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1. Introduction

The importance of fixed point theorem lies in finding solutions of many
problems of applied sciences, engineering and economics. The popular math-
ematician in the area of fixed point theory was Banach [3], who established
a famous theorem popularly known as Banach contraction principle. There-
after, researchers formulated and established many contractive conditions to
modify Banach contraction principle. It is worth mentioning that the most
appreciable work in this direction was due to Jungck [16], when he used the
notion of commutative mappings. See [2, 8, 9, 24, 25] for various contractions
and their applications.

Jungck’s common fixed result is the simplest fixed point result for a pair
of mappings. This result is too strong and it is natural to seek for weaker
assumptions. Further, Jungck [17] weakened the notion of commutative map-
pings and weak commutative mappings, given by Sessa [34], to compatible
mappings. In 1993, Jungck, Murthy and Cho [18] generalized the notion of
compatible mappings to compatible mappings of type (A). The process of
generalizing the concept of compatible mappings still going on. Pathak and
Khan [29], Pathak et al. [27, 28], Rohen and Singh [32], Singh and Singh [35]
and Jha et al. [14] weakened this concept of compatible mappings to compat-
ible mappings of type (B), type (P ), type (C), type (R), type (E) and type
(K) respectively. See [7, 21, 30, 33, 38] for more informations on compatible
mappings and applications.

Another direction of generalization of Banach contraction principle concerns
with the use of control function. In 1969, Boyd and Wong [5] generalized Ba-
nach contraction principle by introducing φ contraction condition of the form
d(Tu, Tv) ≤ φ(d(u, v)) for all u, v ∈ E, where T is a self mapping of a complete
metric space E and φ : [0,∞) → [0,∞) is an upper semi continuous function
from right such that 0 ≤ φ(t) < t for all t > 0. The function φ appeared in
the φ contraction is known as control function. The idea of control function
was given by Khan et al. [20] as follows: an increasing continuous function
φ : [0,∞) → [0,∞) vanishing only at zero is known as control function. Fur-
ther, Alber and Guerre-Delabriere [1] generalized φ contraction to φ−weak
contraction in Hilbert spaces, which was further extended by Rhoades [31] in
the setting of complete metric space as follows: A self-mapping T defined on a
complete metric space is said to be a φ-weak contraction if for each u, v ∈ E,
there exists a continuous non-decreasing function φ : [0,∞)→ [0,∞) vanishing
only at zero such that d(Tu, Tv) ≤ d(u, v)− φ(d(u, v)).

In 2009, Zhang and Song [39] proved the following fixed point theorem for
pair of mappings satisfying generalized φ−weak contraction.
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Theorem 1.1. ([39]) Let (E, d) be a metric space and φ : [0,∞)→ [0,∞) be
a lower semi-continuous function with φ(t) > 0, for all t > 0 and φ(0) = 0.
Let (S, T ) be a pair of self-mappings defined on E such that

d(Su, Tv) ≤M(u, v)− φ(M(u, v)) for all u, v ∈ E,

where M(u, v) = max{d(u, v), d(u, Su), d(v, Tv), d(u,Tv)+d(v,Su)2 }. Then S and
T have a unique common fixed point in E.

In 2013, Murthy and Prasad [23] proved a fixed point theorem for a mapping
satisfying a weak contraction involving cubic terms of metric function.

Theorem 1.2. ([23]) Let T be a self-mapping on a complete metric space
(E, d) and φ : [0,∞) → [0,∞) be a continuous function with φ(t) = 0 if and
only if t = 0 and φ(t) > 0 for each t > 0 such that

[1+pd(u, v)]d2(Tu, Tv) ≤pmax
{1

2
[d2(u, Tu)d(v, Tv) + d(u, Tu)d2(v, Tv)],

d(u, Tu)d(u, Tv)d(v, Tu), d(u, Tv)d(v, Tu)d(v, Tv)
}

+m(u, v)− φ(m(u, v)),

where

m(u, v) = max
{
d2(u, v), d(u, Tu)d(v, Tv), d(u, Tv)d(v, Tu),

1

2
[d(u, Tu)d(u, Tv) + d(v, Tu)d(v, Tv)]

}
,

and p ≥ 0 is a real number. Then T has a unique fixed point in E.

Jain et al. [11, 12, 13], Jain and Kumar [10], Jung et al. [15], Kumar
and Kumar [22] had extended and generalized Theorem 1.2 for various types
of commuting and minimal commuting mappings in metric spaces. In 2022,
Kavita and Kumar [19] generalized the results of Jain et al. [10, 11, 13] and
Murthy and Prasad [23] by introducing a generalized (ψ, φ)−weak contraction
involving cubic terms of metric functions.

Main purpose of this paper is to establish the existence of fixed point for
pairs of compatible mappings of type (R), type (E) and type (K) using newly
introduced generalized (ψ, φ)-weak contraction along with continuity and re-
ciprocal continuity that improves Theorem 1.2 and the results of Jain et al.
[11, 12, 13] and Jung et al. [15] and many results cited in the literature.

2. Preliminaries

Now, we recall some definitions and results which will be needed in the
sequel.
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Definition 2.1. Let (E, d) be a metric space. Two mappings S, T : E → E
are said to be

(i) compatible [17] if

lim
n→∞

d(STun, TSun) = 0,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(ii) compatible of type (A) [18] if

lim
n→∞

d(SSun, TSun) = 0 and lim
n→∞

d(TTun, STun) = 0,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(iii) compatible of type (P ) [29] if

lim
n→∞

d(SSun, TTun) = 0,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(iv) compatible of type (B) [29] if

lim
n→∞

d(STun, TTun) ≤ 1

2
[ lim
n→∞

d(STun, Sz) + lim
n→∞

d(Sz, SSun)]

and

lim
n→∞

d(TSun, SSun) ≤ 1

2
[ lim
n→∞

d(TSun, T z) + lim
n→∞

d(Tz, TTun)],

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(v) compatible of type (C) [28] if

lim
n→∞

d(STun, TTun) ≤ 1

3
[ lim
n→∞

d(STun, Sz)

+ lim
n→∞

d(Sz, SSun) + lim
n→∞

d(Sz, TTun)]

and

lim
n→∞

d(TSun, SSun) ≤ 1

3
[ lim
n→∞

d(TSun, T z)

+ lim
n→∞

d(Tz, TTun) + lim
n→∞

d(Tz, SSun)],

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
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(vi) compatible of type (R) [32] if

lim
n→∞

d(STun, TSun) = 0

and

lim
n→∞

d(SSun, TTun) = 0,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(vii) compatible of type (E) [35] if

lim
n→∞

SSun = lim
n→∞

STun = Tz

and

lim
n→∞

TTun = lim
n→∞

TSun = Sz,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E;
(viii) compatible of type (K) [14] if

lim
n→∞

SSun = Tz and lim
n→∞

TTun = Sz,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E.

Remark 2.2. Notion of compatible mappings of type (R) is a combination
of the notion of compatible mappings and compatible mappings of type (P ),
but it is stronger than compatible mappings and compatible mappings of type
(P ) (see [32, Examples 1 and 2]).

Remark 2.3. If Sz = Tz, then compatible of type (E) implies compatible,
compatible of type (A), type (B), type (C) and type (P ), however the converse
may not be true (see [36, Example 2.4]).

Remark 2.4. If Sz 6= Tz, then ‘compatible of type (E)’ is neither compatible
nor compatible of type (A), type (C), type (P ) (see [36, Example 2.3]).

In 1999, Pant [26] introduced the notion of reciprocally continuity as follows.

Definition 2.5. ([26]) A pair (S, T ) of self mappings of a metric space (E, d)
is said to be reciprocally continuous, if lim

n→∞
STun = Sz and lim

n→∞
TSun = Tz,

whenever {un} is a sequence in E such that lim
n→∞

Sun = lim
n→∞

Tun = z, for

some z ∈ E.
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Remark 2.6. It is clear that a pair of continuous self mappings is reciprocally
continuous, but the converse may not be true (see [26]).

Remark 2.7. Compatibility and reciprocal continuous are independent of
each other (see [37]).

In 2011, Singh and Singh [36] split the concept of compatible mappings
of type (E) to the concept of S−compatible mappings of type (E) and T -
compatible mappings of type (E) and further, split the notion of reciprocally
continuity to the notion of S−reciprocally continuous and T -reciprocally con-
tinuous.

Definition 2.8. ([36]) Let (E, d) be a metric space and S, T : E → E be two
mappings. If {un} is a sequence in E such that lim

n→∞
Sun = lim

n→∞
Tun = z, for

some z ∈ E, then the pair (S, T ) is said to be

(1) S−compatible of type (E) if lim
n→∞

SSun = lim
n→∞

STun = Tz;

(2) T−compatible type (E) if lim
n→∞

TTun = lim
n→∞

TSun = Sz;

(3) S− reciprocally continuous if lim
n→∞

STun = Sz;

(4) T− reciprocally continuous, if lim
n→∞

TSun = Tz.

Remark 2.9. Compatible of type (E) implies both S-compatible of type (E)
and T -compatible of type (E), however the converse may not true, see the
example given below.

Example 2.10. Let E = [0, 5] and d be a usual metric. Let S, T : E → E
be two mappings defined as Su = 5, Tu = 1, for u ∈ [0, 52 ] − {54}, Su =

0, Tu = 5, for u = 5
4 and Su = 5−u

2 , Tu = u
2 , for u ∈ (52 , 5]. Clearly, S

and T are not continuous at u = 5
2 ,

5
4 . Assume that un → 5

2 , un > 5
2 , for

all n. Then Sun = 5−un
2 → 5

4 = t and Tun = un
2 →

5
4 = t. Therefore,

we have SSun = S(5−un2 ) = 5 → 5, STun = S(un2 ) = 5 → 5,Tt = 5 and

TTun = T (un2 ) = 1 → 1, TSun = T (5−un2 ) = 1 → 1, St = 0. Thus, the pair
(S, T ) is S-compatible of type (E), but not compatible of type (E).

Remark 2.11. The reciprocal continuity of the pair (S, T ) implies both S-
reciprocal continuity and T -reciprocal continuity, however, the converse may
not be true, see example given below.

Example 2.12. Let E = [0, 5] and d be a usual metric. Let S, T : E → E be
two mappings defined as Su = 5, Tu = 0 for u ∈ [0, 52) and Su = 5−u, Tu = u,

for u ∈ [52 , 5]. Let {un} be a sequence in E such that un → 5
2 , u > 5

2 , for
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all n. Then Sun = 5 − un → 5
2 , Tun = un → 5

2 = t, STun = S(un) =

5−un → 5
2 , St = 5

2 and TSun = T (5−un) = 0→ 0, Tt = 5
2 . It follows that

lim
n→∞

STun = 5
2 = St and lim

n→∞
TSun = 0 6= Tt = 5

2 . Therefore, the pair (S, T )

is S-reciprocally continuous, but it is neither T−reciprocally continuous nor
reciprocally continuous.

Now, we present propositions which are useful for our work.

Proposition 2.13. ([32]) Let (E, d) be a metric space and S, T : E → E be
mappings such that the pair (S, T ) is compatible of type (R).

(i) If Sz = Tz, then STz = SSz = TTz = TSz for some z ∈ E.
(ii) If lim

n→∞
Sun = lim

n→∞
Tun = z, for some z ∈ E, then

(a) lim
n→∞

TSun = Sz, when S is continuous at z,

(b) lim
n→∞

STun = Tz, when T is continuous at z,

(c) STz = TSz and Sz = Tz, when S and T are continuous at z.

Proposition 2.14. ([36]) Let S and T be two self-mappings defined on a
metric space (E, d) and {un} be a sequence in E such that

lim
n→∞

Sun = lim
n→∞

Tun = z,

for some z ∈ E. Assume that one of the following conditions is satisfied:

(i) the pair (S, T ) is S-compatible of type (E) and S-reciprocally continu-
ous,

(ii) the pair (S, T ) is T -compatible of type (E) and T -reciprocally continu-
ous.

Then we have

(a) Sz = Tz,
(b) if there exists t ∈ E such that St = Tt = z, then STt = TSt.

3. Main results

In this section, we study compatible mappings of type (R), type (E) and
type (K) to establish the existence and uniqueness of fixed point for pairs of
compatible mappings of type (R), type (E) and type (K) by using the control
function ψ ∈ Ψ, where Ψ is a collection of all nondecreasing, upper semi
continuous (in each coordinate variables) functions ψ : [0,∞)4 → [0,∞) such
that max{ψ(t, t, 0, 0), ψ(0, 0, 0, t), ψ(0, 0, t, 0), ψ(t, t, t, t)} ≤ t, for each t > 0.

Let Φ be a collection of all continuous functions φ : [0,∞) → [0,∞) such
that φ(t) > 0 for each t > 0 and φ(0) = 0.
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Let (E, d) be a metric space and f , g, S and T be self-mappings defined on
E satisfying the following conditions:

(C1) S(E) ⊂ g(E) and T (E) ⊂ f(E),
(C2) for all u, v ∈ E, there exist a function ψ ∈ Ψ, a function φ ∈ Φ and a

real number p > 0 such that

[1+pd(fu, gv)]d2(Su, Tv)

≤ pψ

(
d2(fu, Su)d(gv, Tv), d(fu, Su)d2(gv, Tv),

d(fu, Su)d(fu, Tv)d(gv, Su), d(fu, Tv)d(gv, Su)d(gv, Tv)

)
+m(fu, gv)− φ(m(fu, gv)),

where

m(fu, gv) = max
{
d2(fu, gv), d(fu, Su)d(gv, Tv), d(fu, Tv)d(gv, Su),

1

2
[d(fu, Su)d(fu, Tv) + d(gv, Su)d(gv, Tv)]

}
.

Let u0 ∈ E be an arbitrary point. Using containment condition (C1), one
can find points u1, u2 ∈ E such that Su0 = gu1 = v0 and Tu1 = fu2 = v1.
Continuing in this manner, one can construct sequences such that

v2n = Su2n = gu2n+1, v2n+1 = Tu2n+1 = fu2n+2 (3.1)

for all n = 0, 1, 2, 3, · · · .
First, we establish the existence of fixed point for pairs of compatible map-

pings of type (R).

Theorem 3.1. Let (E, d) be a complete metric space. Let (f, S) and (g, T ) be
pairs of compatible mappings of type (R) defined on E satisfying the conditions
(C1) and (C2). Also, if one of S, T, f and g is continuous, then f , g, S and
T have a unique common fixed point in E.

Proof. Following proof of [19, Theorem 2.2], the sequence {vn} defined by the
equation (3.1) is a Cauchy sequence in E. Since (E, d) is a complete metric
space, vn → w ∈ E, as n → ∞. Consequently, the subsequences {Su2n},
{fu2n}, {Tu2n+1}, and {gu2n+1} also converge to the same point w.

Suppose that f is continuous. Then {ffu2n} and {fSu2n} converge to fw
as n → ∞. Since f and S are compatible mappings of type (R) on E, it
follows from Proposition 2.13(ii) that {Sfu2n} converges to fw as n→∞.
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Now, we claim that fw = w. For this, letting u = fu2n, v = u2n+1 and
letting n→∞ in (C2), we get

[1 + pd(fw,w)]d2(fw,w) ≤ pψ(0, 0, 0, 0) +m(fw,w)− φ(m(fw,w)),

where

m(fw,w) = max
{
d2(fw,w), d(fw, fw)d(w,w), d(fw,w)d(w, fw),

1

2
[d(fw, fw)d(fw,w) + d(w, fw)d(w,w)]

}
= d2(fw,w).

By using the value of m(fw,w) with the property of φ and ψ, the above
inequality reduces to pd3(fw,w) + φ(d2(fw,w)) ≤ 0, which is possible only if
d(fw,w) = 0, that is, fw = w.

Next, we show that Sw = w. Taking u = w and v = u2n+1 in (C2) and
letting n→∞, we get

[1 + pd(fw,w)]d2(Sw,w) ≤ pψ(0, 0, 0, 0) +m(w,w)− φ
(
m(fw,w)

)
,

where

m(fw,w) = max
{
d2(fw,w), d(fw, Sw)d(w,w), d(fw,w)d(w, Sw),

1

2

[
d(fw, Sw)d(fw,w) + d(w, Sw)d(w,w)

]}
= 0.

After simplification, we get d2(Sw,w) = 0. This implies that Sw = w. There-
fore, fw = w = Sw, that is, w is a common fixed point of f and S.

Since S(E) ⊂ g(E), there exists a point u∗ ∈ E such that w = Sw = gu∗.
Now, we show that Tu∗ = w. Letting u = w and v = u∗ in (C2), we have

[1 + pd(w, gu∗)]d2(w, Tu∗) ≤ pψ(0, 0, 0, 0) +m(fw, gu∗)− φ
(
m(fw, gu∗)

)
,

where

m(fw, gu∗)

= max
{
d2(fw, gu∗), d(fw, Sw)d(gu∗, Tu∗), d(fw, Tu∗)d(gu∗, Sw),

1

2

[
d(fw, Sw)d(fw, Tu∗) + d(gu∗, Sw)d(gu∗, Tu∗)

]}
= 0.

Simplifying the above inequality, we conclude that Tu∗ = w.
Since (g, T ) is a pair of compatible mappings of type (R) in E and gu∗ =

w = Tu∗, by Proposition 2.13(i), we have gTu∗ = Tgu∗ and hence gw =
gTu∗ = Tgu∗ = Tw. Next, we prove that w is a fixed point of g, i.e., gw = w.
For this, taking u = v = w in (C2), we have

[1 + pd(w, gw)]d2(w, Tw) ≤ pψ(0, 0, 0, 0) +m(w, gw)− φ
(
m(w, gw)

)
,

where

m(w, gw) = max
{
d2(w, gw), 0, d(w, Tw)d(gw,w), 0

}
= d2(w, gw).
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Solving the above inequality, we get d(w, gw) = 0, which implies that gw = w.
Thus w = gw = Tw = fw = Sw, that is, w is a common fixed point of S, T, f
and g.

In a similar way, we can also complete the proof, when the mapping g is
considered to be continuous.

Assume that S is continuous. Then {SSu2n} and {Sfu2n} converge to Sw
as n → ∞. Since the pair (f, S) is compatible of type (R) on E, it follows
from Proposition 2.13(ii) that {fSu2n} converges to Sw as n→∞. Now, we
claim that w = Sw. Taking u = Su2n, v = u2n+1 and letting n → ∞ in (C2)
and using the definitions of φ and ψ, we have

[1 + pd(Sw,w)]d2(Sw,w) ≤ pψ(0, 0, 0, 0) +m(Sw,w)− φ(m(Sw,w)),

where

m(Sw,w) = max
{
d2(Sw,w), d(Sw,w)d(w,w), d(Sw,w)d(w, Sw),

1

2
[d(Sw, Sw)d(Sw,w) + d(w, Sw)d(w,w)]

}
= d2(Sw,w).

Simplifying the above inequality, we get d2(Sw,w) = 0, that is, Sw = w.
Since S(E) ⊂ g(E), for w, there exists a point u′ ∈ E such that w = Sw =

gu′. We claim that w = Tu′. Letting u = Su2n and v = u′ in (C2) and taking
the limit as n→∞, we get

[1 + pd(w,w)]d2(w, Tu′) ≤ pψ(0, 0, 0, 0) + 0− φ(0), i.e., d2(w, Tu′) ≤ 0,

which is possible only when d(w, Tu′) = 0. This implies that Tu′ = w. Since
the pair (g, T ) is compatible type (R) on E and gu′ = Tu′ = w, by Proposition
2.13(i), we have gTu′ = Tgu′. Hence gw = gTu′ = Tgu′ = Tw. Putting
u = u2n, v = w and taking n→∞ in (C2), we get

[1 + pd(w, Tw)]d2(w, Tw) ≤ pψ(0, 0, 0, 0) +m(w, Tw)− φ(m(w, Tw)),
where

m(w, Tw) = max
{
d2(w, Tw), 0, d(w, Tw)d(Tw,w), 0

}
= d2(w, Tw).

Solving the above inequality, we obtain w = Tw.
Since T (E) ⊂ f(E), for w, there exists a point v′ ∈ E such that w = Tw =

fv′. Next, we claim that w = Sv′. Putting u = v′ and v = w in (C2), we get

[1 + pd(fv′, gw)]d2(Sv′, Tw) ≤ pψ(0, 0, 0, 0) +m(fv′, gw)− φ
(
m(fv′, gw)

)
,

where

m(fv′, gw) = max

{
d2(fv′, gw), d(fv′, Sv′)d(gw, Tw), d(fv′, Tw)d(gw, Sv′),

1

2

[
d(fv′, Sv′)d(fv′, Tw) + d(gw, Sv′)d(gw, Tw)

]}
= 0.
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After simplification, we conclude that d(Sv′, w) = 0, which gives that Sv′ = w.
Since the pair (S, f) is compatible of type (R) on E and Sv′ = fv′ = w, by
Proposition 2.13(i), we have fSv′ = Sfv′, that is, fw = fSv′ = Sfv′ = Sw.
Hence w = fw = Sw = Bw = Tw, that is, w is a common fixed point of S,
T , f and g. Similarly, we can complete the proof when T is continuous.

Next, we have to show the uniqueness of fixed point. Suppose w1 6= w2 are
two common fixed points of S, T , f and g. Taking u = w1 and v = w2 in (C2),
we get

[1 + pd(fw1, gw2)]d
2(Sw1, Tw2)

≤ pψ(0, 0, 0, 0) +m(fw1, gw2)− φ
(
m(fw1, gw2)

)
,

where

m(fw1, gw2)

= max

{
d2(fw1, gw2), d(fw1, Sw1)d(gw2, Tw2), d(fw1, Tw2)d(gw2, Sw1),

1

2

[
d(fw1, Sw1)d(fw1, Tw2) + d(gw2, Sw1)d(gw2, Tw2)

]}
= d2(w1, w2).

Solving the above inequality, we get pd3(w1, w2) +φ(d2(w1, w2)) ≤ 0, which is
a contradiction to the definition of φ and p. Hence our assumption is wrong
and w1 = w2, that is, fixed point is unique. This completes the proof. �

Next, we prove fixed point theorem for compatible mappings of type (E)
along with split reciprocal continuity as follows.

Theorem 3.2. Self-mappings f , g, S and T of a complete metric space (E, d)
satisfying conditions (C1) and (C2) have a unique common fixed point in E,
if the pairs (f, S) and (g, T ) satisfy either of the following conditions:

(a) (f, S) is f -compatible of type (E) and f -reciprocally continuous, (g, T )
is g-compatible of type (E) and g−reciprocally continuous.

(b) (f, S) is S-compatible of type (E) and S-reciprocally continuous, (g, T )
is T -compatible of type (E) and T -reciprocally continuous.

Proof. Following proof of [19, Theorem 2.2], the sequence {vn} defined by
(3.1), is a Cauchy sequence in E. Since (E, d) is a complete metric space,
{vn} converges to a point w ∈ E. Consequently, the subsequences {Su2n},
{fu2n}, {Tu2n+1}, and {gu2n+1} also converge to the same point w.

Suppose that pair (f, S) is f−compatible of type (E) and f -reciprocally
continuous. Then by Proposition 2.14, fw = Sw. Since S(E) ⊂ g(E), there
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exists a point u∗ ∈ E such that Sw = gu∗, that is, fw = Sw = gu∗. Now, we
claim that Tu∗ = gu∗. For this, taking u = w, v = u∗ in (C2), we get

[1 + pd(fw, gu∗)]d2(Sw, Tu∗) ≤ pψ(0, 0, 0, 0) +m(fw, gu∗)− φ(m(fw, gu∗)),

where

m(fw, gu∗) = max

{
d2(fw, gu∗), d(fw, Sw)d(gu∗, Tu∗), d(fw, Tu∗)d(gu∗, Sw),

1

2
[d(fw, Sw)d(fw, Tu∗) + d(gu∗, Sw)d(gu∗, Tw)]

}
= 0.

Using the value of m(fw, gu∗) along with the property of φ and ψ, the above
inequality reduces to d2(Sw, Tu∗) ≤ 0. This is true only if d(Sw, Tu∗) = 0,
which further gives Tu∗ = Sw = gu∗.

Since the pair (g, T ) is g−compatible of type (E) and g−reciprocally con-
tinuous and gu∗ = Tu∗, by Proposition 2.14, gw = gTu∗ = Tgu∗ = Tw.
We claim that w is a fixed point of f , that is, fw = w. Letting u = w and
v = u2n+1 in (C2) and taking the limit as n→∞, we have

[1 + pd(fw,w)]d2(Sw,w) ≤ pψ(0, 0, 0, 0) +m(fw,w)− φ(m(fw,w)),

where

m(fw,w) = max
{
d2(fw,w), d(fw, Sw)d(w,w), d(fw,w)d(w, Sw),

1

2
[d(fw, Sw)d(fw,w) + d(w, Sw)d(w,w)]

}
= d2(fw,w).

Solving the above inequality, we get pd3(fw,w) + φ(d2(fw,w)) ≤ 0. This
is true only if d(fw,w) = 0, which implies that fw = w. Therefore, we have
w = fw = Sw.

Now, we prove that w is a fixed point of g. Putting u = v = w in (C2), we
get

[1 + pd(w, gw)]d2(w, Tw) ≤ pψ(0, 0, 0, 0) +m(w, gw)− φ(m(w, gw)),

where

m(w, gw) = max
{
d2(w, gw), d(w,w)d(gw, Tw), d(w, Tw)d(gw,w),

1

2
[d(w,w)d(w, Tw) + d(gw,w)d(gw, Tw)]

}
= d2(w, gw).

Simplifying, we get d(w, gw) = 0, which implies that w = gw. Thus,
w = fw = Sw = gw = Tw, that is, w is a common fixed point of f , g, S and
T .

Similarly, one can complete the proof when the pairs (f, S) and (g, T ) satisfy
the condition (b). Uniqueness follows easily. This completes the proof. �
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Now, we prove fixed point theorem for reciprocally continuous pairs of com-
patible mappings of type (K).

Theorem 3.3. Let f , g, S and T be self-mappings defined on a complete
metric space (E, d) satisfying the conditions (C1) and (C2). Then S, T , f and
g have a unique common fixed point in E, provided that (f, S) and (g, T ) are
the pairs of reciprocally continuous and compatible mappings of type (K).

Proof. Following proof of [19, Theorem 2.2], the sequence {vn}, defined by
(3.1), is a Cauchy sequence in E. Since (E, d) is a complete metric space,
vn → w ∈ E. Consequently, the subsequences {Su2n}, {fu2n}, {Tu2n+1}, and
{gu2n+1} also converge to the same point w.

Since the mappings f and S are compatible of type (K), ffu2n → Sw,
SSu2n → fw as n → ∞. Also reciprocal continuity of the pair (f, S) implies
that fSu2n → fw and Sfu2n → Sw.

Similarly, compatibility of type (K) along with reciprocal continuity of
the pair (g, T ) implies that ggu2n → Tw, TTu2n → gw, gTu2n → gw and
Tgu2n → Tw as n→∞.

Now, we claim that gw = fw. Taking u = Su2n, v = Tu2n+1 and letting
n→∞ in (C2), we get

[1 + pd(fw, gw)]d2(fw, gw) ≤ pψ(0, 0, 0, 0) +m(fw, gw)− φ(m(fw, gw)),

where

m(fw, gw) = max
{
d2(fw, gw), d(fw, fw)d(gw, gw), d(fw, gw)d(gw, fw),

1

2
[d(fw, fw)d(fw, gw) + d(gw, fw)d(gw, gw)]

}
= d2(fw, gw).

Solving the above inequality, we get d(fw, gw) = 0, which implies that fw =
gw.

Next, we prove that gw = Sw. Letting u = w and v = Tu2n+1 and taking
the limit as n→∞ in (C2), we get

[1 + pd(fw, gw)]d2(Sw, gw)

≤ pψ
(
d2(fw, Sw)d(gw, gw), d(fw, Sw)d2(gw, gw),

d(fw, Sw)d(fw, gw)d(gw, Sw), d(fw, gw)d(gw, Sw)d(gw, gw)

)
+m(fw, gw)− φ

(
m(fw, gw)

)
,
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where

m(fw, gw) = max

{
d2(fw, gw), d(fw, Sw)d(gw, gw), d(fw, gw)d(gw, Sw),

1

2

[
d(fw, Sw)d(fw, gw) + d(gw, Sw)d(gw, gw)

]}
= 0.

Simplifying the above inequality, we get d(Sw, gw) = 0, hat is, Sw = gw. So
fw = gw = Sw.

Next, we claim that Sw = Tw. Putting u = v = w in (C2), we have

[1 + pd(fw, gw)]d2(Sw, Tw)

≤ pψ

(
d2(fw, Sw)d(gw, Tw), d(fw, Sw)d2(gw, Tw),

d(fw, Sw)d(fw, Tw)d(gw, Sw), d(fw, Tw)d(gw, Sw)d(gw, Tw)

)
+m(fw, gw)− φ

(
m(fw, gw)

)
,

where

m(fw, gw) = max

{
d2(fw, gw), d(fw, Sw)d(gw, Tw), d(fw, Tw)d(gw, Sw),

1

2

[
d(fw, Sw)d(fw, Tw) + d(gw, Sw)d(gw, Tw)

]}
= 0.

That is, [1 + 0]d2(Sw, Tw) ≤ pψ(0, 0, 0, 0) + 0 − φ(0), i.e., d2(Sw, Tw) ≤ 0,
which is true for Sw = Tw. Hence gw = Tw = fw = Sw, i.e., w is a
coincidence point of S, T, f and g. It remains to prove that w is a common
fixed point of S, T, f and g. Letting u = u2n and v = w in (C2) and letting
n→∞, we get

[1 + pd(w, gw)]d2(w, Tw) ≤ pψ(0, 0, 0, 0) +m(w, gw)− φ(m(w, gw)),

where m(w, gw) = max{d2(w, gw), 0, d(w, Tw)d(gw,w), 0} = d2(w, gw).
After simplification, we get d(w, Tw) = 0, i.e., w = Tw. Hence fw = gw =

Sw = Tw = w. Therefore, w is a common fixed point of f, g, S and T .
The uniqueness can be proved easily. This completes the proof. �

Remark 3.4. Putting f = g = I(Identity mapping of E) and S = T in
Theorems 3.1, 3.2 and 3.3, we get generalized versions of Theorem 1.2.
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Remark 3.5. Define ψ in Theorems 3.1 and 3.3 as follows: ψ(t1, t2, t3, t4) =
max{12 [t1+t2], t3, t4}. Then Theorems 3.1 and 3.3 reduce to the results of Jain
et al. [12] for compatible mappings of type (R) and type (K), respectively.

Remark 3.6. Theorem 3.2 improve the results of Jain et al. [12] for com-
patible mappings of type (E) by using the control function ψ and replacing
the continuity of mappings with the concept of split reciprocal continuity of
mappings.

Letting f = g = A and S = T = B in Theorems 3.1, 3.2 and 3.3, one can
deduce the following corollaries.

Corollary 3.7. Let (E, d) be a complete metric space. Suppose that A,B :
E → E are two mappings satisfying the following conditions:

(C1∗) A(E) ⊂ B(E),
(C2∗) for all u, v ∈ E there exist a real number p > 0, a function ψ ∈ Ψ and

a function φ ∈ Φ such that

[1 + pd(Bu,Bv)]d2(Au,Av)

≤ pψ
(
d2(Bu,Au)d(Bv,Av), d(Bu,Au)d2(Bv,Av),

d(Bu,Au)d(Bu,Av)d(Bv,Au), d(Bu,Av)d(Bv,Au)d(Bv,Av)

)
+m(Bu,Bv)− φ(m(Bu,Bv)),

where

m(Bu,Bv)

= max
{
d2(Bu,Bv), d(Bu,Au)d(Bv,Av), d(Bu,Av)d(Bv,Au),

1

2
[d(Bu,Au)d(Bu,Av) + d(Bv,Au)d(Bv,Av)]

}
,

(C3∗) either B or A is continuous.

If the pair (B,A) is compatible of type (R), then there exists a unique point
w ∈ E such that Bw = w = Aw.

Corollary 3.8. Let A and B be self mappings of a complete metric space
(E, d) satisfying the conditions (C1∗) and (C2∗) of Corollary 3.7. If the pair
(A,B) satisfies either of the following conditions:

(a) (A,B) is A-compatible of type (E) and A−reciprocally continuous;
(b) (A,B) is B-compatible of type (E) and B−reciprocally continuous.

Then A and B have a unique common fixed point in E.
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Corollary 3.9. Let (E, d) be a complete metric space. Suppose that A,B :
E → E are two mappings satisfying the conditions (C1∗) and (C2∗). If (A,B)
is compatible of type (K) as well as reciprocally continuous, then A and B
have a unique common fixed point in E.

Now, we present examples in support of Theorems 3.1 and 3.2.

Example 3.10. Let E = [0, 5] and d be a usual metric. Define f, g, S, T :
E → E as Tu = Su = 5+u

2 , gu = fu = 5
2 + u, 0 ≤ u < 5

2 , Tu = Su = 5
2 ,

5
2 ≤ u ≤ 5, fu = gu = 5

2 , u = 5
2 and fu = gu = 24

5 , 5
2 < u ≤ 5. Clearly,

S(E) = [52 ,
15
4 ) = T (E) and f(E) = g(E) = [52 , 5). The mappings are not

continuous at u = 5
2 . Let {un} be a sequence in E such that un → 0, un > 0,

for all n. Then Sun, fun → 5
2 = t and SSun = S(5+un2 ) → 5

2 , Sfun =

S(52 +un)→ 5
2 , ffun = f(52 +un)→ 24

5 and fSun = f(5+un2 )→ 24
5 . Also, we

have ft = 5
2 = St. Thus SSun, Sfun → 5

2 = ft = f 5
2 and Sfun → 5

2 = St =

S 1
2 . Therefore, the pair (f, S) is S-compatible of type (E) and S-reciprocally

continuous and the pair (g, T ) is T -compatible of type (E) and T -reciprocally
continuous. In particular, if we take ψ(t1, t2, t3, t4) = max{t1, t2, t3, t4}, where
ti ≥ 0, i = 1, 2, 3, 4, φ(t) = 3

2 t, t ≥ 0 and 3
2 < p, then it satisfies all the

conditions of Theorem 3.2 and 5
2 is the unique common fixed point of f, g, S

and T .

Example 3.11. Let E = [2, 20] and d be a usual metric. Let f, g, S, T :
E → E be defined as fu = 2, 2 ≤ u ≤ 10, fu = u − 8, 10 < u ≤ 20,Su =
2, 2 ≤ u ≤ 20, gu = 2, Tu = 2, u = 2, gu = 6, Tu = 3, 2 < u ≤ 20.
Here T (E) = {2, 3} ⊂ [2, 12] = f(E) and S(E) = {2} ⊂ {2, 6} = g(E).
For the sequence {un}, where un = 2, for each n, pairs (f, S) and (g, T )
are compatible of type (R). If we define a function φ : [0,∞) → [0,∞) as
φ(t) = 3

2 t, for each t ≥ 0 and define a function ψ : [0,∞)4 → [0,∞) as
ψ(w1, w2, w3, w4) = max {w1, w2, w3, w4}, wi ≥ 0, i = 1, 2, 3, 4 and take a real
number p ≥ 3

2 , then all the conditions of Theorem 3.1 are satisfied and 2 is
the unique common fixed point of f, g, S and T .

4. Fixed point for weak integral contraction

In 2001, Branciari [6] generalized Banach contraction principle by introduc-
ing an integral type contraction. Similarly, we analyze our results for mappings
satisfying a generalized (ψ, φ)-weak integral type contraction.

Theorem 4.1. Let f, g, S and T be four self-mappings of a complete metric
space (E, d) satisfying the conditions (C1) and
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(C4) for u, v ∈ E, there exist functions φ ∈ Φ, ψ ∈ Ψ and a positive real
number p such that

M(u,v)∫
o

ζ(t) dt ≤
N(u,v)∫
o

ζ(t) dt,

where M(u, v) = [1 + pd(fu, gv)]d2(Su, Tv), and

N(u, v) = pψ

(
d2(fu, Su)d(gv, Tv), d(fu, Su)d2(gv, Tv),

d(fu, Su)d(fu, Tv)d(gv, Su), d(fu, Tv)d(gv, Su)d(gv, Tv)

)
+m(fu, gv)− φ(m(fu, gv)).

Here

m(fu, gv)

= max
{
d2(fu, gv), d(fu, Su)d(gv, Tv), d(fu, Tv)d(gv, Su),

1

2
[d(fu, Su)d(fu, Tv) + d(gv, Su)d(gv, Tv)]

}
,

and ζ : [0,∞) → [0,∞) is a Lebesgue integrable function which is
summable on each compact subset of [0,∞) such that for each ε > 0,
ε∫
o
ζ(t) dt > 0.

If the pairs (f, S) and (g, T ) are compatible mappings of type (R) and one of
f, g, S and T is continuous, then f, g, S and T have a unique common fixed
point.

Theorem 4.2. Let f, g, S and T be four self mappings of a complete metric
space (E, d) satisfying the conditions (C1) and (C4). If the pairs (f, S) and
(g, T ) satisfy either of the following conditions:

(a) (f, S) is f -compatible of type (E) and f -reciprocally continuous, (g, T )
is g-compatible of type (E) and g-reciprocally continuous;

(b) (f, S) is S-compatible of type (E) and S-reciprocally continuous, (g, T )
is T -compatible of type (E) and T -reciprocally continuous.

Then f, g, S and T have a unique common fixed point.

Theorem 4.3. Let f, g, S and T be four self-mappings of a complete metric
space (E, d) satisfying the conditions (C1) and (C4). If pairs (f, S) and (g, T )
are compatible mappings of type (K) and reciprocally continuous, then f, g, S
and T have a unique common fixed point.
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Remark 4.4. Taking ζ(t) = c (some non-zero constant) in Theorems 4.1, 4.2
and 4.3, these theorems reduce to Theorems 3.1, 3.2 and 3.3, respectively.

5. Some applications to dynamic programming

Let U, V denote Banach spaces, and Ŝ ⊂ U , D ⊂ V be state space and
decision space, respectively. Let R denotes the set of all real numbers and
B(Ŝ) = {h : Ŝ → R, h is bounded}. Basic form of functional equation given
by Bellman and Lee [4] is as follows:

g(u) = opt
v

G(u, v, g(τ(u, v))),

where u ∈ Ŝ, v ∈ D, τ is the transformation process, g(u) is the optimal
return with initial state u and the opt denotes max or min.

In this section, we shall discuss the application of our results in finding
a common solution of the following functional equations that are arising in
dynamic programming :

fi(u) = sup
v∈D

Fi(u, v, fi(τ(u, v))), u ∈ S, (5.1)

gi(u) = sup
v∈D

Gi(u, v, gi(τ(u, v))), u ∈ S, (5.2)

where τ : Ŝ×D → Ŝ and Fi, Gi : Ŝ×D×R→ R, i = 1, 2. Define the mappings
Pi, Qi, i = 1, 2 as follows

Pih(u) = sup
v∈D

Fi(u, v, h(τ(u, v))),

Qik(u) = sup
v∈D

Gi(u, v, k(τ(u, v))),
(5.3)

for all u ∈ Ŝ, h, k ∈ B(Ŝ), i = 1, 2.

Theorem 5.1. Suppose that the following conditions hold:

(D1) F1, F2, G1 and G2 are bounded,

(D2) for all u, t ∈ Ŝ, v ∈ D, h, k ∈ B(Ŝ),∣∣F1(u, v, h(t))− F2(u, v, k(t))
∣∣ ≤M−1(pψ(d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h)

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k))
)
,



Fixed points for compatible mappings 699

where

m(Q1h,Q2k)

= max

{
d2(Q1h,Q2k), d(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P2k)d(Q2k, P1h)
1

2
[d(Q1h, P1h)d(Q1h, P2k)

+ d(Q2k, P1h)d(Q2k, P2k)]

}
,

M = [1 + pd(Q1h,Q2k)]d(P1h, P2k),P1h 6= P2k, φ ∈ Φ, ψ ∈ Ψ, p is a
positive real number and the mappings P1, P2, Q1, Q2 are defined as in
(5.3),

(D3) for any sequence {kn} ⊂ B(Ŝ) and k ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|kn(u)− k(u)| = 0,

lim
n→∞

sup
u∈Ŝ
|Qikn(u)−Qik(u)| = 0 or lim

n→∞
sup
u∈Ŝ
|Pikn(u)− Pik(u)| = 0,

hold for i = 1 or i = 2,
(D4) for any h ∈ B(Ŝ), there exist k1, k2 ∈ B(Ŝ) such that

P1h(u) = Q2k1(u), P2h(u) = Q1k2(u), u ∈ Ŝ,

(D5) for any sequence {kn} of B(Ŝ), if there exists h ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|Qikn(u)− h(u)| = lim

n→∞
sup
u∈Ŝ
|Pikn(u)− h(u)| = 0,

then

lim
n→∞

sup
u∈Ŝ
|QiPikn(u)− PiQikn(u)| = 0, i = 1, 2,

lim
n→∞

sup
u∈Ŝ
|QiQikn(u)− PiPikn(u)| = 0, i = 1, 2.

Then the system of functional equations (5.1) and (5.2) has a unique common

solution in B(Ŝ).

Proof. Let d(h, k) = sup{|h(u)−k(u)| : u ∈ Ŝ} for any h, k ∈ B(Ŝ). Obviously,

(B(Ŝ), d) is a complete metric space. By conditions (D1) − (D5), Pi, Qi are

self-mappings of B(Ŝ). One of Pi, Qi is continuous for i = 1, 2, P1(B(Ŝ)) ⊂
Q2(B(Ŝ)) and P2(B(Ŝ)) ⊂ Q1(B(Ŝ)) and the pairs of mappings (P1, Q1) and

(P2, Q2) are compatible of type (R). For η > 0, u ∈ Ŝ and k1, k2 ∈ B(Ŝ),
there exist v1, v2 ∈ D such that

Piki(u) < Fi(u, vi, ki(ui)) + η, (5.4)
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where ui = τ(u, vi), i = 1, 2. Also, we have

P1k1(u) ≥ F1(u, v2, k1(u2)), (5.5)

P2k2(u) ≥ F2(u, v1, k2(u1)). (5.6)

From (5.4), (5.6) and (D2), we have

P1k1(u)− P2k2(u) < F1(u, v1, k1(u1))− F2(u, v1, k2(u1)) + η

≤M−1
(
pψ
(
d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h)

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k))
)

+ η.

(5.7)

From (5.4), (5.5) and (D2), we have

P1k1(u)− P2k2(u) > F1(u, v2, k1(u2))− F2(u, v2, k2(u2))− η

≥ −M−1
(
pψ
(
d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h)

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k))
)
− η.

(5.8)

From (5.7) and (5.8), we obtain

|P1k1(u)− P2k2(u)| ≤M−1
(
pψ
(
d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h)

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k))
)

+ η.

(5.9)

Since η > 0 is arbitrary and (5.9) is true for all u ∈ Ŝ, taking supremum, we
get
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[1 + pd(Q1k1, Q2k2)]d
2(P1k1, P2k2) ≤ pψ

(
d2(Q1h, P1h)d(Q2k, P2k),

d(Q1h, P1h)d2(Q2k, P2k),

d(Q1h, P1h)d(Q1h, P2k)d(Q2k, P1h)

d(Q1h, P2k)d(Q2k, P1h)d(Q2k, P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k)).

Therefore, by Theorem 3.1, where P1, P2, Q1, Q2 correspond to the mappings
S, T, f, g, respectively, P1, P2, Q1 and Q2 have a unique common fixed point
k∗ ∈ B(Ŝ), that is, k∗(u) is a unique common solution of the system of func-
tional equations (5.1) and (5.2). �

Theorem 5.2. Suppose that the conditions (D1), (D2) and (D4) of Theorem
5.1 are satisfied. Then the system of functional equations (5.1) and (5.2)

has a unique common solution in B(Ŝ) provided that either of the following
conditions is satisfied:

(D6) for any sequence {kn} of B(Ŝ), if there exists k ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|Qikn(u)− k(u)| = lim

n→∞
sup
u∈Ŝ
|Pikn(u)− k(u)| = 0,

then, for i = 1, 2,

lim
n→∞

sup
u∈Ŝ
|QiPikn(u)−Qik(u)| = 0,

lim
n→∞

sup
u∈Ŝ
|QiQikn(u)− Pik(u)| = lim

n→∞
sup
u∈Ŝ
|QiPikn(u)− Pik| = 0,

(D7) for any sequence {kn} of B(Ŝ), if there exists k ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|Qikn(u)− k(u)| = lim

n→∞
sup
u∈Ŝ
|Pikn(u)− k(u)| = 0,

then, for i = 1, 2,

lim
n→∞

sup
u∈Ŝ
|PiQikn(u)− Pik(u)| = 0,

lim
n→∞

sup
u∈Ŝ
|PiPikn(u)−Qik(u)| = lim

n→∞
sup
u∈Ŝ
|PiQikn(u)−Qik| = 0.

Proof. From (D6), the pair (Qi, Pi) is Qi-compatible of type (E) and Qi-
reciprocally continuous for i = 1, 2 and from (D7), the pair (Qi, Pi) is Pi-
compatible of type (E) and Pi-reciprocally continuous for i = 1, 2. Following
the proof of Theorem 5.1, we conclude that all the conditions of Theorem 3.2
are satisfied. Hence the system of functional equations (5.1) and (5.2) has a

unique common solution in B(Ŝ). �
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Theorem 5.3. Suppose that the conditions (D1), (D2) and (D4) of Theorem
5.1 and the following conditions are satisfied:

(D8) for any sequence {kn} of B(Ŝ), if there exists k ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|Qikn(u)− k(u)| = lim

n→∞
sup
u∈Ŝ
|Pikn(u)− k(u)| = 0,

then, for i = 1, 2,

lim
n→∞

sup
u∈Ŝ
|QiPikn(u)−Qik(u)| = 0, lim

n→∞
sup
u∈Ŝ
|PiQikn(u)− Pik(u)| = 0,

(D9) for any sequence {kn} of B(Ŝ), if there exists k ∈ B(Ŝ) such that

lim
n→∞

sup
u∈Ŝ
|Qikn(u)− k(u)| = lim

n→∞
sup
u∈Ŝ
|Pikn(u)− k(u)| = 0,

then, i = 1, 2,

lim
n→∞

sup
u∈Ŝ
|QiQikn(u)− Pik(u)| = 0, lim

n→∞
sup
u∈Ŝ
|PiPikn(u)−Qik(u)| = 0.

Then the system of functional equations (5.1) and (5.2) has a unique common

solution in B(Ŝ).

Proof. By following the proof of Theorem 5.1, all the conditions of Theorem 3.3
are satisfied and by applying Theorem 3.3, the system of functional equations
(5.1) and (5.2) has a unique common solution in B(Ŝ). �

6. Conclusion and future works

In this paper, we studied pairs of compatible mappings of type (R), type
(E) and type (K) to obtain some common fixed point theorems for pairs of
compatible mappings of type (R), type (E) and type (K) satisfying gener-
alized (ψ, φ)-weak contraction involving cubic terms of metric functions. We
provided useful examples and application to dynamical programming for the
validity of our results. In next study, we will try to apply the results to some
set-valued or interval-valued mappings to obtain similar results.
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