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Abstract. This paper is concerned with the study of first-order necessary optimality condi-
tions for the non-stationary incompressible fluid flows described by the Navier-Stokes equa-
tions subject to conjugation conditions within a bounded domain ¢ C R™(2 < n < 3). First,
we establish the existence and uniqueness of the weak solution to this system by using the
Lax-Milgram lemma then, we prove the existence and uniqueness of distributed control for a
quadratic cost functional, subject to the non-stationary incompressible fluid flows governed

by Navier-Stokes equations with conjugation and Dirichlet conditions.

1. INTRODUCTION

The mathematical analysis of the optimal control of the Navier-Stokes equa-
tions with conjugation conditions which describe fluid flow plays a major role
in the flow Control, Environmental Engineering and Biomedical applications.
In modeling blood flow, controls might dictate how blood flow is manipulated
through stents or other medical devices. For Environmental Engineering, con-
jugation conditions can be used to model how controls in pollution dispersal
influence the flow field. Moreover the problem involves finding control inputs
that minimize a cost function while satisfying the equations governing fluid
motion. When incorporating conjugation conditions, you typically deal with
distributed control or constraints that link the control inputs to the state of
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the fluid. In three dimensional form we address the distributed control of the
non-stationary and incompressible Navier-Stokes equations as follows

( oqF .
P — CAVI+Viga + VB9 4+ Va O 4 S0 = fr (1) in ope,
g3 .
B — CAVy+ ViG2 + 1592 + V3 8% 4 S — fx(n,t) in o,
(1.1)
oq% .
s — CAVs+ V19 + 1590 Va0 4 Z08 = fr(nt) in ope,
% Vs oVy __ .
\V-V—W;—{—Té—l—wg—o in or-,

where or- = o x (0,7*) and p is a domain that consists of two open, non-
intersecting and bounded, continuous, strictly Lipschitz domains ¢; and oo
such that

0= (01U 02),(01MNo2) =¢ and 0= (01U 02).

OnTr-=Tx(0,7*), T = (001Ud02) \1y, (7 = 0p1NIp2 # ¢), the boundary
condition of the Dirichlet (no-slip) and the initial condition are given by

Vi(n,0) = Vio(n) in o,

Va(n,0) = Va0(n) in o,
(1.2)
V3(n,0) = Vio(n) in o,

‘/1(77775) = ‘/2(77775) = ‘/fi(nvt) =0 on I'r,

where V' (n,t) = (V1, Va, V3)) is the velocity of the fluid, ¢* represents the scalar
pressure, f* stands for the given external body forces and ( is a constant. On
the section v« = v x (0,7*) of the domain p the conjugation conditions are
given by

- - r n A

[oA% oV

Ga | = ijzz:la*ﬁcos(%m) =0 on vyrs,

- - B n 7

A% AV

_&Li_ - iJZZ:IaT,fCOS(M,m) =0 on 77+, (1.3)
- - r n T

V- oV

x| = ijzzlafﬁcoswm) =0 on yp-,
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it

3
{6‘/2} =r[Va] on -, (1.4)
b

{

\s

=r[Vi] on ~yp«,

%
=

@
=

- T[‘/3] on “yrx,

Q
b

m
where

[ =¢t—¢,
¢ ={t =&, t) for (n,t) € vf = (Do2N7) x (0,T%),

T ={g7 =&m,t) for (n,t) € vy = (B0 Nv) x (0,17),
cos(p, n;) = i-th direction cosine of i, u being the normal to v and such normal
is directed into the domain p9, 88%‘ is directional derivative of V' and

{Ogr:r(n)éﬁ, r e C(y),

r1 is a positive constant.

(1.5)

This paper has considered the applied problems of distributed type of the
Navier-Stokes system. The optimal control conditions in terms of the states of
systems (4.2) and equations (1.2), (1.3), (1.4) have been established. Various
optimal control problems governed by classical Navier-Stokes equations has
been studied by many authors see ([4], [5], [8], [11], [18], [19], [20]). Hyder
and El-Badawy [9] extended this discussion to time-fractional Navier-Stokes
equations. Lions [10] discussed the optimal control problems for finite order
elliptic, parabolic and hyperbolic operators with finite number of variables.
Gali and Serag ([6], [7]) extended this discussion to cooperative systems. Using
the theory of Sergienko and Deineka [17], Serag et.al. ([12], [13], [14], [15],
[16]) and [2] introduced some control problems for cooperative systems under
conjugation conditions. Some applications were introduced in ([1], [3]). In
the present work, we study the optimal control of distributed type for the
non-stationary incompressible fluid flows of the Navier-Stokes equations under
conjugation conditions.

2. FUNCTION SPACES AND SOME PROPERTIES

To start, we define the following spaces: D(p) the space of infinitely differ-
entiable functions with compact support in g, D*(p) its dual and the space of
divergence free functions is defined by

A = Dyi(or+) ={V € (D(or+))*; V-V = 0}.
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For the functional setting of the problem (1.1) we take a Hilbert space L?(p)
and a Sobolev space

H&(Q):{VEIP(Q)%ELQ(Q),VH*:O? 7/:]-7273}
We define the next spaces
H={V e (L*0)’, V-V =0},
2% oV
a = O? a =0 3
aMA’F [8NA],Y J

where H and Vjy are Hilbert spaces and there are the complete closure of
Daiv(or+) in L?(0) and H{(p), respectively. The norm in L?(p) is |[V|* =

(V,V), where
3
Vo) =3 [ Vit
i=17¢

and the norm in H{(p) is
ov ov
V| = — .
vl (377/ 8%‘)

Since Vp is dense subset of H and Vy C H C V,; with continuous and dense
embedding, we construct the function space for our problem as follows

oV
ot

Vo ={V € (Hy(0))*>, V-V =0,

Wo(0,T%) = {V V e L*(0,T*; Vy), LQ(O,T*;VH*)}.

Moreover,
L(0,T%;Vp) © L*(0, T (L*(0))*) € L*(0,T* Vy),
so Wy (0,7) is a Hilbert space with the norm equipped by

oV
IV B = { IV Iy + 157 o |-
To prove the existence of the state of the system (1.1)-(1.5) we apply the
extended holder inequality which stated that:

Theorem 2.1. ([11]) Let ¢ be a bounded set in R®. If V € LP (9), x* € LI (o)
and X € L™ () with

— 4+ —+4+—=1, I1<p’q,r < oo,
then V. x*x € L'(o) and
/IV (mldn < IV o= XN o 11X e - (2.1)

And also apply the following two theorems.
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Theorem 2.2. ([19], Sobolev imbedding theorem) Let o C R"™ and let 1 <
p* < 0o and m > 0. Then the following imbedding exist and are continuous:

() for m*p* <n': WP (o) C I (o) if 1< ¢" < 2B
(i) for m*p* =n* : Wm*’p*(g) C L‘I*(g) if 1<q*<o0,
(iii) of o C R?, then Hl(g) = W1’2(g) - LQ*(Q), V1<g* < oo,
(iv) if o C R3, then Hl(g) - LG(Q).

*

Theorem 2.3. ([11], Banach Contraction Principle) Let T* be an operator
defined on the Banach space X. Assume that T is a contraction, i.e.

1Ty = Tyllll < eaflz” = o*[l, Va*y" € X, 0<an <L

Then there exists a unique element x* € X such that Tx* = z*.

3. WEAK SOLUTION

To begin the notation of weak solutions for the non-stationary Navier-Stokes
equations (1.1).

Let Vp and H be spaces defined above and a forcing term f* € L?(0,T*; Vi)
be given. A weak formulation consists in multiplying the momentum equation
and the continuity equation with an arbitrary test function x € A and then
integrate over por+. Finally, integration by parts is applied to reduce the de-
rivative order of some terms. The variational form of the momentum equation
reads directly

™ ov ™
/ (G W 2(eedt + / (V- V)V X) (2(g)dt
0 0
T* T+
+C/ (VVP, VX)(L2(Q))3dt+/ (Vq,x)(L2(g))3dt (31)
0 0

T*
_/0 (f5 ) @2e2dt,  Vx €A

Applying integration by parts, the weak form of the pressure term is given

by
T* T* aX T*
/ /Vq*xdn dt:/ (€% 72 ()3 —/ (¢",V-x)=0.
0 0 0 on 0

Using the similar procedure on the continuity equation yields

T
/0 (V : V(t),x(t))(L2(g))3dt =0.
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Definition 3.1. We call V € L?(0,T*;Vp) with f* € L?(0,T*; V) and Vo €

H be given, a weak solution to the no-slip boundary-value problem for the
non-stationary Navier-Stokes system in (1.1)-(1.4) if the variational equation.

1%
(E,X)Jra*(V,x)an*(V,V,x) =F(x), VYxeV (3.2)

is satisfied.

To specify the problem setting, we introduce a nonlinear operator
B : L?(0,T%;Vp) — L*(0,T*; V) by

T* T*
(B(V,V),x) :/0 ((B(V))(t),X)(Lz(g))sdtz/0 b*(V (1), V1), x(1))d,

where b* : Vy x Vy x Vg — R is the trilinear form defined by:

T
b*(V, x, X) :/0 (V-V)x,x) (L2(0))3 dt = / /Z VaX])Zjdn dt, (3.3)

04,4=1
9 o o
(V- V) =(Vig o+ Voo + Vo,

oxa _ 0x2 Ox2
\% Va
Bm X2 + 2877 X2+ 3877 X2,

ox3 _ Ox3 _ X3
VlaT] X3+V2877 X3+Véa X3>

=

Lemma 3.2. ([11]) For n* = 3, the trilinear form b*(V, x, x) defined in (3.3)
s continuous and satisfies the following properties

(1) [6"(V,x, X)| < Crl[ Vv lIxlva X ve
(11) b*(VvXaX) = 7b*(V,XaX)}
(iii) b*(V,x,x) = 0.

Proof. To prove the continuity of the form b*(V, x, x), let

2n* 6X :
V; € L2 (p), J
€ (0) o

By the extended Holder inequality, equation (3.3) becomes
b*(V, X, X \_’/ /Zvaxﬁxdndt
7 a J

< [IVill s g)ll Xy o @il o)

€ L*(0), Xi € L™ (o).

(3.4)
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From the Sobolev imbedding theorem

VI, 22y ) < CIV g

we obtain
10*(V, x: )| < ChllVillvg lIxve Xl v - (3.5)

Thus, b*(V, x, x) is continuous on Vy x Vy x Vj.
Moreover,we prove the above properties as follows: Applying the Green’s
formula to equation (3.3), we obtain

. _ r Vi
v*(Vix, X) = — ; Z X% dn dt

T* 8X .
— E Vixi —2L dndt 3.6
/0 0 J anz ( )

Therefore,
b (V,x, X) = —0"(V, X, X)-
If we replace Y by x in (3.6), we have

T* 3 a‘/;
b*(V,x,X)Z—/ /Z 5, XiXi dn dt
0 z,] 1 i
T* .
/ /ZVX] X g dt
n;
04,45=1
T*
/ / Z Vixjx; - ndldt.
i,7=1

Thus, we obtain
b*(V, x, x) = —b"(V, x, x)
and

b*(V.x, x) = 0.
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On the other hand, we consider the bilinear form a* : Vy x Vy — R, for each
te (0,77),
a*(V,x) = (AV,x)

T*
= /(; (AV(t),X>(L2(g))3dt

T*
:/0 (VV(t),VX(t))(LQ(Q))3dt
= (=CAV(n,t),x(n,t)), Vx €A,
where the linear operator A : L%(0,T*; Vy) — L%(0, T*; Vy) is defined by
AV = —CAV.

Lemma 3.3. The form defined in (3.7) is symmetric, continuous and coercive
over Vg x Vy.

Now, we define F* : Vj — R by
F*(x) = (f"x), YxeV,

where the functional be linear and continuous and

*
V* = sup .
Pl (% 0]
xevo Xl

Theorem 3.4. For every f* € L?(0,T*;V}*) and Vi € H is given the formula
(3.2) has a unique solution V€ Wq(0,T*).

Proof. For each V' € Vj rewriting (3.2) to be

0 * — * — %[ — —
(X >+a<x,x>+b<v;x,x>=F<x>, v TE€Ve  (37)

Ea X
and consider the bilinear form my (x, x) as following:
v (X X) =a" (6 X) +0°(Vix, x), Vx, X € Vo (3.8)
For each V' € Vj and y is a unique solution to (3.8), we define By : Vj — Vp,
by Bo(V) = x.

Based on coerciveness of the form a*(x, y) and the skew-symmetric prop-
erty of the form b*(V; x, ), we deduce the continuity and the coerciveness of
WV(X:)Z)? that is,

v (X, %) > ColIx|[,,  C2>0. (3.9)
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Then from Lax-Milgram lemma, the mapping By(V) = x is well-defined and
the fixed point of By is a unique solution of (3.2). If we replace y by x in
equation (3.7), we have

Ixllve + H Hv* < Cs|F* |y (3.10)

Now, let K* = {x € Vo : |Ixllv, + | ath>V* < G3]|F*|lv; }. Then K* is a
bounded, closed and convex subset of Vj, where By : K* — K *, furthermore,

By is also a contraction mapping. In fact, if Bo(V1) = x1, BO(VQ) = X2, We
have, for all Vq, Vs € K*,

8X * — * — * [ — —
( 8tl,><)+a (x1,X) + 0" (Visx1,x) = F*(X) , Vxi,X € Vo,
8X2 * k —
(8t 7X)+a’ (X27 )+b (V27X27 ) F( ) vX27X€‘/9
Hence, we obtain
0 _ .
(&(M—XQ),X)JF@ (x1 = x2,X) + 0" (Vi; x1,x) — 0" (Va; x2, X) = 0,

by replacing ¥ by x1 — X2, we have

0 .
(a(xl —X2), X1 — X2) +a"(x1 — X2, X1 — X2)
+ 0" (Vs x1, x1 — x2) — 0" (Va; x2, x1 — x2) = 0.

(3.11)

Take again

v (X1 — X2, X1 — X2) = a" (X1 — x2, X1 — x2) + 0" (Vas x1 — X2, x1 — X2),
then (3.11) transformed to

0 .
(&(Xl —X2)s X1 — X2) + T (x1 — X2, x1 — x2) = b0 (Va — Vi; x1, x1 — X2),

and hence, by using (3.9) and Lemma 3.1, we obtain
Calxa = xall* + H*(X1 xo)ll < CillVa = Vallixalllixa = xall
or

Callx1 — x2[? < CillVe = Vallllxallllx1 — xz|l-
Since x1 € K, we have

Cl *
o — el < S - Wl <03||F |- ||)

o (calri =158 <1

if we take
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then the mapping By is a contraction mapping and the mapping By(V) = x
has a unique fixed point. O

4. FORMULATION OF THE CONTROL PROBLEM

First, the adjoint state of our problem is established and the set of the first-
order necessary optimality conditions is obtained. This problem leads us to

formulate the minimization of the cost functional
J(0) =IVA(u") = 22200y + Vo (0") = 220 "
V3 (") = 23l T2 () + (N0 0) (12(gpuyss YV E

Subject to equation

avl CAV( SRR )avl( )+V( )avl( )+V( )avl( )+gg1£

8V2 CAVYQ( )+‘/v1( )8\/2( )+V( )8\/2( )+V< )8‘/57(:*)4-%
_fQ(na )+u2 in or*,

(9V3 CA%( )+‘/1( )6\/3( )+V( )3V3( )+V( )8‘/37(73)_'_2;173
_f3(77a )+'LL3 n or*,

| - B B 2 o

4.2

and equations (1.2), (1.3), (1.4), where the forcing term f*+u* is the control.

Consider U* = (L?(or+))? as a control Hilbert space.
For a control u* = (u},ub,u}) € U*, the state V(u*) € L?(0,T*;Vp) of the
system is given by (4.2). Specify the observation as

3 3
ZHw) =Y (2 (u) = CsV(u*) = Y (Vi(u")),
i=1 ij=1
where C3 € £(Wo(0,7%), (L*(or+))?). For given z} € (L*(¢r+))?, the cost

functional is got by (4.1), where N* € L((L*(or+))3, (L*(or+)3)) is positive
definite Hermitian operator satisfies the following condition:
(N*u*u*) > CoHu*H%LQ(QT*))g, Cp > 0. (4.3)
The control problem then is to find:
u* = (uj,us,u3) € U, such that
(4.4)
J(u*) = inf J(v), VoveU*,
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where U, is closed convex subset of (L?(or+))3.
On the other hand, the weak formulation (4.2) can be written in the follow-
ing form (see[18])

Y+ AV +B(V) = f*+u* in or,
V(n,t) € Vy, Vte(0,T), (4.5)

V(T/a 0) = ‘/E) in oT*-

T* is a fixed (but arbitrary) strictly positive real number and the operators
A, B are defined above.

5. LINEARIZED EQUATIONS

We introduce some results regarding linearized equations. For each V €
Wo(0,T*) define the derivative B'(V) of the nonlinear operator B by

T ™
/ (B (V(O)V (1), X(t))dt = / 0" (V(8), V), x(8))
0 0

+ 0" (V (1), V(t),x(t))dt, ¥V, x € Wo(0,T)
(5.1)
and it’s adjoint operator [B'(V)]* : L2(0,T*,Vy) — L?(0,T*, Vy*) by

(V)-V,x) = (V,(B'(V))*x),
that is,

In fact, to prove (5.2) we use (5.1) as follows

’ T o7,
(B(V /0 /Z + Vi X)dn dt,

sz 1

by integration by parts and (1 1)

, T* T* 3. OX;
(B'W) // D= [ [5G a i
z]l Q4 j=
//ZVVand dt

04,45=1

T*
/ /Z V;x;dn dt+/ /mejxj.ndrdt.
0
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Lemma 5.1. The mapping u* — V (u*), from L*(0,T*; H) into L*(0,T*; V),
has a Gateauzr derivatives 8‘/( Db any direction h € L*(0,T*; H). More-
oV (u*)

over, —g5—.h =w(h) is a solutzon of the linearized problem:

w4 Aw+ B (V) (w)=h in o
w(n,t) € Vp, Vte (0,T%), (5.3)

w(0)=0 in o.

Lemma 5.2. Let hy € L%(0,T*; H) and let w(hy) be the solution of the system
(5.1). Then for every ho € L*(0,T*; H), we have

/ /hg w(hy))(n,t)dndt = / /hl n,t)dndt,

where 1*(ha) is a solution of the adjoint linearized problem
— + CAW) + (B (VW) =hy in o,
¢*(U:t) S V97 Vit e (OaT*)a (54)

Y (T*)=0 in o.

Awém%wmwmzéw/ ")+ (B'(V () wdnds

; /(/OTE— w)dt)dn-+ /OTE/Q(CA(W)'w)dn)dt
+ / / YU - w)dn)t,

using the definition of (B'(V (u*)))* and the property of the self-adjoint of the
operator A and the adjoint of the operator B defined above we have




Distributed control of an incompressible Navier-Stokes equations 717

/OT* /th ~w(hy)dndt = /Q{[_w*w]rar* N /OT* (w*%})}dn

+</OT*</Q¢*-Awdn>dt

o [ B Wi

dt

T*
:/ /w* - hidndt.
0 0

6. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

0
T*
- / / $ 1 4 cAw B (V(u)wldndt
0 1Y

Theorem 6.1. If the cost functional is given by (4.1) and (4.3) is satisfied,
then the necessary conditions for the existence of the optimal control u* € U* 4
18 the following equation

— D) Apt(ut) + [B'(V(W)p(ut) = V(u*) — 25 in o,
p*(n, T*;u*) =0 in o,

p*(n,t) =0 on I},

op*(u*) | _
] =0 on ot

ot )\
{2 — ()] on g,

T* T*
/0 / (P (") + N*ud) (01 — i )dndt + /0 / (P + N*u3) (w2 — uf)dndt
1% o

T*
[ [0h) + N e~ ugdnd 2 0. Vo€ U’ € U
0 0
(6.2)
where p*(u*) € L2(0,T*; Vy*) is the adjoint state.

Proof. The control u* € U*,4 is optimal if and only if ([10])

/

J W) (v=u*)>0, VveUy,
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which is equivalent to
IVi(u") = 2ty + V200") = 2522 o)
HIVa(u") = 25ll72 () + (N0 0") (120508 2 0, Vv e .

Multiplying both sides of the first equation of (6.1) by (V(v) — V(u*)) and
integrating over ¢}, we deduce

-
A Awmm—%xwm—vmeﬁ

T *(u* ,
= [ [ a8y @) - Vi) dd
(6.4)

Applying the integration by parts and using (5.3), we obtain

/OT*/Q(V(u*)—z;)(V( ) — V(u*))dndt = / / (v — u*)dndt

and hence (6.3) is equivalent to
T*
| it o= u) + (Vo = i)
o
T*
+ /@wwm—@wwmﬁwrmwmw

T*
/ / p3(u u3) + (N*us, vz — uz))dndt > 0,

which is reduced to (6.2 0
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