Z(Mo+v) —Z(ANo+7—-v))+X(c —v)=0 (3.10)

for all A € T! and all o € A. Set A = 1 in (3.10). Then by Lemma 2.1, Z is
additive.
Now, taking 7 = v = 0 in (3.10), we see that

Z(Ao) = NI(o)

for every A € T! and every o € A. By Lemma 3.4, the mapping Z is C-linear.
Since {f,} converges uniformly and f is continuous, Z is continuous. From
(3.1) and (3.3), we deduce that

IZ(0)Z(7) = Z(Z(0)7) = Z(oZ(7))]]

= lim iu f@2 o) f(2"T) — f(f(2"0)2"T) — f(2"a f(2"7))|

n—oo 4n

) 1
< lim 47\11(2"0, 2", 2"0)

n—oQ

L n
< lim <2> U(o,T,0)

n—o0

1
< lim —Y(o,1,0)
n—oo 2N

for all 0,7 € A. Hence the mapping Z is an antiderivation, since L < 1. O

Corollary 3.7. Assume that f : A — A is a continuous mapping fulfilling
f(0) =0,
Af(o+7+v) = f(AMo+v) = f(Mo+7—v) + Af(o —v)|
<llo(Aflo=7+v) = f(AMo+v)) = f(Mo =7 —v)) + Af(0 —v))]
o +7+vl2 = Jplllo 7+ v

and

(@) f(r) = F(f(0)7) = Fe ()] < 20 + 72
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for all o,7,v € A and all X € T'. If the sequence {fn(c {2n }
converges uniformly and double sequences {2n+mf(f(2" 2m } and

{2n1+mf(2naf(2m7))} are convergent for all o,7 € A, then there is a unique
continuous antiderivation T : A — A such that

7 1
17 (o) = Z(o)ll = 7 llollz

forall o € A.

Proof. The proof follows from Theorem 3.6 by letting ¥ (o, 7,v) = ||O'—|—T+I/H%
for all o,7,v € A. Setting L = %, we get the desired result. O

Theorem 3.8. Let E be a subset of C with T' C E. Let ¥ : A% — [0,00) be
a function such that there exists an L < 1 with

U(o,7,v) < 2LV (;f ; ;) (3.11)
forallo,t,v e A. Let f: A — A be a continuous mapping satisfying f(0) =0,
(3.3) and
IMf(o+T74+v)— f(ANo+v)— fNo+T7—v))+ Af(o—v) (3.12)
<llp(Aflo =7 +v) = f(AMo +v)) = f(Alo =7 —v)) + Af (0 —v))]
+¥Y(o,1,v)— |p|¥(o,—T,V)

for all o,7,v € A and all X\ € E and, moreover, {f,(0)} = {2n }
converges uniformly for all o € A, double sequences {2n+mf }

and {2n+mf 2o f(2T) } are convergent for all o,7 € A. Then there is a
unique continuous antiderivation T : A — A with

1

I1£@) =T < 57— 5% (37 -3) (3.13)

for all o € A.
Proof. Let A € TL. Then there exists a sequence {\,,}>°; C E such that
lim A, = A.

By (3.12) we get
[Anf(o+7+v) = f(Anlo+v)) = f(An(o +7 =) + Anflo — v

<pAnflo=7+v) = fnlo +v)) = f(Anlo =7 =) + Auflo —v))||
+ (o, 7,v) — |p|¥(o,—T,v)
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for all o, 7,v € A and all positive integers n. Passing to the limit as n — oo,
and applying the continuity of f, we arrive at

Ao +7+v) = fAo+v)) = fAo+7=v)) + Af(o =V

<llpAflo=1+v) = f(Mo+v)) = f(Mo =T —v)) + Af(o —v))||
+ (o, 7,v) — |p|¥ (o, —T,V)

for all A € T! and all o,7,v € A. Thus with the same argument as in the
proof of Theorem 3.6, the proof is complete. O

4. CONCLUSIONS

In this note, we introduced the definition of antiderivation mapping on
Banach algebra and we studied the stability of antiderivation mappings on
Banach algebra by fixed point theorem.
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