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Abstract. This paper studies the equilibrium solution in a class of 2-player queueing games

played on a network of a single server. While much research has been done on equilibrium

solutions in such games, the case of unequal arrival rates for players has not been thoroughly

addressed. The objective of both players is to minimize the mean expected time their clients

spend in the system. Each player can choose either a single path or distribute clients over

multiple paths. We demonstrate that this game may or may not have a pure strategy Nash

equilibrium (PNE) under discrete strategies, using the finite improvement path property.

When players can split traffic, existence and uniqueness of PNE is shown using Lagrange

multipliers and the KarushKuhnTucker conditions. Pure and mixed strategy equilibria are

discussed, along with the price of anarchy. We also explore the congestion game formulation

of this queueing setup.
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1. Introduction

The field of operations research has a long history of using queueing the-
ory as a methodology. It offers a crucial tool for studying the dynamics of
numerous resource-constrained service systems, including traffic flow systems,
computer systems, facility design, communication network systems, manufac-
turing systems, and scheduling. In such systems, clients often compete for
scarce service resources. As a result, a game-theoretic framework emerges,
and game theory provides a promising research direction for queueing the-
ory. According to the classification of game theory, the challenge in queueing
systems is often a multi-player, stochastic, and non-cooperative game.

Non-cooperative games provide a suitable framework for examining such
decentralized queueing systems [5, 18, 22, 23, 26]. While it is well known that
a Nash equilibrium (NE) in mixed strategies exists for finite non-cooperative
games, a pure strategy Nash equilibrium (PNE) is not necessarily guaranteed.
Identifying conditions under which a PNE exists is a core aim of game theory.

This paper studies a specific class of 2-player non-cooperative queueing
games played on an open network, where each vertex in the network follows an
M/M/1 queueing discipline. The arrival rates for both players may be equal or
unequal. The objective of each player is to reduce the mean expected time of
its clients in the system. Each player must strategically select a path through
the network to route clients from a given source to a destination. First, we
consider the case where each player selects a single path. This leads to a game
with a finite strategy space. A weighted congestion game is a specific case of
this [9, 25], and a PNE is not always guaranteed. We then examine games
with continuous strategy spaces, where players may divide their clients over
multiple paths.

Several works in the literature integrate queueing and game theory models.
Beginning with the pioneering work of Naor in 1969 [21], significant attention
has been given to game-theoretic analysis of queueing systems [1, 5, 10, 11, 13].
Queueing theory has also been applied in security games and communication
networks for optimal routing [1, 16]. The Braess paradox in queueing net-
works is discussed in [9], and a comprehensive summary of rational behavior
in queueing systems appears in [12]. Equilibrium solutions in queueing games
have been widely studied [8, 7, 26, 27], and the case of equal arrival rates has
been addressed in [15].

The rest of this paper is organized as follows: Section 2 provides an overview
of directed graphs, M/M/1 queues, and non-cooperative games on networks.
Section 3 describes the proposed game model. Section 4 analyzes equilibrium
solutions under two cases: discrete strategies (where each player selects a single
path) and continuous strategies (where clients can be split across paths). In



Equilibrium solution in non-cooperative queuing games 531

the continuous case, we show the existence and uniqueness of a PNE using
Lagrange multipliers and KKT conditions. Section 5 presents the game as a
congestion game and derives the corresponding payoff functions for different
arrival scenarios.

2. Preliminaries

This section introduces the framework for non-cooperative games played on
networks and provides definitions for the notation used throughout the article.

Definition 2.1. ([18, Directed graph]) A directed graph D = (V,E) consists
of a nonempty set of vertices V and a set of directed edges E where E ⊆ V ×V .
Each edge e ∈ E is specified by an ordered pair of vertices u, v ∈ V .

Definition 2.2. ([18, Directed network]) A directed network is a directed
graph with vertex set V and edge set E.

Definition 2.3. ([15, 18, Directed path]) A directed path in a directed graph
D is a sequence v0, e1, v1, e2, v2, . . . , en, vn such that vi ∈ V , ei ∈ E, 0 ≤ i ≤ n,
all vi are distinct, and this represents a path from vertex v0 to vn.

Definition 2.4. ([12, 21, M/M/1]) The M/M/1 queue (Figure 1) is a classi-
cal queueing model with exponentially distributed interarrival times (Poisson
arrivals with rate λ), exponentially distributed service times with rate µ, and
a single server.

Figure 1. An M/M/1 queueing vertex

Definition 2.5. ([15, 16, 24, Games on networks]) A game played on a network
is defined by three components: (a) a network, (b) a strategy space, and (c)
payoff functions.

Definition 2.6. ([15, 18, Network]) A network is a directed graph D = (V,E)
where each vertex i ∈ V = {1, . . . , n} is an FCFS (First Come First Served)
single-server queue with arrival rate λi and service rate µi.

Definition 2.7. ([14, 19, Strategy space]) The strategy space for player i is
denoted by S = ×i∈V Si, where Si is the finite pure strategy set for player i.
A strategy profile is a vector x = (x1, . . . , xn) ∈ S such that xi ∈ Si for all
i ∈ V .
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Definition 2.8. ([14, 19, Payoff function]) When player i competes with oth-
ers in a stage of the game, he receives a payoff. Let πij(xi, xj) denote the
payoff that player i receives when playing strategy xi ∈ Si against opponent
j ∈ Ni (the neighbors of i), who selects strategy xj ∈ Sj .

The aggregate payoff for player i is

πi(xi, x−i) =
∑

j∈Ni\{i}

wijπij(xi, xj), (2.1)

where wij ∈ R is the weight corresponding to the local interaction between i
and j. This is called a pairwise game on a network.

In contrast, if players interact in groups larger than two, the local encounters
form an n-player game. The aggregate payoff becomes

πi(xi, x−i) =
∑
j∈Ni

wjπij(xi, x−i), (2.2)

where wj ∈ R is the mutual weight for player j in the local n-player game.
A non-cooperative game with such payoffs is called a groupwise game on a
network.

The combined objective function is

π : S → Rn, π(x) = [π1(x), . . . , πn(x)]

(see [14, 19]).

3. Model description

This section introduces the 2-player non-cooperative game played on a net-
work of M/M/1 queues.

Consider a directed network D = (V,E) with n vertices and m edges. Let
K = {1, 2} be the set of two players, and for each player j ∈ K, let (sj , tj) ∈
V ×V denote the source and sink vertices, respectively, from which the player
selects paths for routing clients.

Assume that each vertex i ∈ V is an M/M/1 queue, with service rate µi.
The arrival rate λi at vertex i is determined by the paths chosen by the players.

Each players objective is to minimize the mean expected time of their clients
in the system by appropriately distributing them over available paths. Let
R(j) denote the set of available paths for player j ∈ K. The arrival process
for clients of players 1 and 2 is assumed to follow a Poisson process with rates
λ(1) and λ(2), respectively, where λ(1) 6= λ(2).

A strategy of player j is represented by a vector S(j) = (x
(j)
r )r∈R(j) , where

x
(j)
r is the fraction of clients routed through path r. The arrival rate at a
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vertex i ∈ V under the full strategy profile S = (S(1), S(2)) is then

λi =
∑
r∈R(1)

i∈r

x(1)r λ(1) +
∑
r∈R(2)

i∈r

x(2)r λ(2). (3.1)

A strategy profile S = (S(1), S(2)) is said to be feasible if λi < µi for all
i ∈ V . The set of all feasible strategies is denoted by

Ω =

S
∣∣∣∣∣∣
∑
r∈R(j)

x(j)r = 1, x(j)r ≥ 0, λi < µi for all i ∈ V, j = 1, 2

 . (3.2)

For any S ∈ Ω, the mean expected time spent at vertex i is given by

1

µi − λi
.

Thus, the mean expected time for the clients of player j in the system is

π(j)(S) =

n∑
i=1

∑
r∈R(j)

i∈r
x
(j)
r

µi − λi
, j = 1, 2. (3.3)

The total mean expected time for the system is given by

π(S) =

2∑
j=1

π(j)(S). (3.4)

Since both players aim to minimize the mean expected time of their clients,
Equation (3.3) defines the individual objective function (payoff) for player
j. Therefore, the 2-player non-cooperative game played on the network D =
(V,E) is defined by the tuple:

G =
(
K,V, S(j), π(j)

)
,

where

• K is the set of players,
• V is the set of vertices in the network,
• S(j) is the strategy space of player j, and
• π(j) is the payoff function of player j as defined in (3.3).

4. Equilibrium analysis

This section studies the existence of equilibrium solutions in the game G.
We begin by introducing definitions related to dominant strategies, pure-
strategy Nash equilibria (PNE), the concept of the Price of Anarchy (PoA),
and the matrix form of payoffs.
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Definition 4.1. (Dominant and Best Response Strategies) A strategy s(j) is
said to be a dominant strategy for player j if it yields the lowest mean expected
time in the system for any possible strategy s−j of the opponent:

π(j)(s(j), s−j) ≤ π(j)(s̄(j), s−j) for all s̄(j) ∈ S(j).

The best response of player j to s−j is the strategy that minimizes their
cost, defined by:

BR(j)(s−j) =
{
ŝ(j) ∈ S(j)

∣∣∣π(j)(ŝ(j), s−j) ≤ π(j)(s̄(j), s−j), ∀ s̄(j) ∈ S(j)
}
.

Definition 4.2. (Pure-Strategy Nash Equilibrium (PNE)) A strategy profile

S = (s(1), s(2)) is a pure-strategy Nash equilibrium if no player can reduce their
own expected time by unilaterally deviating from their strategy. Formally, for
each j ∈ {1, 2}:

s(j) ∈ BR(j)(s−j).

Definition 4.3. ([20, Finite Improvement Property]) Let S be a strategy

profile. An improvement step for player j is a change to a strategy s̄(j) such
that:

π(j)(s̄(j), s−j) < π(j)(s(j), s−j).

An improvement path is a sequence of profiles γ = (S1, S2, . . . ), where each
Sr+1 results from an improvement step by a single player from Sr. Let pr
denote the player improving at step r.

A game G is said to have the finite improvement property (FIP) if all such
improvement paths are finite. If a game has FIP, then any sequence of better
responses leads to a pure-strategy Nash equilibrium.

Price of Anarchy (PoA). The concept of the Price of Anarchy is used to mea-
sure the inefficiency of equilibrium outcomes due to selfish behavior. It com-
pares the worst equilibrium outcome to the optimal (socially best) solution.

Although introduced formally by Koutsoupias and Papadimitriou, the idea
has roots in earlier work in game theory and economics [2, 3, 10, 19].

Consider the game G = ([K], V, S(j), π(j)) with K = {1, 2}. This game
always admits a mixed-strategy Nash equilibrium, but may or may not admit
a pure-strategy Nash equilibrium (PNE), depending on the structure of the
game.

Some games may have multiple PNEs with different performance. To eval-
uate the quality of equilibria, we define the PoA as follows:
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Definition 4.4. ([2, 3, Price of Anarchy]) Let SEq ⊆ S be the set of all Nash
equilibria. Then the PoA is defined as:

PoA =
maxS∈SEq

π(S)

minS∈S π(S)
. (4.1)

A PoA close to 1 implies that equilibrium outcomes are nearly socially
optimal.

Definition 4.5. ([2, 3, Price of Anarchy]) Let SEq ⊆ S be the set of strategy
profiles that are in Nash equilibrium. The Price of Anarchy (PoA) is the
ratio between the worst equilibrium outcome and the optimal (socially best)
outcome:

PoA =
maxS∈SEq

π(S)

minS∈S π(S)
. (4.2)

Any equilibrium (that is, NE) is considered socially acceptable if PoA ≈ 1.

Our game, which involves two players with finitely many strategies, can be
described by a bimatrix form:

• Let A = (as1,s2)s1∈S1,s2∈S2
be the payoff matrix for Player I (row

player),
• and B = (bs1,s2)s1∈S1,s2∈S2

be the payoff matrix for Player II (column

player).

If Player I chooses row s1 and Player II chooses column s2, the payoffs are:

π1(s) = as1,s2 , π2(s) = bs1,s2 .

Example 4.6. Assume a network with three vertices and two players. The
sets of available paths are

R(1) = {{1}, {2}}, R(2) = {{2}, {3}}.
Each player selects one path to route all their clients. Assume:

µ1 = µ3 = 3, µ2 = 4, λ(1) = 1, λ(2) = 2.

Using the payoff function from Equation (3.3), the mean expected time matrix
for both players is

{1} {3}
{1} (0.5, 1) (0.5, 1)
{2} (1, 1) (1, 0.5)

Based on this model, the game is non-cooperative and each player aims to
minimize their clients’ expected time in the system independently from the
global system optimum.

We now distinguish two types of strategies:
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(1) Pure strategies: each player j selects one path r ∈ R(j) to send all
their clients. Players are fully informed about the choices of their op-
ponents.

(2) Mixed strategies: player j selects a probability distribution over

the paths r ∈ R(j), denoted by x
(j)
r , where x

(j)
r ∈ [0, 1]. Each player is

informed of the opponents distribution.

If a player chooses a single path, then the strategy space is discrete and
finite:

x(j)r ∈ {0, 1}, ∀ r ∈ R(j), j = 1, 2.

If a player is allowed to split clients over multiple paths, the strategy space
becomes continuous:

x(j)r ∈ [0, 1], ∀ r ∈ R(j), j = 1, 2.

We now explore the existence of Nash equilibrium and the associated PoA
under both discrete and continuous strategy assumptions.

4.1. Discrete Strategy Space. We consider the game G where each player
is allowed to choose a single path. Given the strategy s−j of the opponent,
player j solves the following non-linear program:

min
S(j)

π(j)(s) (4.3)

subject to: λi =
∑
r∈R(1)

i∈r

x(1)r λ(1) +
∑
r∈R(2)

i∈r

x(2)r λ(2), ∀ i ∈ V, (4.4)

λi ≤ µi, ∀ i ∈ V, (4.5)∑
r∈R(j)

x(j)r = 1, (4.6)

x(j)r ∈ {0, 1}, ∀ r ∈ R(j). (4.7)

Solving this program for both players simultaneously yields potential pure
Nash equilibria (PNE). However, as we will show in the following examples,
the existence of a PNE is not guaranteed even in the discrete case.

Example 4.7. Consider a game of 2-player played on a network with three
vertices. The sets of available paths (strategies) for both players are: S(1) =

{s(1)1 = {1}, s(1)2 = {2}} and S(2) = {s(2)1 = {2}, s(2)2 = {3}}. Each player has

to select just one path for all its clients. For µ1 = µ3 = 5, µ2 = 6, λ(1) = 3,
λ(2) = 2, where λ(1) + λ(2) ≤ µ2 is the condition of feasibility.
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Using formula (3.3), the payoff functions for player 1 and player 2 take the
form:

π(1)(s) =
∑
r∈S(1)

1

µi − λ(1)
+

∑
r∈S(1)∩S(2)

1

µi − λ(1) − λ(2)
,

π(2)(s) =
∑
r∈S(2)

1

µi − λ(2)
+

∑
r∈S(1)∩S(2)

1

µi − λ(1) − λ(2)
.

We get:

π(1)(s
(1)
1 , s

(2)
1 ) =

1

µ1 − λ(1)
=

1

2
, π(2)(s

(1)
1 , s

(2)
1 ) =

1

µ2 − λ(2)
=

1

4
.

Using this approach, the payoff matrix with the players mean expected time
of their clients in the system for this game is:

s
(2)
1 s

(2)
2

s
(1)
1 (0.5, 0.25) (0.5, 0.5)

s
(1)
2 (1, 1) (0.33, 0.33)

If player 1 selects path {1} and player 2 selects path {2}, the entry (0.5, 0.25)
indicates that the mean expected time for player 1s clients is 0.5 and for player
2s clients is 0.25.

Depending on the definition of PNE, we see that the strategy profiles

(s
(1)
1 , s

(2)
1 ) and (s

(1)
2 , s

(2)
2 ) are the PNE for this game. The PoA of this game is

0.75
0.66 = 1.14.

For µ1 = µ3 = 3, µ2 = 4, and equal arrival rates λ(1) = λ(2) = 1, the payoff
matrix for the players is(

(0.5, 0.33) (0.5, 0.5)

(0.5, 0.5) (0.33, 0.5)

)
.

Obviously, this game has multiple PNEs: (s
(1)
1 , s

(2)
1 ), (s

(1)
1 , s

(2)
2 ), and (s

(1)
2 , s

(2)
2 ).

The PoA in this case is 1
0.83 = 1.20. This result shows that if the arrival rates

of both players are equal, the game has multiple PNEs and the PoA is close
to one.

Example 4.8. Consider a game as in Example (4.6) with the following sets
of available paths for each player

S(1) = {s(1)1 = {1, 2, 3}, s(1)2 = {4, 5, 6}},

S(2) = {s(2)1 = {1, 2, 4}, s(2)2 = {6, 5, 3}}.
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Each player must select just one path for its clients. We discuss the existence
of PNE in three cases:

Case 1: For λ(1) = λ(2) = 1, µi = 3 for all i ∈ {1, 2, 3, 4, 5, 6}. A sufficient

condition for feasibility is λ(1) + λ(2) ≤ µi for all nodes i ∈ S(1) ∩ S(2). The
payoff matrix is: (

(2.5, 2.5) (2, 2)

(2, 2) (2.5, 2.5)

)
.

There are two pure Nash equilibria: (s
(1)
1 , s

(2)
2 ) and (s

(1)
2 , s

(2)
1 ). The PoA is 1.

Case 2: For λ(1) = 1, λ(2) = 2, µi = 6 for i ∈ {1, 2, 5, 6}, and µi = 5 for
i ∈ {3, 4}. The payoff matrix is:(

(0.917, 1) (0.90, 1)
(0.90, 1) (0.917, 1)

)
.

The strategy profiles (s
(1)
1 , s

(2)
2 ) and (s

(1)
2 , s

(2)
1 ) are pure Nash equilibria. The

PoA is 1.

Case 3: For λ(1) = 1, λ(2) = 2, µi = 6 for i ∈ {1, 2, 5, 6}, and µi = 4.95 for
i ∈ {3, 4}. The payoff matrix is:(

(0.920, 1.006) (0.913, 1.013)
(0.913, 1.013) (0.920, 1.006)

)
.

The improvement cycle for this case is shown in:

Figure 2. Improvement cycle

Since there are no strategy profiles outside this cycle, we conclude that this
game has no PNE. Therefore, the PoA cannot be computed.

From Example (4.6) and Example (4.7), we conclude that a PNE in discrete
space need not exist.
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4.2. Continuous strategy space. If the player is permitted to split his
clients over multiple paths, this leads to continuous strategy spaces for the

players and therefore x
(j)
r ∈ [0, 1], ∀ r ∈ R(j), j = 1, 2. In this case, we

show that there exists a unique PNE and find this strategy using a method of
Lagrange multipliers with KKT conditions [1, 11].

Since the players goal is to decrease the mean expected time in the system
of its clients, we can find the optimal strategy for any player j by finding the
optimal solution of the non-linear mathematical model (4.7)–(4.11):

min
S(j)

π(j)(s). (4.8)

Subject to:

λi =
∑
i∈r

r∈R(1)

x(1)r λ(1) +
∑
i∈r

r∈R(2)

x(2)r λ(2), ∀ i ∈ V, (4.9)

λi ≤ µi, ∀ i ∈ V, (4.10)∑
r∈R(j)

x(j)r = 1, (4.11)

x(j)r ∈ [0, 1], ∀ r ∈ R(j). (4.12)

This mathematical program has a unique PNE. We will prove the existence
and uniqueness of this strategy first by proving the convexity of the payoff
function π(j)(s) defined by (3.3). After that, we show the existence of the
unique PNE of this game.

To prove that π(j)(s) is convex, we introduce the following lemma:

Lemma 4.9. A twice-differentiable function f : Rn → R is strictly convex if
and only if for every x ∈ Rn, the Hessian matrix ∇2f(x) is positive definite
(i.e., f ′′(x) > 0, ∀x ∈ Rn).

Proof. See [11]. �

Theorem 4.10. The payoff function π(j)(s) of player j is strictly convex in

S(j), j = {1, 2}, for all s ∈ Ω.

Proof. Recall formulas (3.2) and (3.3). If we define x̃
(j)
i =

∑
r∈R(j)

i∈r
x
(j)
r , then

the payoff function can be written as:

π(j)(s) =

n∑
i=1

x̃
(j)
i

µi − x̃(j)i λi
, j = 1, 2 (4.13)
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The first and second partial derivatives of (4.7) with respect to x̃
(j)
i (∀i ∈ V )

are given by:

∂π(j)(s)

∂x̃
(j)
i

=
n∑
i=1

µi

(µi − x̃(j)i λi)2
,

∂2π(j)(s)

∂(x̃
(j)
i )2

=
n∑
i=1

2µiλi

(µi − x̃(j)i λi)3
.

Moreover, for all nodes i, k ∈ V

∂2π(j)(s)

∂x̃
(j)
i ∂x̃

(j)
k

= 0.

The Hessian matrix ∇2π(j)(s) is given by

∇2π(j)(s) =



∂2π(j)(s)

∂(x̃
(j)
1 )2

0 0 · · · 0

0
. . .

...
...

. . . 0

0
. . . 0

0 · · · 0 0
∂2π(j)(s)

∂(x̃
(j)
n )2


.

It is clear that the non-zero entries of this matrix take the form ∂2π(j)(s)

∂(x̃
(j)
i )2

, which

are all positive. Therefore, the Hessian matrix is positive definite, which means
that π(j)(s) is strictly convex in S(j). �

The following theorem shows the conditions for a unique PNE to exist for
the game G.

Theorem 4.11. If the set of all feasible strategy profiles Ω is non-empty, the
game G has a unique PNE.

Proof. Since x
(j)
r ∈ [0, 1] and

∑
r∈R(j) x

(j)
r = 1, the set Ω is bounded. Moreover,

since the inequalities and equations that construct Ω are linear, this set is
convex. We already proved that the payoff function π(j)(s) is convex. For
each p, the amount µi−pλi > 0 implies that p

µi−pλi is continuous for all i, and

thus π(j)(s) is continuous on Ω. Therefore, according to Theorem 1 in [1], the
game G has a unique PNE. �

Now we introduce an example for a game G with continuous strategy space.
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Example 4.12. Consider a game which is represented in Figure (3). The
available paths for players are:

S(1) = {s(1)1 = {1}, s(1)2 = {3}}, S(2) = {s(2)1 = {2}, s(2)2 = {3}}.

Assume the following feasibility conditions:

λ(1) ≤ µ1, λ(2) ≤ µ2, λ(1) + λ(2) ≤ µ3.

The payoff functions for both players are:

π(1)(s) =
x
(1)
1

µ1 − x(1)1 λ(1)
+

x
(1)
3

µ3 − (x
(1)
3 λ(1) + x

(2)
3 λ(2))

,

π(2)(s) =
x
(2)
2

µ2 − x(2)2 λ(2)
+

x
(2)
3

µ3 − (x
(1)
3 λ(1) + x

(2)
3 λ(2))

.

Since
∑

r∈R(j) x
(j)
r = 1 for j = 1, 2, the payoff functions become:

π(1)(s) =
x
(1)
1

µ1 − x(1)1 λ(1)
+

(1− x(1)1 )

µ3 − [(1− x(1)1 )λ(1) + (1− x(2)2 )λ(2)]
,

π(2)(s) =
x
(2)
2

µ2 − x(2)2 λ(2)
+

(1− x(2)2 )

µ3 − [(1− x(1)1 )λ(1) + (1− x(2)2 )λ(2)]
.

Solving this mathematical program simultaneously for player 1 and player 2
produces the optimal strategy profile S, which is the NE of the game G.

We use the Lagrange multipliers method and KKT conditions as follows:

The Lagrangians for both players are:

L1(S
(1), α1, α2) = π(1)(s) + α1x

(1)
1 + α2(1− x(1)1 )

=
x
(1)
1

µ1 − x(1)1 λ(1)
+

(1− x(1)1 )

µ3 − [(1− x(1)1 )λ(1) + (1− x(2)2 )λ(2)]

+ α1x
(1)
1 + α2(1− x(1)1 ),

L2(S
(2), β1, β2) = π(2)(s) + β1x

(2)
2 + β2(1− x(2)2 )

=
x
(2)
2

µ2 − x(2)2 λ(2)
+

(1− x(2)2 )

µ3 − [(1− x(1)1 )λ(1) + (1− x(2)2 )λ(2)]

+ β1x
(2)
2 + β2(1− x(2)2 ),
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Now in system (∗), we consider λ(1) 6= λ(2), for instance let λ(1) = 1, λ(2) =
2, and let µ3 = 4, µ1 = µ2 = 3. We get

3(x
(1)
1 + 2x

(2)
2 + 1)2 = 2(3− x(1)1 )2(1 + x

(2)
2 ), (4.14)

3(x
(1)
1 + 2x

(2)
2 + 1)2 = (3− 2x

(2)
2 )2(3 + x

(1)
1 ). (4.15)

Assuming symmetry x
(1)
1 = x

(2)
2 , we find x

(1)
1 = x

(2)
2 = 0.703, and the

expected sojourn time for player 1 and 2 is 0.40 and 0.54 respectively.

Figure 3. Queueing game with three nodes.

5. Queueing games as congestion game

An n-player game is considered as a congestion game if each player’s strategy
consists of a certain set of resources, and the cost of the approach is solely
dependent on how many players are utilizing each resource, i.e., the cost takes
the form

∑
dif(i), where f(i) is the number of players using resource i, and

di is a non-negative increasing function.
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The game of network congestion on a directed graph is a common example.
In this game, each player must choose a path from a source to a destination,
and each edge has a ”delay” function that grows as more players use the edge
[9, 25]. Such congestion games always admit a PNE, according to Rosenthal
[25], who demonstrated that these games have an exact potential function.
Thus, for our game G to have a PNE, it is sufficient to show that this game is
a congestion game.

The strategy set for each player in the congestion game may differ because
each player chooses a different set of finite subsets of elements (in this case,
vertices) as their strategy. Each element’s delay function should be positive
and monotonic in the number of players using this element (vertex). We
demonstrate these characteristics of the game G in the following cases:

Case 1: The case of equal arrival rates (λ(1) = λ(2) = λ):

If we define a
(j)
i (s) for any strategy profile S as:

a
(j)
i (s) =

{
1, if i ∈ R(j),

0, otherwise.

Then, the number of players using node i is:

yi(S) =
∑
j

a
(j)
i (S), j = {1, 2}.

The payoff function becomes:

π(j)(s) =

n∑
i=1

a
(j)
i (s)

µi − λi
. (5.1)

Since λ(1) = λ(2) = λ, then λi = yi(s)λ.

Now, we define the delay function di as:

di =

{
1

µi−yiλ , yi <
µi
λ ,

∞, yi ≥ µi
λ .

Therefore, the payoff function becomes:

π(j)(s) =

n∑
i=1

a
(j)
i (s) · di(yi(s)). (5.2)

The function di is positive and monotone increasing whenever yi <
µi
λ . Thus,

our game G with equal arrival rates is a congestion game and therefore has a
PNE.

Case 2: The case of unequal arrival rates (λ(1) 6= λ(2)):
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In this case, the delay function di becomes:

di =

{
1

µi−yiλ , yi <
µi
λi
,

∞, yi ≥ µi
λi
,

where λi =
∑

j a
(j)
i (s)λ(j), j = 1, 2. Therefore, the game G has a PNE

provided that yi <
µi
λi

holds for the strategy profile S to be feasible.

6. Conclusion

This article studied the equilibrium solution in a 2-player non-cooperative
queueing game played on a network of M/M/1 queues with equal and unequal
arrival rates, where the players have two choices:

(1) First, each player can select just one path for all its clients.
(2) Second, each player can split its clients over multiple paths and share

some servers with the other player.

We analyzed and discussed the existence of PNE for both strategy types. In
the case where each player selects one path, the game G has a Nash equilibrium
in mixed strategies, but a PNE is not guaranteed. In contrast, if players can
split their clients over multiple paths, we have shown that a unique PNE
exists and we calculated it using the Lagrange multipliers method with KKT
conditions.

Finally, we defined and described our game G as a congestion game. In this
case, we derived the condition for the game G to have a PNE, which is:

yi <
µi
λi

where λi =
∑
j

a
(j)
i (s)λ(j), j = 1, 2.
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