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Abstract. The main objective of this study is to investigate and analyze a spatio-temporal

model of viral infection including a fractional derivative order. This model represents the

dynamics of infection through partial differential equations integrating spatial diffusion to

depict the spread of viruses. We assume in our model, the diffusion of the free viruses. First,

we establish the existence, uniqueness and limits of solutions. The infection-free equilibrium

points and the endemic equilibrium point are given in terms of the basic reproduction num-

ber. We conclude then that the overall stability of each equilibrium is mainly determined by

this number. After validating our theoretical results by numerical simulations, we also made

a numerical comparison between two schemes: one using a normal derivative and the other

using a fractional derivative. It has been observed that the order of fractional derivatives

has no impact on the stability of equilibria, but only on the speed of convergence towards

stable states.
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1. Introduction

Infectious diseases pose a significant challenge to global public health. In
line with data from the World Health Organization, infectious diseases result
in an annual toll of over 17 million fatalities [11, 17], prompting researchers in
the mathematical and biological sciences to develop strategies for controlling
and mitigating these conditions. Through various mathematical modeling
techniques, epidemiologists have gained a thorough understanding of epidemic
dynamics.

In this context, mathematicians have proposed, analyzed and controlled sev-
eral infectious diseases such as Hepatitis B Virus (HBV) [1, 18], Hepatitis C
Virus (HCV) [22, 24] and Coronavirus Disease 2019 (Covid-19) [12, 19]. This
mathematical analytical approach proves to be cost-effective and yields faster
results compared to traditional experimental methods, which are often time-
consuming and expensive. This advantage encourages many mathematicians
and biologists to design robust epidemiological models capable of providing
an accurate representation of reality, with significant implications for soci-
ety and the economy. Understanding the spread of viral infections is crucial
for developing effective prevention, control, and treatment strategies. In this
perspective, mathematical models play a decisive role by providing tools to
describe and analyze the dynamics of these diseases.

The mathematical modeling of infectious diseases typically initiates with ba-
sic models employing ordinary differential equations (ODEs) and subsequently
advances to models involving partial differential equations (PDEs). In recent
years, researchers have introduced models that describe the propagation of in-
fectious diseases using equations featuring fractional derivatives, incorporating
the effect of memory.

Korobeinikov’s [15] seminal model offers a concise yet comprehensive de-
piction of the dynamics underlying the transmission and propagation of viral
infections. This model serves as a valuable foundation for understanding and
analyzing the mechanisms influencing the spread of infectious diseases.



dX(t)

dt
= Λ− βX(t)V (t)− µX(t),

dZ(t)

dt
= βX(t)V (t)− (b+ c)Z(t),

dY (t)

dt
= cZ(t)− aY (t),

dV (t)

dt
= kY (t)− uV (t).

(1.1)
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In this model, we have X(t) the uninfected cell population (the susceptible
cells), Z(t) the exposed cells, Y (t) the infected cells, V (t) the free virus par-
ticles. Cells are assumed to reproduce at a constant λ rate, and all newly
produced cells are uninfected (susceptiblee cells). The average lifetimes of
susceptible cells, exposed cells, infected cells and free virus are µ, b, a and
u respectively. Free virus is produced from cells infected at the rate kY and
infects susceptiblee cells at the rate βXV , and c is the average time of the
latent state. Naturally, the system is only defined for non-negative X,Z, Y
and V , all coefficients are assumed to be positive.

In recent years, fractional calculus has garnered significant attention from
researchers. Classical models have demonstrated lower accuracy in predicting
the temporal dynamics of diseases, whereas models incorporating non-integer
order derivatives offer improved information retention and allocation for large-
scale analysis [2, 3, 8, 9, 20].

A promising approach in the study of infectious diseases is the use of spatio-
temporal models. These models integrate both the geographical aspect, by
taking into account the spatial spread of infections and the temporal aspect,
by examining the evolution of the infection over time. The study investigates
and analyzes the dynamical stability of a spatial-temporal SIR model (where
S, I, and R represent the susceptible, infected, and recovered populations,
respectively), incorporating a fractional order derivative and a saturated inci-
dence function, as discussed in [6]. Moreover, Bounkaicha et al. [7] extend the
investigation by introducing an additional compartment of exposed individ-
uals (E) and studying the stability of equilibria in a spatial-temporal SEIR
model. Also incorporating a fractional order derivative, the local stability of
a spatio-temporal model SIR with loss of immunity is studied in [5].

To better understand the dynamics of propagation and the underlying mech-
anisms, in this study, we propose a spatio-temporal model of viral infection
using a fractional derivative.

C
0 D

α
t X(x, t) = Λ− βX(x, t)V (x, t)− µX(x, t),

C
0 D

α
t Z(x, t) = βX(x, t)V (x, t)− (b+ c)Z(x, t),

C
0 D

α
t Y (x, t) = cZ(x, t)− aY (x, t),

C
0 D

α
t V (x, t) = d∆V (x, t) + kY (x, t)− uV (x, t),

(1.2)

where, ∆ = ∂2

∂x2
is the Laplace operator, C0 D

α
t is the time fractional derivative

of order α in the sense of Caputo (0 < α ≤ 1), and d represent the diffusion
coefficients for the free virus.

X(x, 0) = X0 ≥ 0; Z(x, 0) = Z0 ≥ 0; Y (x, 0) = Y0 ≥ 0; V (x, 0) = V0 ≥ 0,
(1.3)
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and zero-flux boundary conditions

∂V (x, t)

∂η
= 0, ∀ x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, and ∂.
∂η is the

normal derivative.

This document is organized coherently into several sections. First, in the
next section, the necessary definitions and lemmas are presented to lay the
foundations of the study. Then, in Section 3, the existence result is exposed
and the equilibria are clearly exposed. The global stability of the equilibria is
retained in section 4. Section 5 is devoted to various numerical simulations,
thus making it possible to illustrate and verify the theoretical results. Finally,
in the last section, a conclusion is formulated, summarizing the main find-
ings and possibly opening avenues for future research. This structure ensures
smooth reading and facilitates understanding of the study carried out.

2. Preliminaries

In this section, we will present some definitions and basic result. We first
present Mittag-Leffler function [13].

Definition 2.1. The Mittag-Leffler function, Eα(Z), is defined as

Eα(Z) =
∞∑
k=0

Zk

Γ(kα+ 1)
, α > 0, Z ∈ C, (2.1)

where

Γ(z) =

∫ +∞

0
e−ττ z−1dτ, (2.2)

is the Gamma function.

Definition 2.2. (Riemann-Liouville fractional integral [10, 14]) Let F be a
function such that F ∈ L1(R+), the Riemann-Liouville fractional integral with
α > 0 of F is defined as

IαF(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1F(τ) dτ. (2.3)

Definition 2.3. (The Caputo fractional derivative [14]) Let α > 0, let n ∈ N
satisfy n− 1 < α ≤ n. The Caputo fractional derivative of order α applied to
the function F ∈ Cn([0,+∞),R) is given by

C
0 D

α
t F(t) = In−αDnF(t) =

1

Γ(n− α)

∫ t

0

F (n)(τ)

(t− τ)α+1−n dτ, (2.4)
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where D = d
dt . In particular, if 0 < α < 1, we have n = 1, then

C
0 D

α
t F(t) =

1

Γ(1− α)

∫ t

0

F ′(τ)

(t− τ)α
dτ. (2.5)

LaSalle’s principle of invariance is a widely used tool to study the asymptotic
behavior of solutions of differential equations [4, 16].

Theorem 2.4. (LaSalle’s principle of invariance) Let X ∗ be an equilibrium
point of a Cauchy problem, the equilibrium X ∗ is asymptotically stable if there
exists a continuous function F defined in a neighborhood U ⊂ Rn of X ∗ with
values in R, differentiable on U \ X ∗ such that

(1) F(X ∗) = 0 and F(X (t)) > 0 for all X (t) ∈ U \ {X ∗}.
(2) C

0 D
α
t F(X (t)) ≤ 0 for all X ∈ U \ {X ∗}.

(3) The set S = {X (t) ∈ U/C0 Dα
t F(X (t)) = 0} does not contain any

trajectory of the system other than X (t) = X ∗.

Lemma 2.5. Let Ψ be a positive function defined by Ψ(y) = y−(ln(y)+1), y >
0, and y(t) ∈ R+∗ a continuous differentiable function, for all α ∈ (0, 1] and
t ≥ t0

y∗Ct0D
α
t

[
Ψ

(
y(t)

y∗

)]
≤
(
y(t)− y∗

y(t)

)
C
t0D

α
t y(t), y∗ ∈ R∗+. (2.6)

3. The equilibria and existence solution

3.1. The basic reproduction number and the equilibria. In order to de-
termine the basic reproduction number, we will utilize the approach described
by Van Den Driessche and Watmough in [23].

To determine R0, we are just need the class Z, Y and V .
In what follows, we denote Z(x, t) = Zx,t, Y (x, t) = Yx,t and V (x, t) = Vx,t,

C
0 D

α
t Zx,t = βXx,tVx,t − (b+ c)Zx,t,

C
0 D

α
t Yx,t = cZx,t − aYx,t,

C
0 D

α
t Vx,t = d∆Vx,t + kYx,t − uVx,t.

(3.1)

We have R0 = ρ(FV−1) (ρ is the spectral radius) with

F =

 0 0 βΛ
µ

0 0 0
0 0 0

 (3.2)
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and

V =

 b+ c 0 0
−c a 0
0 −k u

 . (3.3)

By performing simple calculations, the basic reproduction number of the
proposed model is given by

R0 = ρ(FV−1) =
βΛck

auµ(b+ c)
. (3.4)

The equilibria of the model (1.2) are the solutions of the following system
Λ− βXV − µX = 0,

βXV − (b+ c)Z = 0,

cZ − aY = 0,

kY − uV = 0.

(3.5)

The model (1.2) has two equilibria, are given by the disease-free equilibrium

Ef = (Xf , 0, 0, 0) =

(
Λ

µ
, 0, 0, 0

)
, (3.6)

and the endemic equilibrium

E∗ = (X∗, Z∗, Y ∗, V ∗) (3.7)

with

X∗ =
Λ

µR0
, Z∗ =

au

kc
V ∗, Y ∗ =

u

k
V ∗ and V ∗ =

µ

β
(R0 − 1). (3.8)

Remark 3.1. From the components of the endemic equilibrium, it is clear
that E∗ exists when R0 > 1.

3.2. Existence, non-negative and boundedness of solutions.

3.2.1. Existence, non-negative of the solutions. Let X = C(Ω̄,R) and
J = (J1, J2, J3, J4) , λ = (0, 0, 0, d) and A the linear diffusion operator

A : D(A) ⊂ X4 → X4

AJ = λ∆J = (0, 0, 0, d∆J4) , ∀ J ∈ D(A)

with

D(A) =

{
J ∈ X4 : ∆J ∈ X4,

∂J

∂η
= 0R4 for x ∈ ∂Ω

}
. (3.9)

The function f is defined by f : X4 × [0, T ] 7→ X4 such that

fx,t = f(Jx,t) = (f1(Jx,t), f2(Jx,t), f3(Jx,t), f4(Jx,t))
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with 
f1(J) = Λ− µJ1 − βJ1J4,
f2(J) = βJ1J4 − (b+ c)J2,
f3(J) = cJ2 − aJ3,
f4(J) = kJ3 − uJ4.

(3.10)

Hence, we can rewrite the model (1.2) in the following form:{
C
0 D

α
t J = AJ + f(J),

J(0) = J0,
(3.11)

with J = (X,Z, Y, V ) and J0 = (X0, Z0, Y0, V0). We have the following propo-
sition.

Proposition 3.2. Let 0 < α ≤ 1, for all J0 ∈ D(A), problem (3.11) has a
unique positive solution J ∈ C

(
[0, T ];X4

)
with

J(t) =

∫ ∞
0

Φα(θ)Q (tαθ) J0dθ + F (t) (3.12)

and

F (t) = α

∫ t

0

∫ ∞
0

θ(t− τ)α−1Φα(θ)Q ((t− τ)αθ) f(τ)dθdτ, (3.13)

where Φα(θ) is a probability density function defined on (0,∞).

3.2.2. Boundedness of the solutions. Now, we will prove the boundedness
of the solutions. Let

N(t) =

∫
Ω

[Xx,t + Zx,t + Yx,t + Vx,t] dx, (3.14)

so

C
0 D

α
t N(t) ≤

∫
Ω

(Λ−m(Xx,t + Zx,t + Yx,t + Vx,t)dx,

≤ Λ|Ω| −m
∫

Ω
(Xx,t + Zx,t + Yx,t + Vx,tdx (3.15)

with m = min(m, b, a− b, u). So we have

C
0 D

α
t N(t) ≤ Λ|Ω| −mN(t). (3.16)

Using the Laplace transform, we get

N(t) ≤ N(0)Eα (−mtα) +
Λ

µ
(1− Eα (−mtα)) , (3.17)

because of 0 ≤ Eα (−µtα) ≤ 1, we conclude that N(t) ≤ N(0) + Λ
µ hence the

results.
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4. Global stability of the equilibria

In this section, we will study the global stability of the equilibria Ef and
E∗ as a function of the basic reproduction number R0.

Theorem 4.1. If R0 ≤ 1 the diseas-free equilibrium Ef is globally asymptot-
ically stable.

Proof.

U(Xx,t, Zx,t, Yx,t, Vx,t)=

∫
Ω

[
XfΨ

(
Xx,t

Xf

)
+
b+ c

c
Yx,t+Zx,t+

a(b+ c)

ck
Vx,t

]
dx.

(4.1)
We apply the time fractional derivative to the function U , according to Lemma
2.5, we have

C
0 D

α
t U=

∫
Ω

[
Xf

C
0 D

α
t Ψ

(
Xx,t

Xf

)
+
b+c

c
C
0 D

α
t Yx,t+

C
0 D

α
t Zx,t+

a(b+c)

ck
C
0 D

α
t Vx,t

]
dx

≤
∫

Ω

[(
1−

Xf

Xx,t

)
(Λ− βXx,tVx,t − µXx,t) +

b+ c

c
(cZx,t + aYx,t)

+
a(b+ c)

c
(cZx,t + aYx,t) + (βXx,tVx,t − (b+ c)Zx,t)

+
a(b+ c)

ck
(d∆Vx,t + kYx,t − uVx,t)

]
dx.

(4.2)
We have

∫
Ω ∆Vx,t(x, t)dx = 0 and µxf = Λ, by simple calculations on

C
0 D

α
t U ≤ λ

(
2− Xx,t

Xf
−

Xf

Xx,t

)
+
λβ

µ

1

R0
(R0 − 1)Vx,t. (4.3)

It is obvious that R0 ≤ 1 guarantees C
0 D

α
t U ≤ 0 for all Xx,t, Vx,t > 0.{

(Xx,t, Zx,t, Yx,t, Vx,t) ∈ R2
+ : C0 D

α
t U(t) = 0

}
= {Ef} . (4.4)

According to the principle of LaSalle invariance, Ef is globally asymptotically
stable. �

Theorem 4.2. The endemic equilibrium E∗ is globally asymptotically stable.

Proof. To prove this theorem, we propose the positive Lyapunov function de-
fined by

Vx,t(X,Yx,t, Vx,t) =

∫
Ω

[
X∗Ψ

(
Xx,t

X∗

)
+ Z∗Ψ

(
Zx,t
Z∗

)
+
b+ c

c
Y ∗Ψ

(
Yx,t
Y ∗

)
+
a(b+ c)

ck
V ∗Ψ

(
Vx,t
V ∗

)]
dx.

(4.5)
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Using (1.2), we get

C
0 D

α
t Vx,t = µX∗

(
2− Xx,t

X∗
− X∗

Xx,t

)
+ (b+ c)Z∗

(
4− X∗

Xx,t
− Xx,tVx,tZ

∗

X∗V ∗Zx,t
− Zx,tY

∗

Z∗Yx,t
−Yx,tV

∗

Y ∗Vx,t

)
.

(4.6)

Since we always have the arithmetic mean is greater than or equal to the
geometric mean, then

2−Xx,t

X∗
− X∗

Xx,t
≤ 0 and 4− X∗

Xx,t
−Xx,tVx,tZ

∗

X∗V ∗Zx,t
−Zx,tY

∗

Z∗Yx,t
−Yx,tV

∗

Y ∗Vx,t
≤ 0. (4.7)

It is easy to see that if X∗, Z∗ ≥ 0, then
C
0 D

α
t Vx,t ≤ 0

for all Xx,t, Yx,t, Zx,t, Vx,t > 0.{
(S, I) ∈ R2

+ : DαVx,t(t) = 0
}

= {E∗} . (4.8)

According to the principle of LaSalle invariance, the equilibrium E∗ is globally
asymptotically stable. �

5. Numerical simulation

In this section, we provide numerical simulations for the proposed epidemic
model (1.2). The purpose of these simulations is to validate the theoretical
findings discussed in the preceding section. To approximate the diffusion ex-
pression, the finite difference method with the Euler scheme was employed.
For the Caputo order fractional derivative, the Euler fractional method de-
scribed in [21] was utilized. The initial conditions were set as constant values.
The program was implemented using MATLAB.

5.1. Stability analysis of equilibria. In this subsection, we turn our atten-
tion to the numerical simulation focusing on the stability of equilibria.

Specifically, Figure 1 illustrates the stability of the disease-free equilibrium
Ef for given parameter values: α = 0.8, Λ = 0.6, β = 0.001, µ = 0.02,
b = 0.001, c = 0.001, a = 0.01, u = 0.01, k = 0.001 and d = 0.20. Under
these conditions, the basic reproduction number is less than unity, that is,
R0 = 0.15 ≤ 1, indicating the prediction of disease extinction.

The simulation results demonstrate convergence towards the disease-free
equilibrium Ef = (30, 0, 0, 0). Consequently, in accordance with Theorem 4.1,
Ef is proven to be globally asymptotically stable. This implies that the SIR
dynamics exhibit convergence towards Ef .
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Figure 1. The stability of the disease-free equilibrium Ef .

Figure 2. The stability of the endemic equilibrium E∗.
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Furthermore, in Figure 2, the stability of the endemic equilibrium E∗ is
depicted for specified values of α = 0.7, Λ = 6, β = 0.0001, µ = 0.02, b = 0.01,
c = 0.02, a = 0.01, u = 0.01, k = 0.01, and d = 0.20. Under these parameter
settings, the basic reproduction number is R0 = 2 > 1, indicating a scenario
where the infection is expected to persist.

The simulation results illustrate convergence towards the endemic equilib-
rium E∗ = (150, 200, 200, 100). In accordance with Theorem 4.2, E∗ is es-
tablished as globally asymptotically stable, signifying the persistence of the
infection.

Effect of the Fractional Derivative Order-5.2. Effect of the Fractional De-
rivative Order.

5.2. Effect of the fractional derivative order. Figures 3 and 4 shows the
effect of the order of the fractional derivative. It is clear that the order of the
drift has no effect on the stability of the equilibrium points, but it does have
an effect on the speed of the convergence. Indeed, the order of the largest
derivative converges more rapidly in relation to the smallest values.
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Figure 3. Effect of the fractional derivative on the stability
of the disease-free equilibrium Ef .
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Figure 4. Effect of the fractional derivative on the stability
of the endemic equilibrium E∗.

5.3. Numerical comparison of the noninteger derivative with the or-
dinary derivative. In this subsection, we will compare the numerical simu-
lations employing both the ordinary differential equation in model (1.1) and
the fractional differential derivative in model (1.2). To elucidate, equation
(5.1) presents the schematic representation of the standard derivative, while
Equation (5.2) delineates the schematic representation of the fractional deriv-
ative.

The numerical solution of system (1) at the discretized point (xi, tm+1) is
given by 

Xi,m+1 = Xi,m + (Λ− βXi,mVi,m − µXi,m)ht,

Zi,m+1 = Zi,m + (βXi,mVi,m − (b+ c)Zi,m)ht,

Yi,m+1 = Yi,m + (cZi,m + aYi,m − νRi,m)ht,

Vi,m+1 = Vi,m + (kYi,m − uVi,m)ht.

(5.1)
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The numerical solution of system (2) at the discretized point (xi, tm+1) is
given by

Xi,m+1 = X0,m

+
hαt

Γ(α+ 1)

[ n∑
j=0

((n− j + 1)α−(n− j)α) (Λ− βXi,mVi,m − µXi,m)
]
,

Zi,m+1 = Z0,m

+
hαt

Γ(α+ 1)

[ n∑
j=0

((n− j + 1)α−(n− j)α) (βXi,mVi,m−(b+ c)Zi,m)
]
,

Yi,m+1 = Y0,m

+
hαt

Γ(α+ 1)

[ n∑
j=0

((n− j + 1)α − (n− j)α) (cZi,m + aYi,m − νRi,m)
]
,

Vi,m+1 = V0,m +
hαt

Γ(α+ 1)

[ n∑
j=0

((n− j + 1)α

− (n− j)α)
(
d
Vi+1,m − 2Vi,m + Vi−1,m

h2
x

+ kYi,m − uVi,m
)]
.

(5.2)
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Figure 5. Comparison of Numerical Simulations: fractional
derivative and standard derivative for the disease-free equilib-
rium Ef .
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Figure 6. Comparison of Numerical Simulations: fractional
derivative and standard derivative of the endemic equilibrium
E∗.

Figures 5 and 6 illustrate the difference between the numerical simulation
of the fractional derivative and that of the ordinary derivative.

6. Conclusion

This study focuses on a spatio-temporal model of viral infection, which
is described by differential equations incorporating diffusion and a fractional
derivative α. Our analysis begins by establishing the existence, uniqueness,
positivity, and unboundedness of the solution for this dynamic model. We
also computed the basic reproduction number R and identified the two equi-
librium points of the model based on this parameter. Subsequently, we proved
the global stability of the disease-free equilibrium Ef when R < 1, indicating
the absence of long-term infection in this scenario. However, when R > 1,
the endemic equilibrium E∗ was found to be locally asymptotically stable,
suggesting the persistence of the disease over an extended period of infection.
To validate our theoretical findings, we conducted numerical simulations, con-
firming the robustness of the results.
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