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Abstract. In the present manuscript, we introduce a new notion of (G− β−
ψ)-admissible hybrid contraction in G-metric spaces. In addition to this, some
fixed point results are also proved for such type of contraction. An example is
also provided to support the validity of our result. We further examine Ulam-
type stability and well-posedness for the new contraction proposed herein. As
an application of an integral equation is also solved by making use of our
results.

1. Introduction

Fixed point theory simply deals with solution of the equation fx = x where
f is self-map on a nonempty set X. The fixed point problems first appeared
in the solution of an initial value problem. In 1837, Liouville et al. [12] and
in 1890, Picard et al. [17] solved the problem using successive approximation
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method and which also provided the solution of the fixed point equation. Be-
fore 1922, there was no any direct method to evaluate the fixed point of a
map. Then in 1922, Banach [3] was the first one who introduced the contrac-
tion principle to evaluate the fixed point.

A new concept of hybrid contraction was recently presented by [9], com-
bining and unifying some of the existing linear and nonlinear contractions in
metric spaces. with related findings with generalized contractions, please refer
to [10, 16] and its citations. However, Mustafa [13] established an expan-
sion of metric space known as generalized metric space, or G-metric space,
and established some fixed point results for contraction mappings of the Ba-
nach type. The idea was brought to the limelight by Mustafa and Sims [15].
Many scholars in the field of fixed point theory were subsequently drawn to
Mustafa [14] fixed point results for Lipschitzian-type mappings on G-metric
space [4, 6, 11, 20]. We observe that hybrid fixed point findings in G-metric
spaces are not well explored, in accordance with the literature that is cur-
rently available. Jleli and Samet [7] noted that if a G-metric can be reduced
to a quasi-metric, then the related fixed point results become the known fixed
point results in the context of a quasi-metric space.

Motivated by the concepts in [5, 8, 9], we there by show several related fixed
point theorems and introduce a novel notion of admissible hybrid (G−β−ψ)-
contraction in G-metric space. To prove the validity of our result and that
the major concepts gained here do not reduce to any known result in metric
spaces, an example is shown. Finally, Ulam-type stability and well-posedness
of this type of hybrid contraction in G-metric space are demonstrated.

In this section, we will present some fundamental notations and results that
will be applied subsequently in our manuscript. Throughout, every set X is
considered nonempty, N is the set of natural numbers, R represents the set of
real numbers and R+ is the set of nonnegative real numbers.

2. Preliminaries

Definition 2.1. ([15]) Let X be a nonempty set and let G : X×X×X → R+

be a function satisfying:

(1) G(x, y, z) = 0 if x = y = z;
(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;
(4) G(x, y, z) = G(x, z, y) = G(y, x, z)(symmetry in all three variables);
(5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangular

inequality).
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The function G is called a generalized metric, or more generally, a G-metric
and (X,G) is said to be a G-metric space.

Definition 2.2. ([14]) Let (X,G) be G-metric space and let {xn}n∈N be G-
convergent to x if limn,m→∞G(x, xn, xm) = 0; that is, for any ε > 0, there
exist n0 ∈ N such that G(x, xn, xm) < ε for all n,m ≥ n0. We refer to x as
the limit of sequence {xn}n∈N .

Definition 2.3. ([14]) Let (X,G) be a G-metric space. Then the following
are equivalent:

(1) {xn}nεN is G-convergent to x;
(2) G(x, xn, xm)→ 0 as n,m→∞;
(3) G(xn, x, x)→ 0 as n→∞;
(4) G(xn, xn, x)→ 0 as n→∞.

Definition 2.4. ([14]) Let (X,G) be a G-metric space. A sequence {xn}n∈N is
called G-Cauchy if given ε > 0, there exists n0 ∈ N such that G(xn, xm, xl) < ε
for all n,m, l ≥ n0. That is, G(xn, xm, xl)→ 0 as n,m, l→∞.

Definition 2.5. ([14]) In a G-metric space (X,G), the following are equiva-
lent:

(1) The sequence {xn}n∈N is G-Cauchy.
(2) For every ε > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ε for

all n,m ≥ n0.

Definition 2.6. ([14]) A G-metric space (X,G) is said to be G-complete (or
complete G-metric) if every G-Cauchy sequence in (X,G) is G-convergent in
(X,G).

Theorem 2.7. ([13]) Let (X,G) be a complete G-metric space, and let T :
X → X be a mapping satisfying the following condition

G(Tx, Ty, Tz) ≤ kG(x, y, z) (2.1)

for all x, y, z ∈ X, where 0 < k < 1. Then T has a unique fixed point (say u,
that is, Tu = u), and T is G-continuous at u.

Consistent with [19], let ψ be the set of all function of Ψ such that ψ : R+ →
R+ is a nondecreasing function with limn→∞ ψ

n(t) = 0 for all n ∈ (0,∞). If
ψ ∈ Ψ, then ψ is called a Ψ-map. Let ψ ∈ Ψ be a Ψ-map such that there
exist n0 ∈ N, k ∈ (0, 1) and a convergent series of nonnegative terms

∑∞
n=1 vn

satisfying ψn+1(t) ≤ kψn(t) + vn for n ≥ n0 and t > 0. Then ψ is called a
(c)-comparison function [1].
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Lemma 2.8. ([1]) If ψ ∈ Ψ, then the following hold:

(1) {ψn(t)}n∈N converges to 0 as n→∞ for t→ 0.
(2) ψ(t) < t for any t ∈ R+;
(3) ψ is continuous at 0.

Popescu [18] gave the following definitions in the setting of metric spaces:

Definition 2.9. ([18]) Let β : X × X → R+ be a function. A self-mapping
T : X → X is called β-orbital admissible if for all x ∈ X, β(x, Tx) ≥ 1 implies
β(Tx, T 2x) ≥ 1.

Definition 2.10. ([18]) Let β : X ×X → R+ be a function. A self-mapping
T : X → X is called triangular β-orbital admissible if for all x ∈ X, T is
β-orbital admissible and β(x, y) ≥ 1 and β(y, Ty) ≥ 1 implies β(x, Ty) ≥ 1.

We modify the above definitions in the framework of G-metric space as
follows:

Definition 2.11. Let β : X × X × X → R+ be a function. A self-mapping
T : X → X is called βG-orbital admissible if for all x ∈ X, β(x, Tx, T 2x) ≥ 1
implies β(Tx, T 2x, T 3x) ≥ 1.

Definition 2.12. Let β : X × X × X → R+ be a function. A self-mapping
T : X → X is called triangular βG-orbital admissible if for all x ∈ X, T
is βG-orbital admissible and β(x, y, Ty) ≥ 1 and β(y, Ty, T 2y) ≥ 1 implies
β(x, Ty, T 2y) ≥ 1.

Lemma 2.13. Let T : X → X be a triangular βG-orbital admissible mapping.
If there exists x0 ∈ X such that β(x0, Tx0, Tx0) ≥ 1, then

β(xn, xm, xl) ≥ 1, ∀n,m, l ∈ N, (2.2)

where the sequence {xn}n∈N is defined by xn+1 = Txn, n ∈ N.

Proof. Since T is βG-orbital admissible mapping and β(x0, Tx0, T
2x0) ≥ 1,

then we deduce that β(x1, x2, x3) = β(Tx0, Tx1, Tx2) ≥ 1. Continuing in
this manner, we obtain β(xn, xn+1, xn+2) ≥ 1 for all n ≥ 1. Assume that
β(xn, xm, xm+1) ≥ 1, where m > n. Since T is triangular βG-orbital admissible
mapping and β(xm, xm+1, xm+2) ≥ 1, then clearly, β(xn, xm+1, xm+2) ≥ 1 for
all m,n ∈ N. This validates our assumption that β(xn, xm, xm+1 ≥ 1. Letting
l = m+ 1 completes the proof. �

Definition 2.14. ([2]) Let β : X × X × X → R+ be a mapping. The set
X is called regular with respect to β if for a sequence {xn}n∈N in X such
that β(xn, xn+1, xn+2) ≥ 1 for all n and xn → x ∈ X as n → ∞, we have
β(xn, x, x) ≥ 1 for all n.
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3. Main results

We begin this section by defining the notion of admissible hybrid (βG, ψ)-
contraction in G metric space and then we shall prove some fixed point result
by making use of this new contraction.

Definition 3.1. Let (X,G) be a G-metric spaces. A self-mapping T : X → X
is called an admissible hybrid (βG, ψ)-contraction. If there exist ψ ∈ Ψ and
β : X ×X ×X → R+ such that

β(x, y, Ty)G(Tx, Ty, T 2y) ≤ ψ(M(x, y, Ty)), (3.1)

where

M(x, y, Ty) =



[
α1

(
G(x,Tx,T 2x)G(y,Ty,T 2y)

G(x,y,Ty)

)s
+ α2(G(x, y, Ty))s

] 1
s
,

for s > 0, x, y ∈ X,
(G(x, Tx, T 2x))α1(G(y, Ty, T 2y))α2 ,

for s = 0, x, y ∈ Fix(T ))},

(3.2)

such that α1 + α2 = 1 and Fix(T ) = {x ∈ X : Tx = x}.

Theorem 3.2. Let (X,G) be a complete G-metric space and Let T : X → X
be an admissible hybrid (βG, ψ)-contraction. Assume further that

(1) T is triangular βG-orbital admissible; there exist x0 ∈ X such that
β(x, Tx0, T

2x0) ≥ 1;
(2) either T is continuous or T 3 is continuous;
(3) β(x, Tx, T 2x) ≥ 1 for any x ∈ Fix (T 3).

Then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn}n∈N in
X by xn = Tnx0 for all n ∈ N. Assume there exists some m ∈ N such that
Txm = xm+1 = xm. Then clearly, xm is a fixed point of T . Assume now that
xn 6= xn−1 for any n ∈ N. Since T is an admissible hybrid (βG, ψ)-contraction,
then we have from (3.1) that

β(xn−1, xn, Txn)G(Txn−1, Txn, T
2xn) ≤ ψ(M(xn−1, xn, Txn)). (3.3)

Owing to the fact that T is triangular βG-orbital admissible together with
Lemma 2.13 and equation (3.1), we have

G(xn, xn+1, Txn+1) = G(xn, xn+1, xn+2) (3.4)

≤ β(xn−1, xn, xn+1)G(Txn−1, Txn, Txn+1)

< ψ (M (xn−1, xn, xn+1)) .

We now consider the following cases:
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Case 1: For s > 0, we have

M(xn−1, xn, Txn) =
[
α1

((G(xn−1, Txn−1, T
2xn−1)G(xn, Txn, T

2xn))

G(xn−1, xn, Txn)

)s
+ α2(G(xn−1, xn, Txn))s

] 1
s

=
[
α1

((G(xn−1, xn, xn+1)G(xn, xn+1, xn+2))

G(xn−1, xn, xn+1)

)s
+ α2(G(xn−1, xn, Txn))s

] 1
s

= [α1(G(xn−1, xn, xn+1))
s]

1
sxn+1, xn+2))

s

+ α2(G(xn−1, xn, xn+1))
s]

1
s .

Since ψ is nondecreasing, if we assume that

G(xn−1, xn, xn+1) ≤ G(xn, xn+1, xn+2)

so from (3.4), we have

G(xn, xn+1, xn+2) ≤ β(xn−1, xn, xn+1)G(Txn−1, Txn, Txn+1) (3.5)

≤ ψ([(α1 + α2)G(xn, xn+1, xn+2)
s]

1
s )

= ψ((α1 + α2)
1
sG(xn, xn+1, xn+2))

< (α1 + α2)
1
sG(xn, xn+1, xn+2)

≤ G(xn, xn+1, xn+2),

which is a contradiction. Therefore, for every n ∈ N, we have

G (xn, xn+1, xn+2) < G (xn−1, xn, xn+1)

so from (3.4), we have

G(xn, xn+1, xn+2) ≤ ψ([(α1 + α2)G(xn, xn+1, xn+2)
s]

1
s (3.6)

= ψ((α1 + α2)
1
sG(xn−1, xn, xn+1))

= ψ(G(xn−1, xn, xn+1))

= ψ2(G(xn−1, xn, xn+1)).

Continuing inductively, we have

G(xn, xn+1, xn+2) < ψn(G(x0, x1, x2)). (3.7)

Now, since

G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2) ≤ ψn(G(x0, x1, x2)),
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for all n in N with xn+1 6= xn+2, then for any n,m ∈ N with n < m and by
rectangular inequality, we have

G(xn, xn, xm) ≤G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2)

+ · · ·+G(xm−1, xm−1, xm) (3.8)

≤(ψn + ψn+1 + ψn+2 + · · ·+ ψm−1)G(x0, x1, x2)

=
m−1∑
i=1

ψi(G(x0, x1, x2))

≤
∞∑
i=1

ψi(G(x0, x1, x2)).

Since ψ is a (c)-comparison function then the series
∑∞

i=1 ψ
i(G(x0, x1, x2)) is

convergent. Hence, denoting by Sp =
∑∞

i=1 ψ
i(G(x0, x1, x2), we have

G(xn, xn, xm) ≤ Sm−1 − Sn−1.

Therefore, as n,m→∞, we see that

G(xn, xn, xm)→ 0.

Thus {xn}n∈N is G-convergent to z, that is,

lim
n→∞

G(xn, xn, z) = 0.

We will now show that z is a fixed point of T . By the assumption that T is
continuous, we have

lim
n→∞

G(z, z, Tz) = lim
n→∞

G(xn+1, xn+1, T z)

= lim
n→∞

G(Txn, Txn, T z)

= lim
n→∞

G(Txn, Txn, Txn)

= 0.

In order to demonstrate that Tz = z, assume Tz 6= z on the contrary.
Then by (3.1) and Definition 2.3, we obtain

G(z, Tz, T 2z) ≤ β(z, Tz, T 2z)G(Tz, T 2z, T 3z)

= β(z, Tz, T 2z)G(Tz, T 2z, z)

= ψ(M((z, Tz, T 2z)

< M(z, Tz, T 2z),
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where

M(z, Tz, T 2z) =
[
α1

((G(z, Tz, T 2z)G(Tz, T 2z, T 3z))

G(z, Tz, T 2z)

)s
+ α2(G(z, Tz, T 2z))s

] 1
s

= α1(G(z, Tz, T 2z))s + α2(G(z, Tz, T 2z))s]
1
s

= [(α1 + α2)(G(z, Tz, T 2z))s]
1
s

= (α1 + α2)
1
sG(z, Tz, T 2z)

≤ G(z, Tz, T 2z), (3.9)

which is a contradiction. Hence, Tz = z.
Case 2: For s = 0, we have

M(xn−1, xn, Txn) = (G(xn−1, Txn−1, T
2xn−1))

α1(G(xn, Txn, T
2xn)α2

= (G(xn−1, xn, xn+1)
α1(G(xn, xn+1, xn+2)

α2 .

Now, if G(xn−1, xn, xn+1) ≤ G(xn, xn+1, xn+2), then

M(xn−1, xn, Txn) = (G(xn−1, xn, xn+1))
α1(G(xn, xn+1, xn+2)

α2

= (G(xn, xn+1, xn+2))
α1+α2

≤ G(xn, xn+1, xn+2),

thus from (3.4), we get

G(xn, xn+1, xn+2) < G(xn, xn+1, xn+2),

which is a contradiction. Therefore,

G(xn, xn+1, xn+2) < ψ(G(xn−1, xn, xn+1))

< ψ2(G(xn−1, xn, xn+1))

< ψn(G(x0, x1, x2)).

By similar arguments in the case of s > 0, we can show that there exists a G
Cauchy sequence {xn}n∈N ⊂ (X,G), hence z ∈ X such that limn→∞ xn = z.

To see that z is a fixed point of T , under the assumption that T is contin-
uous, we have

lim
n→∞

G(z, z, Tz) = lim
n→∞

G(xn+1, xn+1, T z)

= lim
n→∞

G(Txn, Txn, T z)

= lim
n→∞

G(Txn, Txn, Txn)

= 0

and by the uniqueness of limit, Tz = z.
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Similarly, if T 3 is continuous, as in case 1, we have that T 3z = z. Suppose
on the contrary that Tz 6= z. Then

G(z, Tz, T 2z) ≤ β(z, Tz, T 2z)G((Tz, T 2z, T 3z).

= β(z, Tz, T 2z)G(Tz, T 2z, z)

< M(z, Tz, T 2z)

= G(z, Tz, T 2z)

= G(z, Tz, T 2z), (3.10)

which is a contradiction. Hence, Tz = z. �

Theorem 3.3. If in Theorem 3.2, in the case of s > 0, we suppose sup-
plementary that (X,G) is regular with respect to α(x, y, Ty) ≥ 1 for any
x, y ∈ Fix(T ), then the fixed point of T is unique.

Proof. Let v, z ∈ Fix(T ) be such that v 6= z. By replacing this in (3.1) and
noting the additional hypothesis, we have

G(z, v, Tv) ≤ (z, v, Tv)G(Tz, Tv, T 2v)

≤ ψ(M(z, v, Tv))

< M(z, v, Tv)

= [α1(
(G(z, Tz, T 2z)G(v, Tv, T 2v))

G(z, v, Tv)
)s + α2(G(z, v, Tv))s]

1
s

= (α2(G(z, v, Tv))s)
1
s

= α
1
s
2 (G(z, v, Tv))

≤ G(z, v, Tv),

which is a contradiction. Hence, v = z, and so, the fixed point of T is unique.
�

Example 3.4. Let X = [−1, 1] and G : X × X × X → R+be defined by
G(x, y, Ty) = |x − y| + |x − Ty| + |y − Ty| for all x, y ∈ X. Then (X,G) is
a complete G-metric space. Define ψ : R+ → R+ by ψ(t) = t

2 for all t ≥ 0,
T : X → X by

Tx =
{ x

5 , if x ∈ {−1, 1}
1
5 , if x ∈ (−1, 1)

for all x ∈ X and β : X ×X ×X → R+ by

β(x, y, Ty) =

{
1, if x, y ∈ {−1} ∪ [0, 1]

0, otherwise.
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Then obviously, ψ ∈ Ψ, T is triangular βG-orbital admissible, T is continuous
for all x ∈ X and T 3 continuous for any x ∈ Fix(T 3). Also, there exist
x0 = 1

2 ∈ X such that β((12), T (12), T 2(12)) = β(12 ,
1
5 ,

1
5) ≥ 1. Hence, condition

(i)-(iv) of Theorem 3.2 are satisfied. To see that is an admissible hybrid
(βG, ψ)-contraction, notice that β(x, y, Ty) = 0 for all x, y ∈ (−1, 0) and
x, y ∈ (−1, 1). Hence, inequality (3.1) holds for all x, y ∈ (−1, 1).

Now for x, y ∈ {−1, 1}, if x = y = 1, then G(Tx, Ty, T 2y) = 0 for all q ≥ 0.
If x = y = −1, letting α1 = 1, α2 = 0 and s = 2, we obtain

β(x, y, Ty)G(Tx, Ty, T 2y) = β(−1,−1,−1

5
)G(−1

5
,−1

5
,
1

5
)

=
4

5

<
18

10

=
1

2
(
18

5
)

=
1

2
(M(−1,−1,−1

5
))

= ψ(M(x, y, Ty)).

Also, for q = 0, we take α1 = 1
2 , α2 = 1

2 ,

β(x, y, Ty)G(Tx, Ty, T 2y) =
4

5

<
1

2
(
12

5
)

= ψ(M(x, y, Ty)).

If x 6= y, then letting α1 = 0, α2 = 1 and s = 2, we obtain

β(x, y, Ty)G(Tx, Ty, T 2y) = β(−1, 1,
1

5
)G(−1

5
,
1

5
,
1

5
)

= β(1,−1,−1

5
)G(

1

5
,−1

5
,
1

5
)

=
4

5

<
4

2

=
1

2
(4) =

1

2
(M(−1, 1,

1

5
))

=
1

2
(M(1,−1,−1

5
))

= ψ(M(x, y, Ty)).
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Also, for q = 0, we take α1 = 1, α2 = 0. Then

(x, y, Ty)G(Tx, Ty, T 2y) = β(−1, 1,
1

5
)G(−1

5
,
1

5
,
1

5
)

= β(1,−1,−1

5
)G(

1

5
,−1

5
,
1

5
)

=
4

5

<
12

10

=
1

2
(
12

5
)

=
1

2
(M(−1, 1,

1

5
))

=
1

2
(M(1,−1,−1

5
))

= ψ(M(x, y, Ty)).

Hence, inequality (3.1) is satisfied for all x, y ∈ X. Therefore, T is an admissi-
ble hybrid (βG, ψ)-contraction which satisfies all the assumptions of Theorem
3.2 and x = 1

5 is the fixed point of T .

Corollary 3.5. Let (X,G) be a complete G-metric space. If there exists k ∈
(0, 1) such that for all x, y ∈ X, the mapping T : X → X satisfies:

G(Tx, Ty, T 2y) ≤ kG(x, y, Ty).

Then T has a fixed point in X.

4. Ulam-type stability

Ulam stability was introduced by Ulam [21, 22] and is seen as type of data
dependence. This notion was further developed by Hyers and other researchers
[9]. Karapinar and Fulga [6] investigated general Ulam-type stability in the
sence of a fixed point problem in the framework of G-metric space. Suppose
that T : X → X is a self-mapping in a G-metric space (X,G). Then we say
that the fixed point problem

Tx = x (4.1)

has the general Ulam–type stability if and only if there exists an increasing
function µ : R+ → R+, continuous at 0, µ(0) = 0 such that for every ε > 0
and for each y′ ∈ X which satisfies the inequality

(y′, T y′, T 2y′) ≤ ε, (4.2)
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there exists a solution z ∈ X of (4.1) such that

G(z, y′, T y′) ≤ µ(ε). (4.3)

For a positive number C, we take µ(t) = Ct for all t ≥ 0. Then the fixed point
of (4.1) is said to be Ulam–type stable. On a G-metric space (X,G), the fixed
point problem (4.1) is said to be well-posed if the following assumptions are
satisfied:

(1) T has a unique fixed point z ∈ X;
(2) G(xn, z, z) = 0 for each sequence {xn}n∈N in X such that

lim
n→∞

G(xn, Txn, T
2xn) = 0.

Theorem 4.1. Let (X,G) be a complete G-metric space. If in addition to the
assumption of Theorem 3.3, we have α2 <

1
K where K = max{1, 2q−1}, then

the following hold:

(1) The fixed point equation (4.1) is Ulam–Hyers stable if α(u, v, Tv) ≥ 1
for any u, v satisfying (4.2);

(2) The fixed point equation (4.1) is well–posed if α(z, Txn, T
2xn) ≥ 1

for any {xn}n∈N in X such that limn→∞G(xn, Txn, T
2xn) = 0 and

Fix(T ) = {z}.

Proof. (i) In Theorem 3.3, we have shown that there exists a unique z ∈ X
such that Tz = z. Let y

′ ∈ X such that for any ε > 0, we have

G(y′, T y′, T 2y′) ≤ ε.

Then obviously, z satisfies (4.2) and so we have β(z, y
′
, T y

′
) ≥ 1. Hence, by

rectangular inequality,

G(z, y′, T y′) ≥ G(z, Ty′, T 2y′) +G(T 2y′, y′, Ty′)

= G(Tz, Ty′, T 2y′) +G(y′Ty′, T 2y′)

≤ β(z, y′Ty′)G(Tz, Ty′, T 2y′) +G(y′, Ty′, T 2y′)

≤ ψ(M(z, y′, Ty′)) +G(y′, T y′, T 2y′)

< M(z, y′, Ty′) +G(y′, Ty′, T 2y′)

=
[
α1

(G(z, Tz, T 2z)G(y′, Ty′, T 2y′))s

G(z, y′, Ty′)
+ α2(G(z, y′, T y′))s

] 1
s

+G(y′, T y′, T 2y′)



Fixed point theorems in G-metric spaces 659

=
[
α1

(G(z, z, z)G(y′, T y′, T 2y′))s

G(z, y′, T y′)
+ α2(G(z, y′, T y′))s

] 1
s

+G(y′, T y′, T 2y′)

=(α2(G(z, y′, T y′))s)
1
s +G(y′, T y′, T 2y′)

=(α2(G(z, y′, T y′))s)
1
s + ε.

Therefore, we have

(G(z, y′, Ty′))s ≤ K[α2(G(z, y′, Ty′)]s + εs,

where K = max{1, 2q−1}. Hence, the above inequality reduces to

(G(z, y′, T y′))s ≤ εs

1−Kα2
.

Which is equivalent to

G
(
z, y′, Ty′

)
≤ Cε,

where C = 1
1−Kα2

for s > 0, α2 ∈ [0, 1) such that α2 <
1
K .

(ii) Taking into account the supplementary condition and since Fix(T ) =
{z}, then we have

G(z, xn, Txn) ≤G(z, Txn, T
2xn) +G(T 2xn, xn, Txn)

=G(Tz, Txn, T
2xn) +G(xn, Txn, T

2xn)

≤β(z, xn, Txn)G(Tz, Txn, T
2xnt) +G(xn, Txn, T

2xn)

≤ψ(M(z, xn, Txn) +G(xn, Txn, T
2xn).

<M(z, xn, Txn) +G(xn, Txn, T
2xn)

=
[
α1

(G(z, Tz, T 2z)G(xn, Txn, T
2xn))s

G(z, xn, Txn)
+ α2(G(z, xn, Txn))s

] 1
s

+G(xn, Txn, T
2xn)

=
[
α1

(G(z, z, z)G(xn, Txn, T
2xn))s

G(z, xn, Txn)
+ α2(G(z, xn, Txn))s

] 1
s

+G(xn, Txn, T
2xn)

=(α2(G(z, xn, Txn))s)
1
s +G(xn, Txn, T

2xn).

Therefore, we have

(G(z, xn, Txn))s ≤ Kα2(G(z, xn, Txn))s + (G(xn, Txn, T
2xn))s,
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where K = max{1, 2q−1}. Hence, the above inequality reduces to

G(z, xn, Txn) ≤ 1

1−Kα2
G(xn, Txn, T

2xn).

Letting n→∞ and keeping in mind Definition 2.3 and

lim
n→∞

G(xn, Txn, T
2xn) = 0,

then we obtain

Limn→∞G(xn, z, z) = lim
n→∞

G(z, xn, Txn)

≤ lim
n→∞

G(xn, Txn, T
2xn)

= 0.

That is, the fixed point equation (4.1) is well–posed. �

5. Applications to solution of integral equations

In this section, Corollary 3.5 is applied to examine the existence criteria for
a solution to the following integral equation:

u(t) = h(t) +

∫ b

a
ω(t, s)f(s, u(s))ds, t ∈ [a, b], (5.1)

where h : [a, b] × R → R, ω : [a, b] × [a, b] → R+ and f : [a, b] × R → R are
given continuous function, and the function u is unknown.

Let X = C([a, b],R) be the set of all real–valued continuous functions de-
fined on [a, b]. We equip X with the mapping:

G(u, v, w) = max
a≤t≤b

(|u(t)− v(t)|+ |u(t)− w(t)|+ |v(t)− w(t)|). (5.2)

Then, it is clear that (X,G) is a complete G–metric space. Consider the self
mapping T : X → X is defined by

T (u(t)) = h(t) +

∫ b

a
ω(t, s)f(s, u(s))ds, t ∈ [a, b]. (5.3)

One can see that u∗ is a fixed point of T if and only if u∗ is a solution to (5.1).

Now, we study the existing conditions of the integral equation (5.1) under
the following hypotheses:

Theorem 5.1. Assume that the following conditions are satisfied:

(1) |f(s, x)− f(s, y)|+ |f(s, x)− f(s, y)|+ |f(s, y)− f(s, z)|
≤ |x− y|+ |x− z|+ |y − z|, ∀ t ∈ [a, b], x, y, z ∈ R,

(2) maxt∈[a,b]
∫ b
a |ω(t, s)|ds = η < 1.

Then, the integral equation (5.1) has a solution in X.
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Proof. Taking (5.2) into account, we obtain

G(Tu, Tv, T 2v) = max
t∈[a,b]

(| Tu(t)−Tv(t)|+|Tu(t)−T 2v(t)|+|Tv(t)−T 2v(t) |)

= max
t∈[a,b]

(|
∫ b

a
ω(t, s)(f(s, u(s))− f(s, v(s))ds |

+ |
∫ b

a
ω(t, s)(f(s, u(s))− f(s, Tv(s))ds |

+ |
∫ b

a
ω(t, s)(f(s, v(s))− f(s, Tv(s))ds |)

≤ b
max
t∈[a,b]

∫ b

a
|ω(t, s)|[| (f(s, u(s))− f(s, v(s)) (5.4)

+ | (f(s, u(s))−f(s, Tv(s))|+|(f(s, v(s))−f(s, Tv(s)) |]ds

≤ max
t∈[a,b]

∫ b

a
|ω(t, s)|[|u(s)− v(s)|+ |u(s)− Tv(s)|

+ |v(s)− Tv(s)|]ds

≤ ( max
t∈[a,b]

∫ b

a
|ω(t, s)|ds) b

max
t∈[a,b]

∫ b

a
[|u(s)− v(s)|

+ |u(s)− Tv(s)|+ |v(s)− Tv(s)|]ds
= ηG(u, v, Tv).

Hence, all the conditions of Corollary 3.5 are satisfied. It follows that T has a
fixed point u∗ in X, which corresponds to a solution to the integral equation
(5.1). �

Example 5.2. Let X = C([0, 1]),R) and consider

u(t) =
t2

(3 + t)
+

1

7

∫ 1

0

s2

(3 + t)

1

(5 + u(s))
ds, t ∈ [0, 1]. (5.5)

To obtain the solution of (5.1), we prove that u(t) is a fixed point of T , that
is, Tu(t) = u(t). Notice that the integral equation (5.4) is a special case of
(5.1), where

h(t) =
t2

(5 + t)
, ω(t, s) =

s2

(5 + t)
, f(s, t) =

1

2(5 + u(s))
.
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Obviously, the functions h(t), ω(t, s) and f(s, t) are continuous. Moreover,
for all u, v ∈ R,

| f(s, u)− f(s, v)|+ |f(s, u)− f(s, Tv)|+ |f(s, v)− f(s, Tv) |

=
∣∣∣ 1

2(5 + u(s))
− 1

2(5 + v(s))

∣∣∣+
∣∣∣ 1

2(5 + u(s))
− 1

2(5 + Tv(s))

∣∣∣
+
∣∣∣ 1

2(5 + v(s))
− 1

2(5 + Tv(s))

∣∣∣
=
∣∣∣ v − u
2(5 + u(s))(2(5 + v(s))

∣∣∣+
∣∣∣ Tv − u
2(5 + u(s))2(5 + Tv(s))

∣∣∣
+
∣∣∣ Tv − v
2(5 + v(s))2(5 + Tv(s)

∣∣∣
≤ 1

2

(
|u− v|+ |u− Tv|+ |v − Tv|

)
≤ |u− v|+ |u− Tv|+ |v − Tv|.

Also, notice that

max
t∈[0,1]

∫ 1

0
|ω(t, s)|ds = max

t∈[0,1]

∫ 1

0
| s2

(3 + s)
|ds

≤ 1

9
< 1.

Hence, all the condition of Theorem 5.1 are satisfied. Therefore, the integral
equation (5.1) has a solution in X.
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