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Abstract. The aims of this work is to investigate the behavior of a coupled system of

Langevin equations with modified Atangana-Baleanu-Caputo (MABC) fractional derivatives,

which has broad applicability in understanding and simulating physical and biological pro-

cesses characterized by random forces and fluctuations. We seek to analyze the effect of the

MABC fractional operator on the properties of the solution and develop the conditions for

the existence and uniqueness of solutions by employing some fixed-point theorems. Addition-

ally, we investigate Ulam stability to assess solution stability and sensitivity to perturbations.

Furthermore, a numerical scheme is provided to showcase the obtained results, allowing for

practical simulations and a deeper understanding of the system’s behavior. Overall, this

study contributes valuable insights into the coupled Langevin equations with the modified

Atangana-Baleanu-Caputo (MABC) fractional derivative, benefiting researchers in diverse

scientific fields.
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1. Introduction and motivation

In recent decades, fractional calculus has emerged as a valuable tool in vari-
ous branches of applied mathematics. Researchers have successfully employed
fractional order differential equations to yield significant findings in diverse
fields such as fluid mechanics, rheology, physiology, control theory, and elec-
trodynamics [23, 27]. Numerous classical equations have been used to derive
their fractional counterparts, and extensive investigations have been carried
out to analyze the latter’s solutions [7, 8].

In 1908, Paul Langevin conducted a groundbreaking study on the erratic
(Brownian) motion of molecules, proposing an equation to describe the ran-
dom movement of a single Brownian particle [13]. In recognition of his signif-
icant contribution, this equation was later named the Langevin equation [17].
The Langevin equation holds immense importance as a stochastic differential
equation, finding extensive applications in diverse fields such as mathemat-
ics, physics, and biochemistry [20, 25]. One notable area where the Langevin
equation has made a significant impact is in the study of multiatomic sys-
tems through direct molecular dynamics simulations. By employing Langevin
dynamics-based approaches, researchers can gain insights into a wide range of
phenomena. These simulations enable a detailed understanding of the complex
dynamics and interactions within such systems [14, 29].

Moreover, the versatility and broad applicability of the Langevin equation
have made it an invaluable tool for understanding and simulating various phys-
ical and biological processes characterized by random forces and fluctuations.
In physics, the Langevin equation aids in studying Brownian motion, diffusion
processes, and thermal fluctuations. In biochemistry, it has been employed
to investigate the dynamics of biological macromolecules, such as proteins,
nucleic acids, and lipid bilayers, shedding light on their folding pathways,
conformational changes, and interactions with the surrounding environment
[19, 24]. Overall, the Langevin equation stands as a cornerstone in the realm
of stochastic modeling, providing a powerful framework for analyzing and sim-
ulating a wide range of phenomena in both physical and biological systems.
Its continued utilization and development contribute to advancements in vari-
ous scientific disciplines and pave the way for deeper insights into the intricate
dynamics of the natural world [26].

Devi et al. [16] studied the stability, existence, and uniqueness of solutions
of fractional Langevin equations FDEs. These equations involved Caputo
Hadamard derivatives with independent orders and were subject to non-local
integral and non-periodic boundary conditions. The researchers used the Kras-
noselskii fixed point theorem and the Banach contraction mapping principle in
their analysis. Ahmad et al. [4] utilized the Krasnoselskii fixed point theorem
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and the contraction mapping principle to establish the existence of solutions
for the Langevin equation featuring two distinct Caputo fractional derivatives.

In [12], Baleanu et. al. studied some properties of the solution for the
Mittag-Leffler-type fractional Langevin equation. Coupled system of fractional
differential equations offers a more accurate basis for studying interrelated
variables and their dynamics. It allows for the modeling of complex interac-
tions, multiscale phenomena, memory effects, and generalizability to diverse
applications. Many researchers have investigated properties of the solution for
a coupled system of FDEs using different methodologies [5, 32].

Recently, Alrefai and Baleanu [10] investigated a new approach to fractional
derivatives with a nonsingular kernel. This operator called the modified ABC
fractional operator. By this operator, we can find new solutions which are not
solvable with the ABC derivative [11]. For example, the homogenous FDEs in
ABC derivative have only the trivial solution. While in the MABC-derivative
it has a nonzero solution. In recent years, the MABC operator has garnered
recognition for its versatility and applicability across various disciplines. It
has proven effective in the analysis, control, and modeling of intricate phe-
nomena. [3, 6, 22]. All studies above have made significant contributions, but
none specifically focused on investigating a coupled system involving Langevin
equations with MABC derivatives. This particular research area remains un-
explored and offers intriguing possibilities for further investigation. When
coupled with the MABC derivative, the coupled system of Langevin equations
presents a unique and complex mathematical framework that warrants dedi-
cated attention. Future research endeavors in this direction promise to unravel
new insights and advance our understanding of the dynamics and behavior of
such systems.

Motivated by [4, 12] with the significance as mentioned above of the Langevin
equations [13] and MABC fractional operators [10], we analyze the system
dynamics and gain insights into how the specific MABC fractional operator
affects the properties of solution as well as the Ulam-Hyers stability of the
following coupled system of fractional Langevin equation:

MABCDα1
(
ABCDσ1 + µ1

)
f1(t) = g1(t, f1(t), f2(t)), t ∈ (0, b),

MABCDα2
(
ABCDσ2 + µ2

)
f2(t) = g2(t, f1(t), f2(t)), t ∈ (0, b)

(1.1)

with the initial conditions f1(0) = A1,
ABC Dσ1f1(0) = B1,

f2(0) = A2,
ABC Dσ2f2(0) = B2,
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where MABCDαi is the MABC-FD of order αi ∈ (0, 1], (i = 1, 2), ABCDσi is
the ABC-FD of order σi ∈ (0, 1], (i = 1, 2), gi : (0, b]×R2 → R are continuous
functions such that gi(0, 0, 0)| = 0, (i = 1, 2) and µi > 0, and Ai,Bi ∈ R,
(i = 1, 2).

In Langevin equations (1.1), f1(t) and f2(t) represent the positions of the
particles, while the functions g1 and g2 denote the forces acting on the particles
from the surrounding fluid molecules. The terms µ1 and µ2 correspond to the
damping or viscosity coefficients, and Ai and Bi (i = 1, 2) represent the initial
positions of the particles.

Our study makes a valuable contribution to enhancing our understanding
of the dynamics associated with coupled systems. The contributions of this
work can be summarized as follows:

(1) Based on our current knowledge, no previous investigations have fo-
cused on analyzing this coupled system using a combination of the
MABC operators. This work can be viewed as a generalization of [12]
and [2].

(2) We establish necessary and sufficient conditions for the existence, unique-
ness, and stability of a coupled system of Langevin equations using a
new fractional operator by employing the Banach contraction principle
and Leray-Schauder’s alternative fixed-point theorem. These condi-
tions provide a solid foundation for analyzing the dynamics of coupled
systems and contribute to the understanding of their behavior.

(3) We propose a numerical scheme for solving the coupled system of
Langevin equations using Lagrange’s interpolation method. This nu-
merical scheme not only extends the application of the MABC operator
but also offers a practical approach to modeling problems in various
fields. We demonstrate its application in areas such as Brownian mo-
tion, anomalous diffusion, and modeling the dynamics of population
sizes. Our research findings emphasize the practical significance of this
operator in the fields of physics and biology.

The paper is organized as follows. Section 2 provides a review of background
definitions and lemmas from fractional calculus. Additionally, an important
lemma is proven, which allows us to convert the coupled system described
in equation (1.1) into an equivalent integral equation. In Section 3, the pri-
mary existence and uniqueness of solutions for the coupled system (1.1) are
established. Section 4 focuses on establishing the Ulam-Hyers stability of the
system. Section 5 presents a numerical example that serves to illustrate the
aforementioned results. We provide two applications of coupled systems of
Langevin equations in Section 6. Finally, the last Section concludes the pa-
per, summarizing the findings and implications of the study.
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2. Preliminary results and concepts

This section starts with a quick overview of MABC operator with a non-
singular kernel. We introduce notations, definitions, and provide results that
are needed later. Throughout this paper, we fix the notation to be as follows:

(1) Ω = [0, b] ⊂ R where b > 0.
(2) C (Ω,R) be the Banach space of all continuous functions f : Ω → R

equipped with the norm

‖f‖ = max {|f(t)| : t ∈ Ω} .
(3) The product space C(Ω,R)×C(Ω,R) is a Banach space with the norm

‖(f1, f2)‖ = max {‖f1‖ , ‖f2‖} .
(4) H1(Ω) denotes the Sobolev space {f ∈ L2(Ω) : f ′ ∈ L2(Ω)}.
(5) Πδ denotes the closed ball in C (Ω,R)× C (Ω,R) with radius δ centered

on (0, 0) where 0 is the zero function. This closed ball is given by

Πδ = {(f1, f2) ∈ C (Ω,R)× C (Ω,R) : ‖(f1, f2)‖ ≤ δ} .
(6) For each i = 1, 2, let

∆i =

(
1 +

µi (1− σi)
B(σi)

)
6= 0,

where αi, σi, µi as given in system (1.1), and B(x) is a normalization
function given in Definition 2.2 below.

Definition 2.1. ([27]) For α > 0 and f ∈ L1(Ω), the Riemann-Liouville
fractional integral and the Riemann-Liouville fractional derivative of f with
fractional order α are defined by the following formulas

RLIα0+f(t) =

∫ t

0

(t− θ)α−1

Γ(α)
f(θ)dθ

and
RLDα0+f(t) =

(
d

dt

)n (
RLIn−α

0+
f(t)

)
,

respectively.

Another useful approach to fractional calculus is Atangana-Baleanu model,
which has non-singular kernel [11].

Definition 2.2. ([11]) For α ∈ (0, 1] and f ∈ H1 (Ω) . The ABC-FD of order
α for the function f is defined by

ABCDα0+f(t) =
B(α)

1− α

∫ t

0
f ′(s)Eα [−Φα (t− s)α] ds,
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where, Φα = α
1−α and Eα is the generalized Mittag-Leffler function, and the

normalization function B(α) satisfies the conditions B(0) = B(1) = 1.

Definition 2.3. ([11]) For α ∈ (0, 1] and f ∈ H1 (Ω), the following represen-
tation

ABIα0+f(t) =
1− α
B(α)

f(t) +
α

B(α)
RLIα0+f(t)

is the AB fractional integral of ABC-FD of order α for the function f.

Lemma 2.4. ([28]) For α ∈ (0, 1] and f ∈ H1 (Ω) . If ABC-FD exists, then

ABIα0+
ABCDα0+f(t) = f(t)− f(0).

Lemma 2.5. ([1, 11]) Let f(t) be a function defined on Ω and n < α ≤ n+ 1.
The following properties are hold

(1)
(
ABCDαAB0+ Iα0+f

)
(t) = f(t),

(2)
(
ABIαABC0+ Dα0+f

)
(t) = f(t)−

∑n
i=0

f (i)(0)
i! ti, for some n ∈ N.

Definition 2.6. ([10]) For α ∈ (0, 1] and f ∈ H1 (Ω) . The MABC-FD of
order α for the function f is defined by

MABCDα0+f(t) =
B(α)

1− α

[
f(t)− Eα (−Φαt

α) f(0)

− Φα

∫ t

0
(t− s)α−1Eα,α (−Φα (t− s)α) f (s) ds

]
.

By [9], we have MABCDα0+C = 0, where C is constant.

Definition 2.7. ([9, 10]) For α ∈ (0, 1] and f ∈ H1 (Ω), the following repre-
sentation

mABIα0+f(ι) =
1− α
B(α)

[f(ι)− f(0)] +
α

B(α)

RL
Iα0+ [f(ι)− f(0)]

or

mABIα0+f(ι) =
1− α
B(α)

[
f(ι) + Φα

RLIα0+f(ι)− f(0)

(
1 + Φα

ια

Γ (α+ 1)

)]
is the mAB fractional integral of order α for the function f . By this definition,
one can verify that mABIα0+C = 0, where C is constant.

Lemma 2.8. ([10]) For α ∈ (0, 1] and g ∈ H1 (Ω) . If MABC-FD exists, then

mABIα0+
MABCDα0+f(ι) = f(ι)− f(0).
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Lemma 2.9. ([10]) Let f(ι) be a function defined on Ω and n < α ≤ n + 1.
The following properties are hold

(1)
(
MABCDα0+

mABIα0+f
)

(ι) = f(ι),

(2)
(
mABIα0+

MABCDα0+f
)

(ι) = f(ι)−
∑n

i=0
f (i)(0)
i! ιi, for some n ∈ N.

3. Main results

We start our study by investigating the corresponding linear problem and
using the results to tackle the nonlinear fractional coupled system (1.1).

3.1. Linear fractional coupled system.

Lemma 3.1. Let αi, σi ∈ (0, 1] and yi ∈ C (Ω,R) with yi(0) = 0. The pair of
functions (f1, f2) ∈ C (Ω,R)× C (Ω,R) is a solution of the ABC-system

MABCDαi
0+

(
ABCDσi

0+
+ µi

)
fi(t) = yi(t) i = 1, 2, (3.1)

with conditions

fi(0) = Ai,
ABCDσi

0+
fi(0) = Bi, i = 1, 2, (3.2)

if and only (f1, f2) satisfies the following integral equations

fi(t) = Ai +
1

∆i

{
(µiAi +Bi)t

σi

B(σi)Γ(σi)
+

(1− σi)(1− αi)
B(σi)B(αi)

yi(t)

+
(1− σi)αi
B(σi)B(αi)

RLIαi
0+
yi(t) +

σi(1− αi)
B(σi)B(αi)

RLIσi0 yi(t)

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

yi(t)−
µiσi
B(σi)

RL
Iσi0 fi(t)

}
(3.3)

for each i = 1, 2.

Proof. Assume that (f1, f2) is a solution of Equations (3.1). Applying the
operators MABIα1

0+
and MABIα2

0+
on both sides of the equations in (3.1) respec-

tively, we have

MABIαiMABC
0+

Dαi
0+

(
ABCDσi

0+
+ µi

)
fi(t) =MAB Iαi

0+
yi(t), i = 1, 2.

In view of Definition 2.7, and Lemma 2.8, we have(
ABCDσi

0+
+ µi

)
fi(t) =

(
ABCDσi

0+
+ µi

)
fi(0) +

1− αi
B(αi)

yi(t)

+
αi

B(αi)
RLIαi

0+
yi(t)− yi(0)

(
1 + Φαi

tαi

Γ (αi + 1)

)
.

(3.4)
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By assumption yi(0) = 0, and the conditions in (3.2), we obtain

ABCDσi
0+
fi(t) =

1− αi
B(αi)

yi(t) +
αi

B(αi)

RL
Iαi
0+
yi(t) +µiAi +Bi−µifi(t), i = 1, 2.

(3.5)
Applying the operators ABIσ1

0+
and ABIσ2

0+
to both sides of the two equations

in (3.5) respectively, we have

ABIσiABC
0+

Dσi
0+
fi(t) =AB Iσi

0+

[1− αi
B(αi)

yi(t) +
αi

B(αi)
RLIαi

0+
yi(t)

+ µiAi +Bi − µifi(t)
]
, i = 1, 2.

By Lemmas 2.4, and 2.5, we get

fi(t) = fi(0) +AB Iσi
0+

[1− αi
B(αi)

yi(t) +
αi

B(αi)
RLIαi

0+
yi(t)

+ µiAi +Bi − µifi(t)
]
, i = 1, 2. (3.6)

By Definition 2.3, we have

fi(t) =
(1− σi) (1− αi)
B(σi)B(αi)

yi(t) +
(1− σi)αi
B(σi)B(αi)

RL

Iαi
0+
yi(t)

+
(1− σi)µiAi

B(σi)
+

(1− σi)
B(σi)

Bi −
(1− σi)
B(σi)

µifi(t)

+
σi (1− αi)
B(σi)B(αi)

RL

Iσi
0+
yi(t) +

σi
B(σi)

αi
B(αi)

RL
Iσi+αi
0+

yi(t) (3.7)

+
σi

B(σi)

RL
Iσi
0+
µiAi +

σi
B(σi)

RL
Iσi
0+
Bi −

σi
B(σi)

RLIσi
0+
µifi(t) + ci,

where c1 and c2 are constants. Substituting t = 0 in the above equations and
using the fact yi(0) = 0, for i = 1, 2, f1(0) = A1, and f2(0) = A2, we get

ci = Ai −
1− σi
B(σi)

Bi, i = 1, 2.

Substituting c1 and c2 in Equation (3.7), we get the equations in (3.3). So,
(f1, f2) is a solution of (3.3).

Conversely, if (f1, f2) is a solution of (3.3), then by applying the operators
ABCDσ1

0+
and ABCDσ2

0+
to (3.3), we get (3.4). Next, applying the operators

ABCDα1

0+
and ABCDα2

0+
to (3.4), we can get initial value problem (3.1). In view

of (3.3) and (3.4), the conditions (3.2) follows. �
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3.2. Nonlinear fractional coupled system. This part considers a coupled
nonlinear system (1.1). The following lemma follows directly from Lemma 3.1.

Lemma 3.2. For i = 1, 2, let αi, σi ∈ (0, 1] and Gi
f1,f2

= gi(t, f1(t), f2(t)) :

Ω×R×R→ R be continuous and differentiable function such that Gi
f1,f2

(0) =

0, i = 1, 2. Then the pair of functions (f1, f2) ∈ C (Ω,R)× C (Ω,R) is a so-
lution of the system (1.1) if and only if (f1, f2) satisfies the following integral
equations

fi(t) = Ai +
1

∆i

{
(µiAi +Bi) t

σi

B(σi)Γ (σi)
+

(1− σi) (1− αi)
B(σi)B(αi)

Gi
f1,f2(t)

+
(1− σi)αi
B(σi)B(αi)

RL

Iαi
0+
Gi
f1,f2(t) +

σi (1− αi)
B(σi)B(αi)

RL

Iσi0 Gi
f1,f2(t)

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

Gi
f1,f2(t)− µiσi

B(σi)
RLIσi0 fi(t)

}
.

To obtain our main results, the following conditions must be assumed.

H1 : For i = 1, 2, Gi
f1,f2

(t) = gi(t, f1(t), f2(t)) are continuous functions and
there exists a constant numbers Li > 0 such that∣∣∣Gi

f1,f2(t)−Gi
f̂1,f̂2

(t)
∣∣∣ ≤ Li

(∣∣∣f1(t)− f̂1(t)
∣∣∣+
∣∣∣f2(t)− f̂2(t)

∣∣∣)
for any fi, f̂i ∈ C (Ω,R) .

H2 : For i = 1, 2, the functions Gi
f1,f2

(t) : Ω × R × R → R are continuous

functions such that for (t, f1, f2) ∈ Ω× R× R we have∣∣Gi
f1,f2(t)

∣∣ ≤ ηgi(t) + Υgi(t) |f1(t)|+$gi(t) |f2(t)| ,
where ηgi ,Υgi , $gi ∈ C (Ω,R) are nonnegative functions.

To simplify our discussion, the following notations are used. For i = 1, 2,
let

η∗gi = max
t∈Ω
|ηgi(t)| ,Υ∗gi = max

t∈Ω
|Υgi(t)| , $∗gi = max

t∈Ω
|$gi(t)|

and
ψgi = max

t∈Ω

∣∣Gi
0,0(t)

∣∣ <∞.
We also use

Qi =
(1− σi) (1− αi)
B(σi)B(αi)

+
(1− σi) bαi

B(σi)B(αi)Γ(αi)

+
(1− αi) bσi

B(σi)B(αi)Γ(σi)
+

σiαib
σi+αi

B(σi)B(αi)Γ(σi + αi + 1)
, (3.8)

Zi =
2Li
∆i

(
Qi +

µib
σi

B(σi)Γ(σi)

)
, (3.9)
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and

K =
2∑
i=1

|Ai|+
(µiAi +Bi) b

σi

∆iB(σi)Γ(σi)
+
η∗gi
∆i

[
Qi +

µib
σi

B(σi)Γ(σi)

]
+

Υ∗gi
∆i

[
Qi +

µib
σi

B(σi)Γ(σi)

]
‖f1‖+

$∗gi
∆i

[
Qi +

µib
σi

B(σi)Γ(σi)

]
‖f2‖ .

Using hypotheses (H1), we have∣∣Gi
f1,f2(t)

∣∣ ≤ ∣∣Gi
f1,f2(t)−Gi

0,0(t)
∣∣+
∣∣Gi

0,0(t)
∣∣

≤ Li (‖f1‖+ ‖f2‖) + ψgi . (3.10)

We end the subsection with the following definition which is needed later .

Definition 3.3. For i = 1, 2, let the operators T1, T2 : C(Ω,R) × C(Ω,R) →
C(Ω,R)× C(Ω,R) be given as

Ti (f1, f2) (t) = Ai +
1

∆i

{
(µiAi +Bi) t

σi

B(σi)Γ (σi)
+

(1− σi) (1− αi)
B(σi)B(αi)

Gi
f1,f2(t)

+
(1− σi)αi
B(σi)B(αi)

RLIαi
0+
Gi
f1,f2(t) +

σi (1− αi)
B(σi)B(αi)

RL

Iσi0 Gi
f1,f2(t)

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

Gi
f1,f2(t)− µiσi

B(σi)
RLIσi0 fi(t)

}
.

Define the operator T : C(Ω,R)× C(Ω,R)→ C(Ω,R)× C(Ω,R) by

T (f1, f2) (t) = (T1 (f1, f2) (t) , T2 (f1, f2) (t)) . (3.11)

3.3. Uniqueness of the solution. In this part, we state the Banach fixed
point theorem which will be used in proving the uniqueness result of the MABC
coupled system (1.1).

Theorem 3.4. ([15]) Let X be a Banach space and K ⊂ X be a closed subspace.
If G : K→ K is a mapping such that

‖G(x)−G(y)‖ ≤ L ‖x− y‖ for some 0 < L < 1 and all x, y ∈ K,
then G has a unique fixed point in K.

Theorem 3.5. Assume that (H1) holds and that 0 < Z1,Z2 < 1. If we choose

δ ≥ max
i∈{1,2}

 |Ai|+
1

∆i

(
(µiAi+Bi)b

σi

B(σi)Γ(σi)
+ Qiψgi

)
1−Zi

 ,

then the MABC coupled system (1.1) has a unique solution (f1, f2) ∈ Πδ.
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Proof. We first show that T (Πδ) ⊆ Πδ. For all (f1, f2) ∈ Πδ and t ∈ Ω, we
have

|T1 (f1, f2) (t)| ≤ |A1|+
1

∆1

{
(µ1A1 +B1) tσ1

B(σ1)Γ (σ1)
+

(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣G1
f1,f2(t)

∣∣
+

(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+

∣∣G1
f1,f2(t)

∣∣+ σ1 (1− α1)

B(σ1)B(α1)

RL

Iσ10

∣∣G1
f1,f2(t)

∣∣
+

σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

∣∣G1
f1,f2(t)

∣∣− µ1σ1

B(σ1)

RL
Iσ10 |f1(t)|

}
.

(3.12)

In view of definition of RL-fractional integral, we get

RLIσ1
0+

∣∣G1
f1,f2(t)

∣∣ =

∫ t

0

(t− θ)α−1

Γ(α)

∣∣G1
f1,f2(θ)

∣∣ dθ.
By (3.10), we have ∣∣G1

f1,f2(t)
∣∣ ≤ L1 (‖f1‖+ ‖f2‖) + ψg1 .

Thus, we get

RLIσ1
0+

∣∣G1
f1,f2(t)

∣∣ ≤ [L1 (‖f1‖+ ‖f2‖) + ψg1 ]

∫ t

0

(t− θ)σ1−1

Γ(σ1)
dθ

≤ L1 (‖f1‖+ ‖f2‖)
tσ1

Γ(σ1 + 1)
+ ψg1

tσ1

Γ(σ1 + 1)
.

Similarly, we get

RLIα1

0+

∣∣G1
f1,f2(t)

∣∣ ≤ L1 (‖f1‖+ ‖f2‖)
tα1

Γ(α1 + 1)
+ ψg1

tα1

Γ(α1 + 1)

and

RLIσ1+α1

0+

∣∣G1
f1,f2(t)

∣∣ ≤ L1 (‖f1‖+ ‖f2‖)
tσ1+α1

Γ(σ1 + α1 + 1)

+ ψg1
tσ1+α1

Γ(σ1 + α1 + 1)
.
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Thus by (3.12), we have

|T1 (f1, f2) (t)|

≤ |A1|+
1

∆1

{
(µ1A1 +B1) tσ1

B(σ1)Γ (σ1)
+

(1− σ1) (1− α1)

B(σ1)B(α1)
(L1 (‖f1‖+ ‖f2‖) + ψg1)

+
(1− σ1)α1

B(σ1)B(α1)

(
L1 (‖f1‖+ ‖f2‖)

tα1

Γ(α1 + 1)
+ ψg1

tα1

Γ(α1 + 1)

)
+

σ1 (1− α1)

B(σ1)B(α1)

(
L1 (‖f1‖+ ‖f2‖)

tσ1

Γ(σ1 + 1)
+ ψg1

tσ1

Γ(σ1 + 1)

)
+

σ1α1

B(σ1)B(α1)

(
L1 (‖f1‖+ ‖f2‖)

tσ1+α1

Γ(σ1 + α1 + 1)
+ ψg1

tσ1+α1

Γ(σ1 + α1 + 1)

)
+

µ1σ1b
σ1

B(σ1)Γ(σ1 + 1)
‖f1‖

}
≤ |A1|+

1

∆1

(
(µ1A1 +B1) bσ1

B(σ1)Γ (σ1)
+ Q1ψg1

)
+

L1 (‖f1‖+ ‖ f2‖)
∆1

Q1 +
1

∆1

µ1b
σ1

B(σ1)Γ(σ1)
‖f1‖ ,

where Q1 is given by (3.8). Taking the maximum on both sides of the above
inequality, we obtain

‖T1 (f1, f2)‖ ≤ |A1|+
1

∆1

(
(µ1A1 +B1) bσ1

B(σ1)Γ (σ1)
+ Q1ψg1

)
+

2L1

∆1

(
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

)
‖(f1, f2)‖

≤ Z1δ + |A1|+
1

∆1

(
(µ1A1 +B1) bσ1

B(σ1)Γ (σ1)
+ Q1ψg1

)
≤ δ.

In similar manner, starting with the operator T2, we get

‖T2 (f1, f2)‖ ≤ Z2δ + |A2|+
1

∆2

(
(µ2A2 +B2) bσ2

B(σ2)Γ(σ2)
+ Q2ψg2

)
≤ δ.

Choose a real number δ > 0 as in the theorem’s statement. Since 0 < Z1,Z2 <
1, we have T (Πδ) ⊆ Πδ.

Next, we show that the operator T is a contraction mapping.
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Let (f1, f2) ,
(
f̂1, f̂2

)
∈ Πδ and t ∈ Ω. Then for the operator T1, we have∣∣∣T1 (f1, f2) (t)− T1

(
f̂1, f̂2

)
(t)
∣∣∣ ≤ 1

∆1

{
(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣∣G1
f1,f2(t)−G1

f̂1,f̂2
(t)
∣∣∣

+
(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+

∣∣∣G1
f1,f2(t)−G1

f̂1,f̂2
(t)
∣∣∣

+
σ1 (1− α1)

B(σ1)B(α1)

RL

Iσ10

∣∣∣G1
f1,f2(t)−G1

f̂1,f̂2
(t)
∣∣∣

+
σ1α1

B(σ1 )B(α1)

RL
Iα1+σ1
0+

∣∣∣G1
f1,f2(t)−G1

f̂1,f̂2
(t)
∣∣∣

+
µ1σ1

B(σ1)

RL
Iσ10

∣∣∣f1(t)− f̂1(t)
∣∣∣} .

Using (H1), and taking the maximum on both sides of the above inequality,
we obtain∥∥∥T1 (f1, f2)− T1

(
f̂1, f̂2

)∥∥∥ ≤ 2L1

∆1

(
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

)∥∥∥(f1, f2)−
(
f̂1, f̂2

)∥∥∥
≤ Z1

(∥∥∥(f1, f2)−
(
f̂1, f̂2

)∥∥∥) .
In a similar manner for the operator T2, we get∥∥∥T2 (f1, f2)− T2

(
f̂1, f̂2

)∥∥∥ ≤ Z2

(∥∥∥(f1, f2)−
(
f̂1, f̂2

)∥∥∥) .
So, ∥∥∥T (f1, f2)− T

(
f̂1, f̂2

)∥∥∥ ≤ max {Z1,Z2}
∥∥∥(f1, f2)−

(
f̂1, f̂2

)∥∥∥ .
Thus, the operator T is a contraction operator since max {Z1,Z2} < 1. By
Theorem 3.4, we conclude that the operator T has a unique fixed point, and
the MABC coupled system (1.1) has a unique solution. �

3.4. Existence of solutions. In this subsection, we study the existence of a
solution for the MABC coupled system (1.1), using Leray-Schauder alternative
fixed point theorem.

Lemma 3.6. ([18]) If the operator T : C (Ω,R) → C (Ω,R) is completely
continuous, then either the set

Φ(T ) = {f ∈ C (Ω,R) : f = ξT (f) for some ξ ∈ (0, 1)}

is unbounded, or T has at least one fixed point.
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Theorem 3.7. For i = 1, 2, let

=i =
1

∆i

[
Qi +

µib
σi

B(σi)Γ(σi)

] (
Υ∗gi +$∗gi

)
. (3.13)

If (H2) holds and 0 < =1,=2 < 1, then the MABC coupled system (1.1) has at
least one solution on Ω.

Proof. To enhance readability, we provide proof in the following steps.

Step 1: We show that the operator T : C (Ω,R)× C (Ω,R) → C (Ω,R)×
C (Ω,R), defined by (3.11), is continuous and uniformly bounded. Note that
the operator T is continuous since Gi

f1,f2
(t), i = 1, 2 are continuous. For

(f1, f2) ∈ C (Ω,R)× C (Ω,R) , t ∈ Ω, we have

|T1 (f1, f2) (t)| ≤ |A1|+
1

∆1

{
(µ1A1 +B1) bσ1

B(σ1)Γ(σ1)
+

(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣G1
f1,f2(t)

∣∣
+

(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+

∣∣G1
f1,f2(t)

∣∣+ σ1 (1− α1)

B(σ1)B(α1)

RL

Iσ10

∣∣G1
f1,f2(t)

∣∣
+

σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

∣∣G1
f1,f2(t)

∣∣+
µ1σ1

B(σ1)

RL
Iσ10 |f1(t)|

}
.

By (H2), we get

|T1 (f1, f2) (t)| ≤ |A1|+
1

∆1

{
(µ1A1 +B1) bσ1

B(σ1)Γ(σ1)

+
(1− σ1) (1− α1)

B(σ1)B(α1)
[ηg1(t) + Υg1(t) |f1(t)|+$g1(t) |f2(t)|]

+
(1− σ1)α1

B(σ1)B(α1)
RLIα1

0+
[ηg1(t) + Υg1(t) |f1(t)|+$g1(t) |f2(t)|]

+
σ1 (1− α1)

B(σ1)B(α1)
RLIσ10 [ηg1(t) + Υg1(t) |f1(t)|+$g1(t) |f2(t)|]

+
σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

[ηg1(t)+Υg1(t) |f1(t)|+$g1(t) |f2(t)|]

+
µ1σ1

B(σ1)

RL
Iσ10 |f1(t)|

}
.

By taking the maximum on both sides of the above inequality, we obtain

‖T1(f1, f2)‖ ≤ |A1|+
(µ1A1 +B1) bσ1

∆1B(σ1)Γ(σ1)

+
1

∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

] (
η∗g1 + Υ∗g1 ‖f1‖+$∗g1 ‖f2‖

)
.
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Similarly, we find that

‖T2(f1, f2)‖ ≤ |A2|+
(µ2A2 +B2) bσ2

∆2B(σ2)Γ(σ2)

+
1

∆2

[
Q2 +

µ2b
σ2

B(σ2)Γ(σ2)

] (
η∗g2 + Υ∗g2 ‖f1‖+$∗g2 ‖f2‖

)
.

Consequently, we get

‖T (f1, f2)‖ ≤ K.

Therefore, T is uniformly bounded.

Step 2: We show that the operator T is equicontinuous. If t1, t2 ∈ Ω with
t1 < t2, then

|T1(f1, f2)(t2)− T1(f1, f2)(t1)|

≤ 1

∆1

{
(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣G1
f1,f2(t2)−G1

f1,f2(t1)
∣∣

+
(1− σ1)α1

B(σ1)B(α1)

∫ t1

0

[
(t2 − θ)α1−1

Γ(α1)
− (t1 − θ)α1−1

Γ(α1)

] ∣∣G1
f1,f2(θ)

∣∣ dθ
+

σ1 (1− α1)

B(σ1)B(α1)

∫ t1

0

[
(t2 − θ)σ1−1

Γ(σ1)
− (t1 − θ)σ1−1

Γ(σ1)

] ∣∣G1
f1,f2(θ)

∣∣ dθ
+

σ1α1

B(σ1 )B(α1)

∫ t1

0

[
(t2 − θ)α1+σ1−1

Γ(α1 + σ1)
− (t1 − θ)α1+σ1−1

Γ(α1 + σ1)

] ∣∣G1
f1,f2(θ)

∣∣ dθ
+

µ1σ1

B(σ1)

∫ t1

0

[
(t2 − θ)σ1−1

Γ(σ1)
− (t1 − θ)σ1−1

Γ(σ1)

]
|f1(θ)| dθ

+
(1− σ1)α1

B(σ1)B(α1)

∫ t2

t1

(t2 − θ)α1−1

Γ(α1)

∣∣G1
f1,f2(θ)

∣∣ dθ
+

σ1 (1− α1)

B(σ1)B(α1)

∫ t2

t1

(t2 − θ)σ1−1

Γ(σ1)

∣∣G1
f1,f2(θ)

∣∣ dθ
+

σ1α1

B(σ1 )B(α1)

∫ t2

t1

(t2 − θ)α1+σ1−1

Γ(α1 + σ1)

∣∣G1
f1,f2(θ)

∣∣ dθ
+
µ1σ1

B(σ1)

∫ t2

t1

(t2 − θ)σ1−1

Γ(σ1)

∣∣G1
f1,f2(θ)

∣∣ dθ} .
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By using (H2), we get

|T1(f1, f2)(t2)− T1(f1, f2)(t1)|

≤ 1

∆1

{
(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣G1
f1,f2(t2)−G1

f1,f2(t1)
∣∣

+
(1− σ1)α1

B(σ1)B(α1)

[
tα1
2

Γ(α1 + 1)
− tα1

1

Γ(α1 + 1)

] (
η∗g1 + Υ∗g1 ‖f1‖+$∗g1 ‖f2‖

)
+

σ1 (1− α1)

B(σ1)B(α1)

[
tσ12

Γ(σ1 + 1)
− tσ11

Γ(σ1 + 1)

] (
η∗g1 + Υ∗g1 ‖f1‖+$∗g1 ‖f2‖

)
+

σ1α1

B(σ1)B(α1)

[
tα1+σ1
2

Γ(α1 + σ1 + 1)
− tα1+σ1

1

Γ(α1 + σ1 + 1)

](
η∗g1 +Υ∗g1 ‖f1‖+$∗g1 ‖f2‖

)
+

µ1σ1

B(σ1)

[
tσ12

Γ(σ1 + 1)
− tσ11

Γ(σ1 + 1)

]
‖f1‖

}
−→ 0 as t2 → t1.

Analogously, we can obtain

|T2(f1, f2)(t2)− T2(f1, f2)(t1)| → 0 as t2 → t1.

Thus, the operator T (f1, f2) is equicontinuous. In view of the above argu-
ments, and by Arzelà-Ascoli theorem, the operator T (f1, f2) is completely
continuous.

Step 3: We show that the set

ϕ = {(f1, f2) ∈ C (Ω,R)×C (Ω,R) : (f1, f2) = ξT (f1, f2), for some 0 < ξ < 1}

is bounded. Let (f1, f2) ∈ ϕ with (f1, f2)(t) = ξT (f1, f2)(t) such that

fi(t) = ξTi(f1, f2)(t), i = 1, 2.

For any t ∈ Ω, we have

fi(t) = ξTi(f1, f2)(t) ≤ Ti(f1, f2)(t), i = 1, 2.

In view of condition (H2) and taking the maximum on both sides of the above
inequality, we obtain
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‖f1‖ ≤ |A1|+
(µ1A1 +B1) bσ1

∆1B(σ1)Γ(σ1)

+
1

∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

] (
η∗g1 + Υ∗g1 ‖f1‖+$∗g1 ‖f2‖

)
≤ |A1|+

(µ1A1 +B1) bσ1

∆1B(σ1)Γ(σ1)
+
η∗g1
∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

]
+

Υ∗g1
∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

]
‖f1‖+

$∗g1
∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

]
‖f2‖

≤ |A1|+
(µ1A1 +B1) bσ1

∆1B(σ1)Γ(σ1)
+
η∗g1
∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

]
+

1

∆1

[
Q1 +

µ1b
σ1

B(σ1)Γ(σ1)

] (
Υ∗g1 +$∗g1

)
max (‖f1‖ , ‖f2‖) .

Similarly, we get

‖f2‖ ≤ |A2|+
(µ2A2 +B2) bσ2

∆2B(σ2)Γ(σ2)
+
η∗g2
∆2

[
Q2 +

µ2b
σ2

B(σ2)Γ(σ2)

]
+

1

∆2

[
Q2 +

µ2b
σ2

B(σ2)Γ(σ2)

] (
Υ∗g2 +$∗g2

)
max (‖f1‖ , ‖f2‖) .

Choose a real number Ψ > 0 with

Ψ ≥ max
i∈{1,2}

 |A1|+ (µ1A1+B1)bσ1

∆1B(σ1)Γ(σ1) +
η∗g1
∆1

[
Q1 + µ1bσ1

B(σ1)Γ(σ1)

]
1−=i

 ,

where 0 < =1 < 1 and 0 < =2 < 1, then

‖(f1, f2)‖ = max (‖f1‖ , ‖f2‖) ≤ Ψ,

which means that the set ϕ is bounded by Ψ. By Lemma 3.6, the operator T
has at least one solution. Thus, there exists a solution of the MABC coupled
system (1.1) on [0, 1]. �

3.5. Ulam-Hyers stability. In this subsection, we state the definitions of
Ulam-Hyers stability and prove the stability results of MABC coupled system
(1.1). For more information about the stability analysis see [21, 30]. Using
the results in [31], we state the following definition.

Definition 3.8. Let T1, T2 : C(Ω,R)× C(Ω,R)→ C(Ω,R) be two operators.
The system {

f1(t) = T1 (f1, f2) (t),
f2(t) = T2 (f1, f2) (t)

(3.14)
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is Ulam-Hyers stable if there is ` >, ε1, ε2 > 0 such that for all
(
f̂1, f̂2

)
∈

C(Ω,R)× C(Ω,R) satisfying
∥∥∥f̂1 − T1(f̂1, f̂2)

∥∥∥ ≤ ε1,∥∥∥f̂2 − T2

(
f̂1, f̂2

)∥∥∥ ≤ ε2,

(3.15)

there is a unique solution (f1, f2) ∈ C (Ω,R)× C (Ω,R) of the system (3.14)
with ∥∥∥(f̂1, f̂2

)
− (f1, f2)

∥∥∥ ≤ `ε.
Remark 3.9. A function

(
f̂1, f̂2

)
∈ C (Ω,R)×C (Ω,R) satisfies the inequality

(3.15) if and only if there is a function zi(t) ∈ C (Ω,R) , i = 1, 2 such that

|zi(t)| ≤ εi for all t ∈ (0, b), (z1 depends on f), i = 1, 2.

Remark 3.10. We have

MABCDαi
(
ABCDσi + µi

)
f̂i(t) = gi(t, f̂1(t), f̂2(t)) + zi(t), t ∈ (0, b), i = 1, 2.

Lemma 3.11. If (f̂1, f̂2) ∈ C (Ω,R) × C (Ω,R) satisfies (3.15), then (f̂1, f̂2)
is a solution of the inequalities∣∣∣f̂i(ι)− Σ

f̂i

∣∣∣ ≤ Qi

∆i
εi, i = 1, 2,

where

Σ
f̂i

= Ai +
1

∆i

{
(µiAi +Bi)σit

σi

B(σi + 1)
+

(1− σ1) (1− αi)
B(σi)B(αi)

Gi
f̂1,f̂2

(t))

+
(1− σi)αi
B(σi)B(αi)

RL

Iαi
0+
Gi
f̂1,f̂2

(t) +
σi (1− αi)

B(σi)B(αi )

RL

Iσi0 Gi
f̂1,f̂2

(t)

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

Gi
f̂1,f̂2

(t)− µiσi
B(σi)

RL
Iσi0 f̂i(t)

}
, i = 1, 2.

Proof. By Lemma 3.2 and Remark 3.9, (f̂1, f̂2) is a solution of (1.1) with the
conditions

f̂i(0) = Ai,
ABC Dσi f̂i(0) = Bi, i = 1, 2,
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if and only if

f̂i(t) = Ai +
1

∆i

{
(µiAi +Bi)σit

σi

B(σi + 1)
+

(1− σi) (1− αi)
B(σi)B(αi)

[
Gi
f̂1,f̂2

(t) + zi(t)
]

+
(1− σi)αi
B(σi)B(αi)

RL

Iαi
0+

[
Gi
f̂1,f̂2

(t) + zi(t)
]

+
σi (1− αi)
B(σi)B(αi)

RL

Iσi0

[
Gi
f̂1,f̂2

(t) + zi(t)
]

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

[
Gi
f̂1,f̂2

(t) + zi(t)
]
− µiσi

B(σi)

RL
Iσi0 f̂i(t)

}
, i = 1, 2.

Hence, we have ∣∣∣f̂i(ι)− Σ
f̂i

∣∣∣ ≤ Qi

∆i
εi, i = 1, 2.

�

Theorem 3.12. Under the hypothesis (H1), we have
MABCDα1

(
ABCDσ1 + µ1

)
f1(t) = g1(t, f1(t), f2(t)), t ∈ (0, b),

MABCDα2
(
ABCDσ2 + µ2

)
f2(t) = g2(t, f1(t), f2(t)), t ∈ (0, b),

f1(0) = A1,
ABC Dσ1f1(0) = B1,

f2(0) = A2,
ABC Dσ2f2(0) = B2,

(3.16)

is Ulam-Hyers (UH) stable, provided that 0 < Qi
∆i−2LiQi < 1, i = 1, 2.

Proof. Let (f̂1, f̂2) ∈ C (Ω,R)×C (Ω,R) satisfies the inequality (3.15) and let
(f1, f2) ∈ C (Ω,R)×C (Ω,R) be the unique solution of the system (3.16). By
virtue of Lemma 3.2, we obtain

fi(t) = Ai +
1

∆i

{
(µiAi +Bi) t

σi

B(σi)Γ (σi)
+

(1− σi) (1− αi)
B(σi)B(αi)

Gi
f1,f2(t)

+
(1− σi)αi
B(σi)B(αi)

RL

Iαi
0+
Gi
f1,f2(t) +

σi (1− αi)
B(σi )B(αi)

RL

Iσi0 Gi
f1,f2(t)

+
σiαi

B(σi)B(αi)

RL
Iαi+σi
0+

Gi
f1,f2(t)− µiσi

B(σi)

RL
Iσi0 fi(t)

}
, i = 1, 2.
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Therefore, we get∣∣∣f̂1 − f1

∣∣∣ =

∣∣∣∣f̂1 −A1 −
1

∆1

{
(µ1A1 +B1) tσ1

B(σ1)Γ (σ1)
+

(1− σ1) (1− α1)

B(σ1)B(α1)
G1
f1,f2(t)

+
(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+
G1
f1,f2(t) +

σ1 (1− α1)

B(σ1 )B(α1)

RL

Iσ10 G1
f1,f2(t)

+
σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

G1
f1,f2(t)− µ1σ1

B(σ1)

RL
Iσ10 f1(t)

}∣∣∣∣
≤
∣∣∣∣f̂1 −A1 −

1

∆1

{
(µ1A1 +B1) tσ1

B(σ1)Γ (σ1)
+

(1− σ1) (1− α1)

B(σ1)B(α1)
G1
f̂1,f̂2

(t)

+
(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+
G1
f̂1,f̂2

(t) +
σ1 (1− α1)

B(σ1)B(α1 )

RL

Iσ10 G1
f̂1,f̂2

(t)

+
σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

G1
f̂1,f̂2

(t)− µ1σ1

B(σ1)

RL
Iσ10 f̂1(t)

}∣∣∣∣
+

1

∆1

{
(1− σ1) (1− α1)

B(σ1)B(α1)

∣∣∣G1
f̂1,f̂2

(t)−G1
f1,f2(t)

∣∣∣
+

(1− σ1)α1

B(σ1)B(α1)

RL

Iα1

0+

∣∣∣G1
f̂1,f̂2

(t)−G1
f1,f2(t)

∣∣∣
+

σ1 (1− α1)

B(σ1)B(α1)

RL

Iσ10

∣∣∣G1
f̂1,f̂2

(t)−G1
f1,f2(t)

∣∣∣
+

σ1α1

B(σ1)B(α1)

RL
Iα1+σ1
0+

∣∣∣G1
f̂1,f̂2

(t)−G1
f1,f2(t)

∣∣∣} .
Thus, by Lemma 3.11 and (H1), we get∣∣∣f̂1 − f1

∣∣∣ ≤ Q1

∆1
ε1 +

Q1L1

∆1

(∣∣∣f1 − f̂1

∣∣∣+
∣∣∣f2 − f̂2

∣∣∣) .
Thus, ∥∥∥f̂i − fi∥∥∥ ≤ εi Qi

∆i − 2LiQi
, i = 1, 2,

and ∥∥∥(f̂1, f̂2

)
− (f1, f2)

∥∥∥ ≤ ε`, (3.17)

where

` = max
i∈{1,2}

{
Qi

∆i − 2LiQi

}
> 0.

By the inequality (3.17) and Definition 3.8, the solution of the MABC coupled
system (1.1) is Ulam-Hyers stable. �
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4. Numerical solution for nonlinear MABC coupled system (1.1)

Consider the MABC coupled system (1.1)
MABCDα1

(
ABCDσ1 + µ1

)
f1(t) = G1

f1,f2
(t),

MABCDα2
(
ABCDσ2 + µ2

)
f2(t) = G2

f1,f2
(t),

with fixed point fi, i = 1, 2, given as

fi(t) = fi(0) +AB Iσi
0+

[1− αi
B(αi)

Gi
f1,f2(t) +

αi
B(αi)

RLIαi
0+
Gi
f1,f2(t)

+ µiAi +Bi − µifi(t)
]
. (4.1)

Define the nonlinear function

Hi
f1,f2 (t) =

[
1− αi
B(αi)

Gi
f1,f2(t) +

αi
B(αi)

RLIαi
0+
Gi
f1,f2(t) + µiAi +Bi − µifi(t)

]
.

(4.2)
Thus, we get

fi(t) = fi(0)+
1− σi
B(σi)

Hi
f1,f2 (t)+

σi
B(σi)Γ (σi)

∫ t

0
(t− s)σi−1 Hi

f1,f2 (s) ds. (4.3)

By discretizing the function Hi in equations (4.3) at t = tn+1, we obtain the
following discrete equations

fi(tn+1) = fi(0) +
1− σi
B(σi)

Hi
f1,f2 (tn)

+
σi

B(σi)Γ (σi)

∫ tn+1

0
(tn+1 − s)σi−1Hi

f1,f2 (s) ds. (4.4)

Let Hi in the interval [tk, tk+1] , using two points Lagrange interpolation poly-
nomial, we have

Hi
f1,f2 (t) =

Hi
f1,f2

(tk)

tk − ık−1
(t− tk−1)−

Hi
f1,f2

(tk−1)

tk − ık−1
(t− tk)

'
Hi
f1,f2

(tk)

h
(t− tk−1)−

Hi
f1,f2

(tk−1)

h
(t− tk). (4.5)
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By the help of (4.4) and (4.5), we have

fi(tn+1) = fi(0) +
1− σi
B(σi)

Hi
f1,f2 (tn)

+
σi

B(σi)Γ (σi)

(
n∑
k=0

Hi
f1,f2

(tk)

h

∫ tk+1

tk

(s− tk−1)(tk+1 − s)σi−1ds

−
Hi
f1,f2

(tk−1)

h

∫ tk+1

tk

(s− tk)(tk+1 − s)σi−1ds

)
.

Now, after computing the above two integrals, the numerical scheme for MABC
coupled system (1.1) is given

fi(tn+1) = fi(0) +
1− σi
B(σi)

Hi
f1,f2 (tn)

+
σi

B(σi)

n∑
k=0

[
hσiHi

f1,f2
(tk)

Γ(σi + 2)
[(n− k + 1)σi (n− k + 2 + σi)

−(n− k)σi (n− k + 2 + 2σi)]

−
hσiHi

f1,f2
(tk−1)

Γ(σi + 2)

[
(n− k + 1)σi+1−(n− k)σi (n− k + 1 + σi)

]]
.

To illustrate the validity of our main findings, we consider

G1
f1,f2(t) = G2

f1,f2(t) =
t

50

(
|f1(t)|

1 + |f1(t)|
+
|f2(t)|

1 + |f2(t)|

)
.

Clearly, both G1
f1,f2

(t) and G2
f1,f2

(t) are continuous, and G1
f1,f2

(0) = G2
f1,f2

(0) =

0. For t ∈ (0, 1] and f1, f̂1, f2, f̂2 ∈ C (Ω,R) , we have∣∣∣G1
f1,f2(t)−G1

f̂1,f̂2
(t)
∣∣∣ =

∣∣∣G2
f1,f2(t)−G2

f̂1,f̂2
(t)
∣∣∣

≤ 1

50

[∣∣∣f1 − f̂1

∣∣∣+
∣∣∣f2 − f̂2

∣∣∣] .
Therefore, (H1) holds with Li = 1

50 . Also, for αi = σi = 1
2 ∈ (0, 1] , i = 1, 2, b =

1, A1 = A2 = 1, B1 = B2 = 4, we have ∆1 = ∆2 = 4, where B(σi) = σi
2−σi .

With some calculations, we get Q1 = Q2 ' 11.82. Hence Z1 = Z2 ' 0.152.
Thus, all conditions in Theorem 3.5 are satisfied. Consequently, the ABC-
system (1.1) has a unique solution. Moreover, for each ε = max{ε1, ε2} > 0

and every
(
f̂1, f̂2

)
∈ C(Ω,R)× C(Ω,R) satisfies the inequalities∥∥∥f̂1 − T1

(
f̂1, f̂2

)∥∥∥ ≤ ε1 and
∥∥∥f̂2 − T2

(
f̂1, f̂2

)∥∥∥ ≤ ε2,
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and (f1, f2) is the unique solution of ABC problem (3.14) with∥∥∥(f̂1, f̂2

)
− (f1, f2)

∥∥∥ ≤ `ε,
where ` = max

i∈{1,2}

{
Qi

∆i−2LiQi

}
= 3.35 > 0. Thus, the MABC-system (1.1) is

UH stable.

5. Application of the coupled system of Langevin equations

Langevin fractional equations find applications in various areas of physics
and biology. In Physics: Brownian motion, anomalous diffusion: In certain
systems, such as porous media or complex fluids, the diffusion of particles may
deviate from the standard Gaussian behavior. The Langevin fractional equa-
tion can describe anomalous diffusion processes by incorporating fractional
derivatives that account for the non-local and memory effects. In Biology:
Modeling biological processes: The Langevin fractional equation can be ap-
plied to model various biological processes, such as gene regulation, enzyme
kinetics, or population dynamics. Fractional derivatives account for these sys-
tems’ memory effects and long-range interactions, allowing for more accurate
descriptions of their behavior.

Here, we provide two applications for the Langevin equation using modified
ABC fractional operators.

(1) The coupled system of Langevin equations for the oscillators with anoma-
lous diffusion and memory effects using modified ABC fractional operators can
be written as:

MABCDα1
(
m1

ABCDσ1 + γ1

)
x1 (t) = C11x1 (t) + C12x2 (t) + F1 (t) ,

MABCDα2
(
m2

ABCDσ2 + γ2

)
x2 (t) = C21x1 (t) + C22x2 (t) + F2 (t) ,

where, m1 and m2 are the masses of the first and second oscillators, respec-
tively. x1 (t) and x2 (t) represent the positions of the first and second oscillators
as functions of time, respectively. γ1 and γ2 are the friction coefficients for
the first and second oscillators, respectively. C11, C12, C21 and C22 represent
the coupling strengths between the oscillators. F1 (t) and F2 (t) are stochastic
force terms acting on the first and second oscillators, respectively. The friction
coefficients γ1 and γ2 can be chosen based on the damping properties of the
oscillators. This example demonstrates how the model can be customized by
setting specific values for the masses, fractional orders, friction coefficients,
coupling strengths, and stochastic forces to capture the desired dynamics and
phenomena in the system. In practice, the choices for these parameters would
depend on the specific application and the desired behavior or characteristics
being modeled.
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(2) Consider a population dynamics problem involving two interacting species,
where fractional order derivatives influence the growth rates of the species.
We denote the population sizes of the two species as N1(t) and N2(t) at time
t. The dynamics of the population sizes can be modeled using the following
equations:

MABCDα1
(
ABCDσ1 + µ1

)
N1(t) = r1N1(t)

[
1− N1(t)+a1N2(t)

K1

]
,

MABCDα2
(
ABCDσ2 + µ2

)
N2(t) = r2N2(t)

[
1− b2N1(t)+N2(t)

K2

]
,

where, µ1 and µ2 are constant parameters representing additional effects or
factors. N1(t) and N2(t) are the population sizes of species 1 and 2, respec-
tively. r1 and r2 are the intrinsic growth rates of species 1 and 2, respectively.
a1 and b2 are the interaction coefficients representing the influence of each
species on the other. K1 and K2 are the carrying capacities of species 1 and 2,
respectively. In this model, the equations describe the growth of two interact-
ing populations, where the fractional derivatives capture memory effects and
anomalous diffusion in the population dynamics. The terms inside the square
brackets represent the logistic growth model with interaction terms. By this
model, one can study the populations’ long-term behavior, stability, and co-
existence. The values of the parameters (r1, r2, a1, b2,K1,K2) would depend
on the specific ecological system or problem you are modeling. This example
demonstrates how the coupled fractional differential equations with modified
ABC fractional operators can be applied to population dynamics problems,
capturing memory effects and fractional order dynamics in ecological systems.

6. Conclusion

The Langevin equation is indeed fundamental in mathematical physics, par-
ticularly in the context of fluctuating environments such as Brownian motion.
In our study, we focused on a specific aspect of the Langevin equation, namely
the initial value problem of a coupled system of Langevin equations, where we
incorporated modified Atangana-Baleanu fractional derivatives. Our inves-
tigation primarily revolved around the analysis of the existence, uniqueness,
and stability of solutions to this coupled system. To achieve this, we employed
fixed point theorems and applied Ulam’s method, a technique used to assess
the stability of functional equations. By utilizing various fixed-point theo-
rems and discussing Ulam stability within the framework of MABC fractional
derivatives, we were able to gain insights into the behavior of the system. We
believe that our work makes a valuable contribution to the existing literature
by providing a comprehensive understanding of dynamic processes governed
by coupled Langevin equations with MABC fractional derivatives. By inves-
tigating the existence, uniqueness, and stability of solutions, we enhance our
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understanding of the underlying mathematical properties and shed light on the
behavior of such systems in fluctuating environments. In our future endeavors,
we are dedicated to further exploring combined structures that integrate both
physical and mathematical models. This interdisciplinary approach allows us
to capture the complex dynamics of real-world phenomena more accurately.
To improve the precision of our numerical results, we employ piecewise non-
singular fractional operators, which offer enhanced computational efficiency
and accuracy in solving fractional differential equations.
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