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1. Introduction

In the last half century, several mathematicians have studied approximation
methods for fixed point problems and various iterations (see e.g., Mann itera-
tion, Ishikawa iteration, Noor iteration, S-iteration, normal S-iteration, Picard
normal S-iteration, etc.) for several classes of nonlinear mappings (see e.g.,
contraction, nonexpansive, generalized classes of nonexpansive mappings, etc.)
to solve the mathematical problems such as convex optimization problems and
variational inequalities problems (See reference [1]-[13], [25, 29]).

The inertial iteration method is used to compute fixed points for nonex-
pansive mappings from the algorithms as mentioned earlier. We find that the
subsequent iteration of algorithms depends only on the previous iterate, but
the inertial method’s defining property is that the following iteration depends
on multiple previous iterates.

In 2008, Mainge [20] studied the convergence of the inertial Mann algorithm
by combining the Mann algorithm and the inertial extrapolation:{

wn = xn + αn(xn − xn−1),
xn+1 = wn + βn(Swn − wn)

(1.1)

for n ≥ 1, and study for speeding up the convergence of the given algorithm, he
proved that the sequence xn converges weakly to a fixed point of the mapping
under certain assumptions and also applied the method to convex feasibility
problems, fixed point problems, and monotone inclusions.

In 2018, Dong et al. [13] introduced a modified inertial Mann algorithm and
an inertial CQ algorithm by unifying the accelerated Mann algorithm with the
inertial extrapolation as follows:

Let T : H → H be nonexpansive mapping such that Fix(T ) 6= φ, choose

µ ∈ (0, 1), λ > 0, x0, x1 ∈ H arbitrarily and set d0 = (T (x0)x1)
λ , compute dn+1

and xn+1 as follows:
wn = xn + αn(xn − xn−1),
dn+1 = 1

λ(T (wn)− wn) + βndn,

yn = wn + λdn+1,

xn+1 = µγnwn + (1− µ)γnyn

(1.2)

for n ≥ 1 under some condition they proved that the sequence {xn} generated
by the algorithm converges weakly to a fixed point of T , they also study
an inertial CQ algorithm by combining the CQ-algorithm and the inertial
extrapolation defined as follows:
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Let H be a Hilbert space and T : H → H be a nonexpansive mapping such
that Fix(T ) 6= φ. Let {αn} ⊂ [α1, α2] where α1 ∈ (−∞, 0] and α2 ∈ [0,∞)
and {βn} ⊂ [β1, 1] where β1 ∈ (0, 1) set x0, x1 ∈ H arbitrarily. Define the
iterative sequence process

wn = xn + αn(xn − xn−1),
yn = (1− βn)xn + βnTwn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖wn − z‖},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0.

They showed that the sequence {xn} converges in norm PFix(T )x0. In this
study, they also performed numerical experiments to illustrate that the mod-
ified inertial Mann algorithm and inertial CQ algorithm significantly reduce
the running time compared with some previous methods without the inertial
extrapolation.

In 2019, Phon-on et al. [25] focus on a combination of modified S-iteration
process and the inertial extrapolation to obtain a new method which acceler-
ates the approximation of a fixed point of a nonexpansive mapping in a Banach
space defined as follows:

Let H be a Banach space and S1, S2 : H → H be nonexpansive such that
F = Fix(S1) ∩ Fix(S2) 6= φ. Define

wn = xn + γn(xn − xn−1),
yn = (1− βn)wn + βnS1wn,

xn+1 = (1− αn)S1wn + αnS2yn

for n ≥ 1, where {γa}, {βn} and {αn} satisfies the following conditions

(D1)
∞∑
n=1

γn < ∞, γn ⊂ [0, γ], 0 ≤ γ < 1, and {αn}, {βn} ⊂ [δ, 1 − δ] for

δ ∈ (0, 0.5).
(D2) {(Si(wn − wn)} is bounded for i = 1, 2.
(D3) {(Si(wn − y)} is bounded for i = 1, 2, and y ∈ F.

He proved that under some assumptions, the weak and strong convergent
iteration process found the common fixed point and checked speeding up the
convergence of the algorithm. He proved the convergence theorems of a se-
quence generated by our new method for finding a common fixed point of
nonexpansive mappings in a Banach space. He also presents numerical exam-
ples to illustrate that the acceleration of our algorithm is effective.
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In 2021, Samir et al. [11] introduced an inertial Picard normal S-iteration
process (InerPNSP), by combining the inertial extrapolation and Picard nor-
mal S-iteration process and study convergence analysis for finding fixed points
of the nonexpansive mapping defined as let T : H → H be nonexpansive
mapping in a Banach space such that Fix(T ) 6= φ,


wn = xn + γn(xn − xn−1),
zn = (1− βn)wn + βnT (wn),

yn = (1− αn)T (zn) + αnT (zn),

xn+1 = T (yn),

where αn, βn, γn satisfy:

(A1)
∑∞

n=1 γn ⊂ [0, γ], 0 ≤ γ < 1, {αn}, {βn} ⊂ [δ, 1 − δ] for some δ ∈
(0, 0.5);

(A2) {T (wn)− wn} is bounded;
(A3) {T (wn)− p} is bounded.

In the fields of pure and applied mathematics as well as numerous other
scientific disciplines, fixed point theory is extremely important (see [15, 16,
19, 27, 28] and the references therein). Finding the fixed points of nonlinear
operators is one of the most important issues in operator theory (see [9, 10, 11].
Numerous fixed point problems can be used to simulate issues from a variety
of fields, including image reconstruction and signal processing [6], variational
inequalities [22], and convex feasibility problems [4].

2. Preliminaries

In this section, we summarized some notations, basic definition and fruit-
fully lemmas, which play significant role in the convergence of analysis of our
algorithm.

We assume that X is a Hilbert space with the norm ‖.‖, now we embrace
the following notations.

(1) The strong convergence of sequence {xn} to x is denoted by xn → x.
(2) The weak convergence of sequence {xn} to x is denoted by xn ⇀ x.
(3) The set of fixed point of a mapping T is denoted by Fix(T ) = {x ∈

X : Tx = x}.

Definition 2.1. ([3],[17],[18],[20],[21],[26]) Let H be a nonempty subset of X
and T : H → H be mapping. Then, it is said to be

(i) nonexpansive (NE), if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H,
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(ii) quasi-nonexpansive mapping (QNE), if

‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ H, and p ∈ Fix(T ).

(iii) mean nonexpansive (MNE), if there exists α, β ≥ 0 such that

‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Ty‖ for all x, y ∈ H,

(iv) satisfy condition C (SC), if

1

2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H,

(v) satisfy condition (Cλ), if

λ‖Tx− x‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H,

(vi) generalized mean nonexpansive (GMNE), if there exists α, β, γ ∈ [0, 1)
with α+ β < 1 such that for all x, y ∈ H,
λ‖Tx− x‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Tx‖,

(vii) α-nonexpansive(α−NE), if there exists α < 1 such that x, y ∈ H,
‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖2.

It is worth mentioning that(NE) are continuous on their domains, but
(MNE), (GMNE) mappings satisfying condition (C), Condition (Cλ) need
not be continuous. Due to this fact, these mappings are more fascinating and
applicable than nonexpansive mappings. Now a natural question arises.

Question 2.2. Does a class of mapping exist, that contains (MNE), (GMNE),
mappings satisfying condition (C), condition (Cλ), (α-NE) mappings, and
other nonexpansive type mappings in existence in the literature?

The affirmative answer to Question 2.2 as given by Akutsah and Narain
[2] in 2021 by introducing a new class of mapping, namely, generalized (α, β)-
nonexpansive mappings type as follows.

Definition 2.3. Let H be a nonempty subset of a Banach space X. A map-
ping T : H → H is said to be generalized (α, β)-nonexpansive (G(α, β)−NE)
type 1, if there exists α, β, λ ∈ [0, 1) with α ≤ β, α + β < 1 such that for all
x, y ∈ H, with λ‖Tx− x‖ ≤ ‖x− y‖, then

‖Tx− Ty‖ ≤ α‖y − Tx‖+ β‖x− Ty‖+ (1− (α+ β))‖x− y‖. (2.1)

From Definition 2.3, it is easy to see that the following statements are true.

(a) α = β = 0 and λ = 1
2 , then (G(α, β) −NE) type 1, satisfy condition

(C).
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(b) α = β = 0 and λ ∈ [0, 1), then (G(α, β)−NE) type 1, satisfy condition
(Cλ).

(c) Every (NE), (MNE), condition (C), (Cλ) are (G(α, β) − NE) type
1 (see Proposition 3.4,[2]), but converse is not true (see [2, Example
3.5]).

Proposition 2.4. ([2, Proposition 3.6]) Let H be a nonempty subset of a Ba-
nach space X and T : H → H be (G(α, β)−NE) type 1, Fix(T ) is nonempty
then T is (QNE).

Definition 2.5. ([24]) Assume that X is a Banach space and {xn} be a
sequence in X such that xn ⇀ x. Then X is said to have Opial’s property, if

lim inf
n→∞

‖xn − x‖ ≤ lim sup
n→∞

‖xn − y‖,

for all y ∈ X, y 6= x.

Theorem 2.6. ([2, Theorem 3.15]) Let H be a nonempty closed subset of a
Banach space X with opial property and T : H → H be a (G(α, β) − NE)
type 1 mapping, λ = γ

2 , γ ∈ [0, 1). If xn ⇀ x and lim
n→∞

‖Txn−xn‖ = 0, then T

has a fixed point, that is, (I − T ) is demiclosed at zero, where I is the identity
mapping on X.

Theorem 2.7. ([2, Theorem 3.16]) Let H be a nonempty compact subset of
a Banach space X and T : H → H be a (G(α, β)−NE) type 1 mapping and
λ = γ

2 , γ ∈ [0, 1). Then T has a fixed point in H if and only if T admits on
almost fixed point sequence.

Lemma 2.8. ([5]) Assume that H is a real Hilbert space. Then following
inequality holds:

‖cx+ (1− c)y‖2 ≤ c‖x‖2 + c‖y‖2 − c(1− c)‖x− y‖2, (2.2)

where x, y ∈ H.

Lemma 2.9. ([4]) Assume that {rn}, {dn} and {qn} are sequences in [0,∞)
such that

rn+1 ≤ rn + qn(rn − rn−1) + dn

for all n ≥ 1,
∑∞

n=1 dn < ∞ and there is real number q with qn < q < 1 for
all n ≥ 1. Then we have

(1)
∑

n≥1[rn − rn−1] <∞, where [a]+ = max(a, 0),

(2) there is r∗ ∈ [0,∞) such that lim
n→∞

rn = r∗.



An Inertial new iteration process in a Hilbert space 671

Lemma 2.10. ([23]) Assume that X is a uniformly convex Banach space and
{sn} is a sequence in [δ, 1− δ] for δ ∈ (0, 1). Assume that sequences {xn} and
{yn} in X are such that lim inf

n→∞
‖xn‖ ≤ c, lim inf

n→∞
‖yn‖ ≤ c and lim inf

n→∞
‖snxn +

(1− sn)yn‖ = c for some c ≥ 0. Then

lim inf
n→∞

‖xn − yn‖ = 0.

Lemma 2.11. ([5]) Assume that H is a nonempty closed convex subset of a
Hilbert space H and T : H → H is a generalized (α, β)-nonexpansive mapping.
Assume that {xn} is a sequence in H and x ∈ H such that xn → x as n→∞.
Then x ∈ Fix(T ).

Lemma 2.12. ([12]) Assume that X is a Banach space with Opial’s property.
Assume that {xn} is a sequence in X and x, y ∈ H such that lim

n→∞
‖xn − x‖

and lim
n→∞

‖xn − y‖ exist. If {xni} and {xnj} are two subsequences of {xn}
converge to x and y, respectively. Then x = y.

3. Strong and week convergence theorem

In this section, we introduce the new inertial iteration process and study the
convergence analysis for finding fixed points of generalized (α, β)-nonexpansive
mapping in the framework of a Hilbert space.

Let H be a nonempty closed convex subset of a Hilbert space X and T :
H → H be a generalized (α, β)-nonexpansive mapping with Fix(T ) 6= φ.

Algorithm 3.1. New inertial iteration algorithm:

(1) Initialization: Select x0, x1 arbitrarily.

(2) Iteration Step: Select {αn}, {βn} and {λn} as iteration parameters
in [0, 1] and compute (n+ 1)th iterative term as follows:


wn = xn + λn(xn − xn−1),
zn = (1− βn)wn + βnT (wn),

yn = T (zn),

xn+1 = (1− αn)T (zn) + αnT (yn),

(3.1)

where αn, βn, λn satisfy:

(C1)
∑∞

n=1 λn ⊂ [0, λ], 0 ≤ λ < 1, {αn}, {βn} ⊂ [δ, 1 − δ] for some δ ∈
(0, 0.5);

(C2) {T (wn)− wn} is bounded;

(C3) {T (wn)− p} is bounded.
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Theorem 3.2. Let X be a Hilbert space. Let p ∈ F = Fix(T ). Let the
sequence {xn} generated by 3.1 satisfying condition (A1), (A2) and (A3).
Then

(1) lim
n→∞

‖xn − p‖ exists.

(2) lim
n→∞

‖xn − T (xn) = 0‖.

Proof. Since T is a generalized (α, β)-nonexpansive mapping, then by trian-
gular inequality

‖zn − p‖ = ‖(1− βn)wn + βnT (wn)− p‖
≤ (1− βn)‖wn − p‖+ βn‖T (wn)− p‖
≤ (1− βn)‖wn − p‖+ βn‖wn − p‖
= ‖wn − p‖, ∀n ∈ N, (3.2)

from (3.1) and (3.2),

‖yn − p‖ = ‖T (zn)− p‖
≤ ‖zn − p‖
≤ ‖wn − p‖, (3.3)

from (3.1), (3.2) and (3.3),

‖xn+1 − p‖ = ‖(1− αn)T (zn) + αnT (yn)− p‖
≤ (1− αn)‖T (zn)− p‖+ αn‖T (yn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖yn − p‖
≤ ‖zn − p‖
≤ ‖wn − p‖. (3.4)

Now we will prove {wn − p} is bounded. By condition (A1) and (A2),

‖wn − p‖ = ‖wn − T (wn) + T (wn)− p‖
≤ ‖T (wn)− wn‖+ ‖T (wn)− p‖
≤ K

for some K ∈ (0,∞). Thus {wn − p} is bounded and by (3.4), {xn − p} and
{xn − xn−1} are bounded. By (2.2),

‖wn − p‖2 = ‖xn + λn(xn − xn−1 − p)‖2

= ‖(1 + λn)(xn − p)− λn(xn−1 − p)‖2

= (1 + λn)‖(xn − p)‖2 − λn‖(xn−1 − p)‖2

+λn(1 + λn)‖xn − xn−1‖2. (3.5)
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Using (3.4) and (3.5), we have

‖xn+1 − p‖2 ≤ ‖wn − p)‖2

= ‖(1 + λn)(xn − p)− λn(xn−1 − p)‖2

= (1 + λn)‖(xn − p)‖2 − λn‖(xn−1 − p)‖2

+λn(1 + λn)‖xn − xn−1‖2. (3.6)

Let rn = ‖xn − p‖2. Then by (3.6)

rn+1 ≤ rn + λn(rn − rn−1) + dn,

where dn = λn(1 + λn)‖xn − xn−1‖2. By condition (A1),

∞∑
n=1

dn =
∞∑
n=1

λn(1 + λn)‖xn − xn−1‖2

≤
∞∑
n=1

λ(1 + λ)(2M)2

< ∞.

From Lemma 2.9, there is r∗ ∈ [0,∞) such that lim
n→∞

rn = r∗. Therefore,

lim
n→∞

‖xn − p‖2 exists and hence lim
n→∞

‖xn − p‖.

Now, we will prove lim
n→∞

‖xn−T (xn)‖ = 0. Assume that c = lim
n→∞

‖xn− p‖.
Since T is generalized (α, β)-nonexpansive,

‖xn − T (xn)‖ ≤ ‖xn − p‖+ ‖T (xn)− p‖
≤ ‖xn − p‖+ ‖xn − p‖
= 2‖xn − p‖. (3.7)

If c = 0, then by (3.7), ‖xn − T (xn)‖ → 0 as n → 0. Assume that c > 0.
Now

∑∞
n=1 dn implies that lim

n→∞
dn = 0. From (3.5), we have

lim
n→∞

‖wn − p‖2 = lim
n→∞

(1 + λn)‖xn − p‖2 − λn‖xn−1 − p‖2

+λn(1 + λn)‖xn − xn−1‖2

= lim
n→∞

‖xn − p‖2

= c2,

which implies lim
n→∞

‖wn − p‖ = c. Therefore,

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖wn − p‖

= c. (3.8)



674 R. Verma, H. G. Hyun, S. Dashputre and Padmavati

Now, we claim that lim inf
n→∞

‖yn − p‖ ≥ c. Since T is generalized (α, β)-

nonexpansive mapping, by (3.1)

‖xn+1 − p‖ = ‖T (yn)− p‖.
≤ ‖yn − p‖.

On taking limit inferior both sides

lim inf
n→∞

‖xn+1 − p‖ ≤ lim inf
n→∞

‖yn − p‖

c ≤ lim inf
n→∞

‖yn − p‖. (3.9)

By (3.8) and (3.9)

lim
n→∞

‖yn − p‖ = c.

Now, by (3.2),

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖wn − p‖

= c. (3.10)

Since T is generalized (α, β)-nonexpansive mapping, by (3.1)

‖xn+1 − p‖ = ‖(1− αn)T (zn) + αnT (yn)− p‖
≤ (1− αn)‖T (zn)− p‖+ αn‖T (yn)− p‖
≤ (1− αn)‖zn − p‖+ αn‖yn − p‖
≤ ‖zn − p‖.

On taking limit inferior both sides

lim inf
n→∞

‖xn+1 − p‖ ≤ lim inf
n→∞

‖zn − p‖,

it implies that

c ≤ lim inf
n→∞

‖zn − p‖. (3.11)

By (3.10) and (3.11),

lim
n→∞

‖zn − p‖ = c.

Now, we have

lim sup
n→∞

‖T (wn)− p‖ ≤ lim sup
n→∞

‖wn − p‖ ≤ c,

lim sup
n→∞

‖(1− βn)(wn − p) + βn(T (wn)− p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

by Lemma 2.10,

‖T (wn)− wn‖ = 0. (3.12)
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Now, we have

lim sup
n→∞

‖T (zn)− p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

lim sup
n→∞

‖(1− αn)(zn − p) + αn(T (zn)− p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ c,

by Lemma 2.10,

‖T (zn)− zn‖ = 0.

Now, since zn − wn = βn(T (wn)− wn), by (3.12),

0 ≤ lim
n→∞

‖zn − wn‖

= lim
n→∞

βn‖T (wn)− wn‖

≤ lim
n→∞

‖T (wn)− wn‖

= 0. (3.13)

Now, since yn − zn = αn(T (zn)− zn), by (3.12),

0 ≤ lim
n→∞

‖yn − zn‖

= lim
n→∞

αn‖T (zn)− zn‖

≤ lim
n→∞

‖T (zn)− zn‖

= 0. (3.14)

Now, by (3.13) and (3.14),

0 ≤ lim
n→∞

‖yn − wn‖

= lim
n→∞

‖yn − zn|+ lim
n→∞

‖zn − wn‖|

= 0. (3.15)

Now since wn − xn = λn(xn − xn−1), by (3.4),

0 ≤ lim
n→∞

‖wn − xn‖

= lim
n→∞

λn‖xn − xn−1‖

= 0. (3.16)

Now, by (3.12) and (3.16),

0 ≤ lim
n→∞

‖Twn − xn‖

≤ lim
n→∞

‖Twn − wn‖+ lim
n→∞

‖wn − xn‖

= 0. (3.17)
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Using (3.15) and (3.16),

0 ≤ lim
n→∞

‖xn − yn‖

≤ lim
n→∞

‖xn − wn‖+ lim
n→∞

‖wn − yn‖

= 0. (3.18)

Now, since T is a generalized (α, β)-nonexpansive mapping and using (3.13),
(3.14), (3.17), (3.18), we have

0 ≤ lim
n→∞

‖Txn − xn‖

= lim
n→∞

‖Txn − Tyn‖+ lim
n→∞

‖Tyn − Tzn‖

+ lim
n→∞

‖Tzn − Twn‖+ lim
n→∞

‖Twn − xn‖

= lim
n→∞

‖xn − yn‖+ lim
n→∞

‖yn − zn‖

+ lim
n→∞

‖zn − wn‖+ lim
n→∞

‖Twn − xn‖

= 0.

Therefore, we have lim
n→∞

‖Txn − xn‖ = 0. �

Theorem 3.3. Assume that H is a Hilbert space. Also assume that T : H →
H is a generalized (α, β)-nonexpansive mapping with F = Fix(T ) 6= φ. Then
the sequence {xn} generated by (3.1) weakly converges to a fixed point of T.

Proof. Assume that p ∈ F . Then from Theorem 3.2, lim
n→∞

‖xn − p‖ exists,

therefore {xn} is bounded. Assume that {xni} and {xnj} are two subsequences
of the sequence {xn} with weak limits p1 and p2, respectively. Again by
Theorem 3.2, lim

n→∞
‖xni−T (xni)‖ = 0 and lim

n→∞
‖xnj−T (xnj )‖ = 0. Since every

Hilbert space has Opial’s property (see [24]) and by Lemma 2.11, T (p1) = p1
and T (p2) = p2, that is, p1, p2 ∈ F. From Theorem 3.2, lim

n→∞
‖xn − p1‖ and

lim
n→∞

‖xn − p2‖ exist and both sequences {xni} and {xnj} weakly converge to

p1 and p2, respectively. From Lemma 2.12, p1 = p2. Thus {xn} converges
weakly to a fixed point of T. �

4. Numerical experiments

Example 4.1. Define a mapping T : [0, 1]→ [0, 1] as

T (x) =

{
1− x if 0 ≤ x < 1

8 ,
x+7
8 if 1

8 ≤ x ≤ 1.
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Then, it is easy to see that T satisfies condition (C) thus it is a generalized
(α, β)-nonexpansive mapping.

Figure 1, and Figure 2 show the convergence behavior of our new iteration
process and InerPNSP where αn = 1√

n30+40
, βn = 1√

n10+50
and λn = 3

300n3

for different initial values. we numerically compare our new iteration process
with existing iterative processes InerPNSP.

Case I : Taking x0 = 0 and x1 = 0.1.
Case II : Taking x0 = 0.125 and x1 = 0.8.

Figure 1. Convergence graph of FSRIP and FMIP for tn = 1√
n3+1

1.PNG
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Figure 2. Convergence graph of FSRIP and FMIP for tn = 1√
n3+1

2.PNG
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