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Abstract. This study examines the approximation of homomorphism and derivations asso-
ciated with the functional equation:

f (2x + y) + f (2x− y) = f (x + y) + f (x− y) + 2f (2x) + 2f(x).

In the context of Banach algebras spaces, utilizing the direct and fixed-point methods.

1. Introduction

A functional equation F is considered stable if any solution f is approxi-
mately close to an exact solution.

Starting from Ulam’s question on stability posed in 1940 [17] during a math-
ematical colloquium at the University of Wisconsin. Hyers [10] was the first
author to provide an answer to Ulam’s question in Banach spaces. The result
of Hyers was extended by Aoki [6] and also by Rassias [14] by considering the
unbounded Cauchy differences. Following this, many mathematicians began
conducting studies and achieving results related to the subject due to its im-
portance and applications in various fields such as functional analysis, algebra,
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number theory, as well as practical applications in engineering, physics, and
economics.

Using different methods, the most prominent methods of stability are the
direct method and the fixed-point method. Mathematicians have proved the
stability of functional equations in multiple spaces and obtained generalized
and interesting results. Referring to both methods, we have selected some
papers that present results related to the subject [1, 2, 4, 5, 8, 11, 12, 16, 18]
and [15].

In this paper, we studied the stability of the additive functional equation

f (2x+ y) + f (2x− y) = f (x+ y) + f (x− y) + 2f (2x) + 2f (x) . (1.1)

Furthermore, we discussed the homomorphism and derivation of the previ-
ous functional equation in a Banach algebra space in the case of the function
being odd, and we reached valuable results and good conclusions, whether by
the direct method or the fixed point method.

2. Preliminaries

Definition 2.1. ([3]) Let X be a real vector space, which is called Banach
algebra if the following axioms are satisfied:

(1) X is a Banach space,
(2) X is an algebra,
(3) there exist a ∈ X such that ax = xa = x for all x ∈ X and ‖a‖ = 1,
(4) ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ X.

Definition 2.2. ([7]) Let X,Y be Banach algebras. A real linear mapping
H : X → Y is said to be a homomorphism if H (xy) = H (x)H (y) for all
x, y ∈ X.

Definition 2.3. ([7]) Let X,Y be Banach algebras. A real linear mapping
δ : X → Y is said to be a derivation if δ (xy) = δ (x) y+xδ (y) for all x, y ∈ X.

Definition 2.4. ([9]) Let X be a set. A function d : X ×X → [0,∞] is called
a generalized metric on X if,

(1) d (p, q) = 0 if and only if p = q,
(2) d (p, q) = d (q, p) for all p, q ∈ X,
(3) d(p, s) ≤ d(p, q) + d(q, s) for all p, q, s ∈ X.

Theorem 2.5. ([9]) Let (X, d) be a complete generalized metric space, and
let J : X → X be a strictly contractive mapping with the Lipschitz constant
L < 1. Then, for each x ∈ X, either

d
(
Jnx, Jn+1x

)
= +∞
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for all n ≥ 0 or there exists a natural number n0 such that

(1) d
(
Jnx, Jn+1x

)
< +∞ for all n ≥ n0,

(2) The sequence {Jnx} is convergent to a fixed point y∗ of J ,
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X, d (Jn0x, y)<∞},
(4) d (y, y∗) ≤ 1

1−Ld (y, Jy) for all x, y ∈ Y .

3. Stability of functional equation (1.1) using the direct method

Theorem 3.1. Let A,B be two Banach algebra spaces, and let f : A → B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R. Suppose the
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that

∞∑
i=0

θ
(
3ix, 3iy

)
3i

<∞ for all x, y ∈ A, (3.1)

lim
n→∞

θ(3nx, 3ny)

3n
= 0 for all x, y ∈ A, (3.2)

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (3.3)

where

Df (x, y) = f (2x+ y) + f (2x− y)− f (x+ y)− f (x− y)− 2f (2x)− 2f (x) ,

‖f (xy)− f (x) f (y)‖B ≤ ζ (x, y) , for all x, y ∈ A, (3.4)

lim
m→∞

1

32m
ζ (3mx, 3my) = 0. (3.5)

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3

∞∑
i=0

θ
(
3ix, 3ix

)
3i

. (3.6)

Proof. If x = y in (3.3)

Df (x, x) = f (3x)− 3f (x) ,

we get

‖Df (x, x) ‖ = ‖f (3x)− 3f (x) ‖ ≤ θ (x, x)

and ∥∥∥f (3x)

3
− f (x)

∥∥∥ ≤ 1

3
θ (x, x) . (3.7)

Since

f (3nx)

3n
− f (x) =

n−1∑
i=0

(
f
(
3i+1x

)
3i+1

−
f
(
3ix
)

3i

)
,
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3n
− f (x)

∥∥∥ ≤ ∥∥∥f (3x)

3
− f (x)

∥∥∥+
∥∥∥f (32x)

32
− f (x)

3

∥∥∥
+ . . .+

∥∥∥f (3nx)

3n
−
f
(
3n−1x

)
3n−1

∥∥∥
≤ 1

3
θ (x, x) +

1

32
θ (3x, 3x) + . . .+

1

3n
θ
(
3n−1x, 3n−1x

)
.

Hence, we have ∥∥∥f (3nx)

3n
− f (x)

∥∥∥ ≤ 1

3

n−1∑
i=0

θ
(
3ix, 3ix

)
3i

. (3.8)

Now, there exist k ∈ N such that for all m ≥ n ≥ k,∥∥∥f (3n+mx)

3n+m
− f (3mx)

3m

∥∥∥ =
1

3m

∥∥∥f (3n+mx)

3n
− f (3mx)

∥∥∥
≤ 1

3

n−1∑
i=0

θ
(
3i+mx, 3i+mx

)
3i+m

. (3.9)

Letting m→∞, we have∥∥∥f (3n+mx)

3n+m
− f (3mx)

3m

∥∥∥→ 0.

Hence,
{

f(3mx)
3m

}
is a Cauchy sequence in B. Since B is a complete space, the

sequence
{

f(3mx)
3m

}
is convergent. Set H (x) = limm→∞

f(3mx)
3m . By [11], f is

an additive mapping and also is homogenous. Then f is linear and by (3.4) is
approximately homomorphism.

H (x+ y) = lim
m→∞

f (3m(x+ y))

3m

= lim
m→∞

(
f (3mx)

3m
+
f (3my)

3m

)
= lim

m→∞

f (3mx)

3m
+ lim

m→∞

f (3my)

3m

= H (x) +H (y) ,

H (λx) = lim
m→∞

f (3mλx)

3m
= λ lim

m→∞

f (3mx)

3m
= λH(x)
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and ∥∥∥H (xy)−H (x)H (y)
∥∥∥

=
∥∥∥ lim
m→∞

(
f
(
32m (xy)

)
32m

)
− lim

m→∞

(
f (3mx)

3m

)
lim

m→∞

(
f (3my)

3m

)∥∥∥
=
∥∥∥ lim
m→∞

(
f
(
32m (xy)

)
32m

− f (3mx)

3m
f (3my)

3m

)∥∥∥
=
∥∥∥ lim
m→∞

1

32m
(
f
(
32m (xy)

)
− f (3mx) f (3my)

)∥∥∥
=
∥∥∥ lim
m→∞

1

32m
(
f
(
32m (xy)

)
− f (3mx) f (3my)

) ∥∥∥
≤ lim

m→∞

1

32m
ζ (3mx, 3mx)

= 0. (3.10)

Therefore, ‖H (xy)−H (x)H (y) ‖ = 0, it implies that H (xy) = H (x)H (y).
Hence H is homomorphism. In (3.8), taking n→∞

‖H (x)− f(x)‖ ≤ 3

2

∞∑
i=0

θ(3ix, 3ix).

Since

3

2
=
∞∑
i=0

1

3i
,

‖H (2x+ y) +H (2x− y)−H (x+ y)−H (x− y)− 2H (2x)− 2H (x) ‖

= lim
n→∞

∥∥∥f(3n(2x+ y))

3n
+
f(3n(2x− y))

3n
− f(3n(x+ y))

3n

− f(3n(x− y))

3n
− 2f(3n2x)

3n
− 2f(3nx)

3n

∥∥∥
≤ lim

n→∞

1

3n
θ (3nx, 3nx)

= 0. (3.11)

We get H satisfies the functional equation (1.1).
Now, we want to prove that H is a unique homomorphism. Assume that

there exists another one denoted by H́ : A → B such that H́ satisfies the
functional equations (1.1) and (3.8).
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Let

´H (x) = lim
m→∞

g(3mx)

3m
.

Then, we have∥∥∥H (x)− ´H(x)
∥∥∥ =

∥∥∥H(3mx)

3m
−

´H(3mx)

3m

∥∥∥
=

1

3m

∥∥∥H (3mx)− ´H(3mx)
∥∥∥

≤ 1

3m

∥∥∥(H (3mx)− f (3mx)
∥∥∥+

∥∥∥f (3mx)− ´H (3mx)
∥∥∥) .

Letting m→∞,

‖H (x)− ´H(x)‖ ≤ 1

3

( ∞∑
i=0

θ
(
3i+mx, 3i+mx

)
3i+m

+

∞∑
i=0

θ
(
3i+mx, 3i+mx

)
3i+m

)
→ 0.

(3.12)

Hence, ‖H (x)− ´H (x)‖ = 0, this implies H (x) = ´H(x). �

Corollary 3.2. Let λ, β be nonnegative real numbers. Let odd function f :
A → B satisfies the inequality ‖Df (x, x)‖B ≤ λ for all x, y ∈ A and ‖f (xy)
−f (x) f(y)‖B ≤ β for all x, y ∈ A. Then there exists a unique homomorphism

‖H (x)− f(x)‖ ≤ λ

2
for all x ∈ A.

Proof. In the Theorem 3.1, taking

θ (x, y) = λ,

ζ (x, y) = β for all x, y ∈ A,
then the result is immediate. �

Corollary 3.3. Let p, δ be nonnegative real numbers. Let an odd function f :
A → B satisfies the inequality ‖Df (x, y)‖ ≤ δ (‖x‖p + ‖x‖p) for all x, y ∈ A,
and ‖f (xy) − f (x) f (y) ‖ ≤ xp + yp for all x, y ∈ A. Then there exists a
unique homomorphism H : A→ B such that

‖H (x)− f (x) ‖ ≤ 2δ

3− 3p
for all x ∈ A.

Proof. In the Theorem 3.1, taking

θ (x, y) = δ (‖x‖p + ‖y‖p) for p < 1,

ζ (x, y) = ‖x‖p + ‖y‖p, p < 2 for all x, y ∈ A,
then the result is immediate. �
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Theorem 3.4. Let A,B be two Banach algebra spaces, and let f : A→ B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R. Suppose the
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that

∞∑
i=0

θ
(
3ix, 3iy

)
3i

<∞ for all x, y ∈ A, (3.13)

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (3.14)

lim
n→∞

θ (3nx, 3ny)

3n
= 0, (3.15)

‖f (xy)− xf(y)− yf(x)‖B ≤ ζ (x, y) for all x, y ∈ A, (3.16)

lim
m→∞

1

32m
ζ (3mx, 3my) = 0. (3.17)

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3

∞∑
i=0

θ
(
3ix, 3ix

)
3i

. (3.18)

Proof. We will suffice with the proof derivation and the rest is easy according
to the Theorem 3.1,

‖δ(xy)− xδ(y)− yδ(x)‖

=
∥∥∥ lim
m→∞

(
f
(
32m (xy)

)
32m

− 3mxf (3my)

32m
− 3myf (3mx)

32m

)∥∥∥
= lim

m→∞

1

32m

∥∥∥f (32m (xy)
)
− 3mxf (3my)− 3myf (3mx)

∥∥∥
≤ lim

m→∞

1

32m
ζ (3mx, 3my)

= 0. (3.19)

Hence, ‖δ (xy)− xδ (y)− yδ (x) ‖ = 0, it implies δ (xy) = xδ (y) + yδ (x) . So,
we have δ is derivation. �

Theorem 3.5. Let A,B be two Banach algebra spaces, and let f : A→ B be
an odd mapping, f(0) = 0, f(λx) = λf(x) for all x ∈ A, λ ∈ R. Suppose the
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that

∞∑
i=1

3iθ
( x

3i
,
y

3i

)
<∞ for all x, y ∈ A, (3.20)



632 Mohammed Salih Sabah and Shaymaa Alshybani

lim
n→∞

3nθ
( x

3n
,
y

3n

)
= 0 for all x, y ∈ A, (3.21)

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (3.22)

‖f(xy)− f(x)f(y)‖B ≤ ζ (x, y) for all x, y ∈ A, (3.23)

lim
m→∞

32mζ
( x

3m
,
y

3m

)
= 0.

Then there exists a unique homomorphism H : A→ B such that

f (x)−H(x) ≤
∞∑
i=1

3iθ
( x

3i
,
x

3i

)
. (3.24)

Proof. This theorem can be readily demonstrated utilizing the same way to
the Theorem 3.1. �

Theorem 3.6. Let A,B be two Banach algebra spaces, and let f : A → B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R. Suppose the
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that

∞∑
i=1

3iθ
( x

3i
,
y

3i

)
<∞ for all x, y ∈ A, (3.25)

lim
n→∞

3nθ
( x

3n
,
y

3n

)
= 0 for all x, y ∈ A, (3.26)

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (3.27)

‖f (xy)− xf (y)− yf(x)‖B ≤ ζ (x, y) for all x, y ∈ A, (3.28)

lim
m→∞

32mζ
( x

3m
,
y

3m

)
= 0.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
∞∑
i=1

3iθ
( x

3i
,
x

3i

)
. (3.29)

Proof. This theorem can be readily demonstrated utilizing the same way to
the Theorem 3.4. �
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4. Stability of functional equation (1.1)
using fixed point method

Theorem 4.1. Let A,B be two Banach algebra spaces, and let f : A→ B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R. Suppose
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that for all x ∈ A,m ∈ R
there exists L < 1 with θ (mx,mx) ≤ mLθ (x, x),

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (4.1)

where

Df (x, y) = f (2x+ y) + f (2x− y)− f (x+ y)

− f (x− y)− 2f (2x)− 2f (x) ,

‖f (xy)− f (x) f (y)‖B ≤ ζ (x, y) for all x, y ∈ A, (4.2)

lim
n→∞

1

32n
ζ (3nx, 3ny) = 0. (4.3)

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3− 3L
θ (x, x) . (4.4)

Proof. If x = y in (4.1), then

Df (x, x) = f (3x)− 3f (x) ,

we get
‖Df (x, x) ‖ = ‖f (3x)− 3f (x) ‖ ≤ θ (x, x)

and ∥∥∥f (3x)

3
− f (x)

∥∥∥ ≤ 1

3
θ (x, x) . (4.5)

Let the set X = {g : A→ B} and introduce the generalized metric on X,

d (p, q) = inf
{
c ∈ R+ : ‖p (x)− q (x) ‖B ≤ cθ (x, x) , ∀x ∈ A

}
.

Then (X, d) is complete by [8]. Let J : X → X be a linear mapping such that

J (p (x)) =
p(3x)

3
for all x ∈ A

and

‖J(f (x))− f (x)‖B ≤
1

3
θ (x, x) for all x ∈ A.

Then

d(Jf, f) ≤ 1

3
.

Let f,H ∈ X. Then,

‖f (x)−H(x)‖B ≤ θ (x, x) ,
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d (f,H) = 1,

‖J(f (x))− J(H (x))‖B =
∥∥∥f (3x)

3
− H (3x)

3

∥∥∥.
Therefore,

1

3
‖f (3x)−H (3x) ‖ ≤ 1

3
θ (3x, 3x)

≤ 1

3
3Lθ (x, x)

= Lθ (x, x) .

Then d (Jf, JH) ≤ L it implies

d (Jf, JH) ≤ Ld (f,H) . (4.6)

(1) H is fixed point of J , that is,

J (H (x)) = H (x) ,

H (3x)

3
= H (x) ,

H (3x) = 3H (x) . (4.7)

Hence, for all x ∈ A, the H is a unique fixed point of J in the set

Y = {g ∈ X : d (f, g) <∞} .
Therefore, there exists c ∈ (0,∞) such that d (f,H) < c. Hence,

f (x)−H (x)B ≤ cθ (x, x) for all x ∈ A. (4.8)

(2) d (Jnf,H)→ 0 as n→∞ this implies the equality

lim
n→∞

f(3nx)

3n
= H (x) for all x ∈ A. (4.9)

(3)

d (f,H) ≤ 1

1− L
d (f, Jf) ,

d (f,H) ≤ 1

1− L
1

3
,

that is,

d(f,H) ≤ 1

3− 3L
.

Hence,

‖f (x)−H (x)‖B ≤
1

3− 3L
θ (x, x) . (4.10)

Using the same method as in Theorem 3.1, H satisfies the functional equa-
tion (1.1). �
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Corollary 4.2. Assume that r < 1, m > 1 and let f : A → B be an odd
mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖r + ‖y‖r, r < 1 for all x, y ∈ A
and

‖f (xy)− f (x) f (y)‖B ≤ ‖x‖r.‖y‖r, r < 1 for all x, y ∈ A.
Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
2

3− 3L
‖x‖r.

Proof. In the Theorem 4.1, if we choose

θ (x, y) = ‖x‖r + ‖y‖r, r < 1 for all x, y ∈ A,
ζ (x, y) = ‖x‖r · ‖y‖r, r < 1 for all x, y ∈ A,

then the result will be achieved when L ≥ mr−1, m > 1, r < 1. �

Corollary 4.3. Let m > 1 and f : A→ B be an odd mapping, and f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
1

‖x‖+ ‖y‖
for all x, y ∈ A,

and

‖f (xy)− f (x) f (y)‖B ≤
1

‖x‖+ ‖y‖
for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3− 3L

1

2‖x‖
.

Proof. In the Theorem 4.1, if we choose

θ (x, y) =
1

‖x‖+ ‖y‖
for all x, y ∈ A,

ζ (x, y) =
1

‖x‖.‖y‖
for all x, y ∈ A,

then the result will be achieved when L ≥ 1
m2 ,m > 1. �

Corollary 4.4. Let r > 0, m > 1 and let f : A → B be an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A,

‖f (xy)− f (x) f (y)‖B ≤
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A.
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Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3− 3L

‖x‖
‖y‖r

.

Proof. In the Theorem 4.1, if we choose

θ (x, y) =
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A,

ζ (x, y) =
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr ,m > 1, r > 0. �

Corollary 4.5. Assume that r < 1, 0 < m < 1 and let f : A → B be an odd
mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖.‖y‖ for all x, y ∈ A.

‖f (xy)− f (x) f (y)‖B ≤ ‖x‖r.‖y‖r, r < 1 for all x, y ∈ A.
Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3− 3L
‖x‖2.

Proof. In the Theorem 4.1, if we choose

θ (x, y) = ‖x‖.‖y‖ for all x, y ∈ A,

ζ (x, y) = ‖x‖r.‖y‖r, r < 1 for all x, y ∈ A,
then the result will be achieved when L ≥ m2, 0 < m < 1. �

Corollary 4.6. Let m > 1, and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r > 1 for all x, y ∈ A,

‖f (xy)− f (x) f (y)‖B ≤
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r > 0 for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

3− 3L

‖x‖2

2‖x‖r
.
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Proof. In the Theorem 4.1, if we choose

θ (x, y) =
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r > 1 for all x, y ∈ A,

ζ (x, y) =
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r > 0 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr−1 ,m > 1, r > 1, because

‖mx‖.‖mx‖
‖mx‖r + ‖mx‖r

≤ mL ‖x‖
2

2‖x‖r
,

1

mr−1 ≤ L

and

lim
n→∞

1

32n
ζ (3nx, 3ny) = lim

n→∞

1

32n
‖3nx‖+ ‖3ny‖
‖3nx‖r + ‖3ny‖r

= 0.

�

Theorem 4.7. Let A,B be two Banach algebra spaces, and f : A → B be
an odd mapping, f (0) = 0, f (λx) = λf(x) for all x ∈ A, λ ∈ R. Suppose
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that for all x ∈ A,m ∈ R,
there exists L < 1, where θ (mx,mx) ≤ mLθ (x, x),

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (4.11)

‖f (xy)− xf (y)− yf (x)‖B ≤ ζ (x, y) for all x, y ∈ A (4.12)

and

lim
n→∞

1

32n
ζ (3nx, 3ny) = 0. (4.13)

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3− 3L
θ (x, x) . (4.14)

Proof. Same method as the previous theorem, only we prove that δ is deriva-
tion.

‖δ (xy)− xδ (y)− yδ (x) ‖

=

∥∥∥∥∥ lim
n→∞

(
f
(
32n (xy)

)
32n

− 3nxf (3ny)

32n
− 3ynf (3nx)

32n

)∥∥∥∥∥
= lim

n→∞

1

32n

∥∥∥ (f (32n (xy)
)
− 3nxf (3ny)− 3ynf (3nx)

) ∥∥∥
≤ lim

n→∞

1

32n
ζ(3nx, 3nx) = 0.

(4.15)
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Hence, we have

δ (xy) = xδ (y) + yδ (x) .

Then δ is derivation. �

Corollary 4.8. Assume that r < 1, m > 1 and f : A→ B be an odd mapping,
and f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖r + ‖y‖r, r < 1 for all x, y ∈ A,

‖f (xy)− xf (y)− yf (x)‖B ≤ ‖x‖r.‖y‖r, r < 1 for all x, y ∈ A.
Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
2

3− 3L
‖x‖r.

Proof. In the Theorem 4.7, if we choose

θ (x, y) = ‖x‖r + ‖y‖r, r < 1 for all x, y ∈ A,

ζ (x, y) = ‖x‖r.‖y‖r, r < 1 for all x, y ∈ A,
then the result will be achieved when L ≥ mr−1,m > 1, r < 1. �

Corollary 4.9. Let m > 1, and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
1

‖x‖+ ‖y‖
for all x, y ∈ A,

‖f (xy)− xf (y)− yf (x)‖B ≤
1

‖x‖+ ‖y‖
for all x, y ∈ A.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3− 3L

1

2x
.

Proof. In the Theorem 4.7, if we choose

θ (x, y) =
1

‖x‖+ ‖y‖
for all x, y ∈ A,

ζ (x, y) =
1

‖x‖.‖y‖
for all x, y ∈ A,

then the result will be achieved when L ≥ 1
m2 ,m > 1. �
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Corollary 4.10. Let m > 1 and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A

and

‖f (xy)− xf (y)− yf (x)‖B ≤
‖x‖
‖y‖r

, r < 1 for all x, y ∈ A.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3− 3L

‖x‖
‖y‖r

.

Proof. In the Theorem 4.7, if we choose

θ (x, y) =
‖x‖
‖y‖r

, r > 0 for all x, y ∈ A,

ζ (x, y) =
‖x‖
‖y‖r

, r < 1 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr ,m > 1, r > 0. �

Corollary 4.11. Assume that r < 1, 0 < m < 1, and f : A → B be an odd
mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖‖y‖ for all x, y ∈ A,
‖f (xy)− xf (y)− yf (x)‖B ≤ ‖x‖r‖y‖r, r < 1 for all x, y ∈ A.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3− 3L
‖x‖2.

Proof. In the Theorem 4.7, if we choose

θ (x, y) = ‖x‖‖y‖ for all x, y ∈ A,
ζ (x, y) = ‖x‖r‖y‖r, r < 1 for all x, y ∈ A,

then the result will be achieved when L ≥ m2, 0 < m < 1. �

Corollary 4.12. Let m > 1 and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r > 1 for all x, y ∈ A

and

‖f (xy)− xf (y)− yf (x)‖B ≤
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r > 0 for all x, y ∈ A.
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Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

3− 3L

‖x‖2

2‖x‖r
.

Proof. In the Theorem 4.7, if we choose

θ (x, y) =
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r > 1 for all x, y ∈ A,

ζ (x, y) =
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r > 0 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr−1 ,m > 1, r > 1. �

Theorem 4.13. Let A,B be two Banach algebra spaces, and f : A → B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R, suppose
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that for all x ∈ A,m ∈ R,
there exists L < 1, where θ

(
x
m ,

x
m

)
≤ mLθ (x, x),

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (4.16)

‖f (xy)− f (x) f (y)‖B ≤ ζ (x, y) for all x, y ∈ A, (4.17)

lim
n→∞

32nζ
( x

3n
,
y

3n

)
= 0. (4.18)

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

1− L
θ (x, x) . (4.19)

Proof. This theorem can be demonstrated using the same way as in the The-
orem 4.1. �

Corollary 4.14. Let m > 1 and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖r + ‖y‖r, r > 0 for all x, y ∈ A,
‖f (xy)− f (x) f (y)‖B ≤ ‖x‖r.‖y‖r, r > 1 for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
2

1− L
‖x‖r.

Proof. In the Theorem 4.13, if we choose

θ (x, y) = ‖x‖r + ‖y‖r, r > 0 for all x, y ∈ A,
ζ (x, y) = ‖x‖r.‖y‖r, r > 1 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr+1 ,m > 1, r > 0. �
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Corollary 4.15. Assume that m > 1 and f : A → B be an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖r

‖y‖
, r > 0 for all x, y ∈ A

and

‖f (xy)− f (x) f (y)‖B ≤
‖x‖r

‖y‖
, r > 3 for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

1− L
‖x‖r

‖y‖
.

Proof. In the Theorem 4.13, if we choose

θ (x, y) =
‖x‖r

‖y‖
, r > 0 for all x, y ∈ A,

ζ (x, y) =
‖x‖r

‖y‖
, r > 3 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr ,m > 1, r > 0, because

‖ x
m‖

r

‖ x
m‖
≤ mL‖x‖

r

‖x‖
,

that is,
1

mr
≤ L

and

lim
n→∞

32nζ
( x

3n
,
y

3n

)
= lim

n→∞
3n(3−r)

(
‖x‖r

‖y‖

)
= 0.

�

Corollary 4.16. Assume that m > 1 and f : A → B is an odd mapping,
f (0) = 0, f (λx) = λf(x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖
‖y‖r

, r < 2 for all x, y ∈ A

and

‖f (xy)− f (x) f (y)‖B ≤
‖x‖
‖y‖r

, r < −1 for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

1− L
‖x‖
‖y‖r

.
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Proof. In the Theorem 4.13, if we choose

θ (x, y) =
‖x‖
‖y‖r

, r < 2 for all x, y ∈ A,

ζ (x, y) =
‖x‖
‖y‖r

, r < −1 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr+1 , m > 1, r < 2. �

Corollary 4.17. Let r > 1, m > 1 and f : A → B be an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖‖y‖ for all x, y ∈ A
and

‖f (xy)− f (x) f (y)‖B ≤ ‖x‖r‖y‖r, r > 1 for all x, y ∈ A.
Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

1− L
‖x‖2.

Proof. In the Theorem 4.13, if we choose

θ (x, y) = ‖x‖‖y‖ for all x, y ∈ A,
ζ (x, y) = ‖x‖r‖y‖r, r > 1 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
m3 , m > 1. �

Corollary 4.18. Let m > 1 and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r < 3 for all x, y ∈ A

and

‖f (xy)− f (x) f (y)‖B ≤
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r < −1 for all x, y ∈ A.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤
1

1− L
‖x‖2

2‖x‖r
.

Proof. In the Theorem 4.13, if we choose

θ (x, y) =
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r < 3 for all x, y ∈ A,

ζ (x, y) =
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r < −1 for all x, y ∈ A,

then the result will be achieved when L ≥ mr−3, m > 1, r < 3. �
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Theorem 4.19. Let A,B be two Banach algebra spaces, and f : A → B be
an odd mapping, f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R, suppose
functions θ : A2 → [0,∞) and ζ : A2 → [0,∞) such that for all x ∈ A, m ∈ R,
there exists L < 1, where θ

(
x
m ,

x
m

)
≤ mLθ (x, x),

‖Df (x, y)‖B ≤ θ (x, y) for all x, y ∈ A, (4.20)

‖f (xy)− xf (y)− yf (x)‖B ≤ ζ (x, y) for all x, y ∈ A, (4.21)

and

lim
n→∞

32nζ
( x

3n
,
y

3n

)
= 0. (4.22)

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤ θ (x, x) . (4.23)

Proof. This theorem can be demonstrated using the same way as in the The-
orem 4.7. �

Corollary 4.20. Assume that m > 1 and f : A → B is an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖r + ‖y‖r, r > 0 for all x, y ∈ A

and

‖f (xy)− f (x) f (y)‖B ≤ ‖x‖r.‖y‖r, r > 1 for all x, y ∈ A.
Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
2

1− L
‖x‖r.

Proof. In the Theorem 4.19, if we choose

θ (x, y) = ‖x‖r + ‖y‖r, r > 0 for all x, y ∈ A,

ζ (x, y) = ‖x‖r.‖y‖r, r > 1 for all x, y ∈ A,
then the result will be achieved when L ≥ 1

mr+1 ,m > 1, r > 0. �

Corollary 4.21. Assume that m > 1 and f : A → B is an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

Df (x, y)B ≤
‖x‖r

‖y‖
, r > 0 for all x, y ∈ A

and

‖f (xy)− xf (y)− yf (x)‖B ≤
‖x‖r

‖y‖
, r > 3 for all x, y ∈ A.
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Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

1− L
‖x‖r

‖y‖
.

Proof. In the Theorem 4.19, if we choose

θ (x, y) =
‖x‖r

‖y‖
, r > 0 for all x, y ∈ A,

ζ (x, y) =
‖x‖r

‖y‖
, r > 3 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
mr ,m > 1, r > 0. �

Corollary 4.22. Assume that m > 1 and f : A → B is an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖
‖y‖r

, r < 2 for all x, y ∈ A

and

‖f (xy)− xf (y)− yf (x)‖B ≤
‖x‖
‖y‖r

, r < −1 for all x, y ∈ A.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

1− L
‖x‖
‖y‖r

.

Proof. In the Theorem 4.19, if we choose

θ (x, y) =
‖x‖
‖y‖r

, r < 2 for all x, y ∈ A,

ζ (x, y) =
‖x‖
‖y‖r

, r < −1 for all x, y ∈ A,

then the result will be achieved when L ≥ mr−1,m > 1, r < 2. �

Corollary 4.23. Let r > 1, m > 1 and f : A → B be an odd mapping,
f (0) = 0, f (λx) = λf (x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤ ‖x‖‖y‖ for all x, y ∈ A
and

‖f (xy)− xf (y)− yf (x)‖B ≤ ‖x‖r‖y‖r, r > 1 for all x, y ∈ A.
Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

1− L
‖x‖2.
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Proof. In the Theorem 4.19, if we choose

θ (x, y) = ‖x‖‖y‖ for all x, y ∈ A,
ζ (x, y) = ‖x‖r‖y‖r, r > 1 for all x, y ∈ A,

then the result will be achieved when L ≥ 1
m3 ,m > 1. �

Corollary 4.24. Let m > 1 and f : A → B be an odd mapping, f (0) = 0,
f (λx) = λf(x) for all x ∈ A, λ ∈ R such that

‖Df (x, y)‖B ≤
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r < 3 for all x, y ∈ A

and

‖f (xy)− xf (y)− yf (x)‖B ≤
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r < −1 for all x, y ∈ A.

Then there exists a unique derivation δ : A→ B such that

‖f (x)− δ(x)‖B ≤
1

1− L
‖x‖2

2‖x‖r
.

Proof. In the Theorem 4.19, if we choose

θ (x, y) =
‖x‖.‖y‖
‖x‖r + ‖y‖r

, r < 3 for all x, y ∈ A,

ζ (x, y) =
‖x‖+ ‖y‖
‖x‖r + ‖y‖r

, r < −1 for all x, y ∈ A,

then the result will be achieved when L ≥ mr−3, m > 1, r < 3. �

5. Conclusion

We have come to conclusion that the approximate of homomorphism and
derivation of additive functional equation in Banach algebra. Moreover, we
can get other results in various spaces and for many other functional equations
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