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Abstract. In this paper, we attempt an exposition of the connection between absolute

value and hyperstructure theory. We define the hyperabsolute value of a hyperfield and

investigate its properties. Moreover, we introduce the notion of a hypermetric space and use

it to find a necessary and sufficient condition for two hyperabsolute values of a hyperfield

to be equivalent. Finally, we explore the relationship between hyperabsolute values of a

hyperfield and its hypervaluations.

1. Introduction

Hyperstructure theory originated in 1934 when Marty [12] introduced the
concept of a hypergroup as a natural generalization of a group, based on the
notion of a hyperoperation. A hypergroup is an algebraic structure similar to
a group, but with a key difference: the composition of two elements results in
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a nonempty set rather than a single element. Marty analyzed the properties of
hypergroups, demonstrated their applications to groups, and illustrated their
utility in the study of algebraic functions and relational fractions. For further
applications of this theory, see [2, 4].

Since its inception, various definitions and concepts have been introduced,
such as hyperrings, hyperfields, and many others [1, 3, 19, 20]. A well-known
type of hyperring is the Krasner hyperring [8], which is essentially a ring with
modified axioms where addition is defined as a hyperoperation (i.e., a + b is
a set). This concept has been extensively studied by various authors. Some
fundamental notions of hyperstructure and hyperring theory can be found in
[5, 13].

The theory of valuations was initiated in 1912 by the Hungarian mathe-
matician Kurschak (see [10]). He introduced the concept of a valuation on
a field as a real-valued function defined on the set of nonzero elements of
the field, which satisfies certain properties. The concept of the valuation of
the hyperfields was introduced by Krasner [7] in 1957. Following that, Mittas
[14, 15, 16, 17, 18] studied in depth the notion of valuation and hypervaluation
of hyperfields. Katarzyna Kuhlmann et.al [7] studied the notion of compat-
ibility between valuations and orderings in real hyperfields and other recent
studies on hyperfields and valued fields can be found in [11]. Valuations pro-
vide a way to measure the “size” of elements in a field, playing a crucial role
in number theory and algebraic geometry. They considered a totally ordered
canonical hypergroup and defined a hypervaluation of a hyperfield as a map-
ping onto this hypergroup. This generalization of classical valuation theory
offers new perspectives in the study of hyperfields and their applications.

On the other hand, the notion of absolute value (as a measure) was explored
in the 17th century in France by Jean-Robert Argand (Although it was known
before for real and complex numbers). It is defined as a real valued function
on the field (F ) elements satisfying certain properties. For all x, y ∈ F ,

(1) |x| ≥ 0;
(2) |x| = 0 if and only if x = 0;
(3) |xy| = |x||y|;
(4) |x+ y| ≤ |x|+ |y|.

In this paper, we extend the notion of absolute value of a field to the hy-
perabsolute value of a hyperfield. The remainder of this paper is organized
as follows: In Section 2, we present some definitions related to hyperstruc-
tures. In Section 3, we define hyperabsolute values of hyperfields, prove their
properties and present some examples. In Section 4, we use the concept of hy-
perabsolute value of a hyperfield to define hypermetric space. We also present
new notions like convergent sequences, Cauchy sequences and investigate their



Hyperabsolute values in hyperfields: Connections to hypervaluation 723

properties. Moreover, we introduce the concept of equivalent hyperabsolute
values and find a necessary and sufficient condition for two hyperabsolute val-
ues of a hyperfield to be equivalent. Finally, in Section 5, we find a relationship
between hypervaluation on a hyperfield and the hyperabsolute value of it.

Throughout this paper, R is the set of real numbers, K is a hyperfield, 0 is
the additive identity of K, | · | is the standard absolute value of real (complex)
numbers and / · / is hyperabsolute value of K.

2. Preliminaries

In this section, we present some definitions related to hyperstructures that
are used throughout this paper.

Let H be a nonempty set. Then, a mapping ◦ : H ×H → P∗(H) is called
a binary hyperoperation on H, where P∗(H) is the family of all nonempty
subsets of H. The couple (H, ◦) is called a hypergroupoid. In this definition, if
A and B are two nonempty subsets of H and x ∈ H, then we define A ◦B =⋃
a∈A,b∈B a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.
A hypergroupoid (H, ◦) is called: a semihypergroup if for every x, y, z ∈ H,

we have x ◦ (y ◦ z) = (x ◦ y) ◦ z; a quasihypergroup if for every x ∈ H,
x ◦ H = H = H ◦ x (this condition is called the reproduction axiom); a
hypergroup if it is a semihypergroup and a quasihypergroup.

A Krasner hyperring is an algebraic structure (R,+, ·) which satisfies the
following axiom:

(1) (R,+) is a commutative hypergroup;
(2) there exists 0 ∈ R such that 0 + x = {x} for all x ∈ R;
(3) for every x ∈ R there exists unique x′ ∈ R such that 0 ∈ x+ x′; (x′ is

denoted by −x);
(4) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y;
(5) (R, ·) is a semigroup having zero as a bilaterally absorbing element,

i.e., x · 0 = 0 · x = 0;
(6) the multiplication “·” is distributive with respect to the hyperoperation

“+”.

Note that every ring is a Krasner hyperring. A subhyperring A of a Krasner
hyperring (R,+, ·) is a hyperideal of R if r · a ∈ A (a · r ∈ A) for all a ∈
A, r ∈ R. A commutative Krasner hyperring (R,+, ·) with identity element
“1” is a hyperfield if (R \ {0}, ·) is a group. Different examples of finite and
infinite hyperfield were constructed. First, we present two examples of finite
hyperfields.

Example 2.1. Let F2 = {0, 1} and define (F2,+) and (F2, ·) by the following
tables:
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+ 0 1

0 0 1

1 1 F2

· 0 1

0 0 0

1 0 1

(F2,+, ·) is a hyperfield.

Example 2.2. Let S = {0, 1, 2} and define (S,+) and (S, ·) by the following
tables:

+ 0 1 2

0 0 1 2

1 1 1 S

2 2 S 2

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Then (S,+, ·) is a hyperfield.

We present the following three examples of infinite hyperfields from [4, 21].

Example 2.3. (Triangle hyperfield) Let V be the set of non-negative real
numbers with the following hyperoperations:

a⊕ b = {c ∈ V : |a− b| ≤ c ≤ a+ b}

and

a� b = ab.

Then (V,⊕,�) is a hyperfield. Here, the additive identity 0 = 0 and −a = a
for all a ∈ V.

Example 2.4. (Tropical hyperfield) Let T = R∪{−∞} with the following
hyperoperations:

a⊕ b =

{
max{a, b}, if a 6= b;
{c ∈ T : c ≤ a}, if a = b

and

a� b = a+ b.

Then (T,⊕,�) is a hyperfield. Here, the additive identity 0 = −∞ and −a = a
for all a ∈ T. Moreover, the multiplicative identity is 0.
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Example 2.5. (Complex tropical hyperfield) Let C be the set of complex
numbers with the following hyperoperations:

a⊕ b =


{a}, if |a| ≥ |b|;
{b}, if |a| ≤ |b|;
{c ∈ C : c ∈ Sab}, if a+ b 6= 0 and |a| = |b|;
{c ∈ C : |c| ≤ |a|}, if a+ b = 0.

a� b = ab,

Here, Sab is the shortest arc connecting a to b on the circle with |a| as absolute
value. Then (T,⊕,�) is a hyperfield. Here, the additive identity 0 = 0 and
the additive inverse of a complex number a is −a.

3. Hyperabsolute values of hyperfields

Inspired by the definition of absolute values of a field, we define hyperabso-
lute values of hyperfields, prove their properties and present some examples.

Definition 3.1. Let K be a hyperfield and R≥0 be the set of non-negative
real numbers. A hyperabsolute value of K is a function

/ · / : K −→ R≥0

satisfying the following conditions for all x, y ∈ K:

(1) /x/ = 0 if and only if x = 0;
(2) /xy/ = /x//y/;
(3) sup /z/z∈x+y ≤ /x/+ /y/. (Triangle inequality)

Definition 3.2. Let K be a hyperfield. A hyperabsolute value of K is called
non-Archimedean if for all x, y ∈ K, the following condition is satisfied:

sup/z/z∈x+y ≤ max{/x/, /y/}.

Otherwise, it is called Archimedean.

Example 3.3. Let K be any hyperfield. Define the trivial hyperabsolute value
of K as follows:

/x/ =

{
0, if x = 0;
1, otherwise.

One can easily see that / · / defines a non-Archimedean hyperabsolute value.

Next, we present examples of non-trivial hyperabsolute values.
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Example 3.4. Let (V,⊕,�) be the Triangle hyperfield, and define /·/ : V→ V
by

/x/ = x, ∀ x ∈ V.
We claim that / · / is an Archimedean hyperabsolute value on V.

We verify the three conditions of Definition 3.1:

(1) (Non-negativity and definiteness) For all x ∈ V, we have /x/ =
x ≥ 0, and /x/ = 0 if and only if x = 0.

(2) (Multiplicativity) For all x, y ∈ V, we have

/x� y/ = x · y = /x/ · /y/.
(3) (Triangle inequality for hyperaddition) Let z ∈ x ⊕ y. Then by

the definition of hyperaddition in the Triangle hyperfield,

|x− y| ≤ z ≤ x+ y.

Since /z/ = z, and /x/+ /y/ = x+ y, we get

/z/ = z ≤ x+ y = /x/+ /y/.

To verify the Archimedean property, note that in the Triangle hyperfield,
3 ∈ 1⊕ 2, and

/3/ = 3 � max{/1/, /2/} = max{1, 2} = 2.

Hence, the Archimedean property holds. Therefore, / · / is an Archimedean
hyperabsolute value on V.

Example 3.5. Let (T,⊕,�) be the Tropical hyperfield, and define / · / : T→
R≥0 as follows:

/x/ =

{
0, if x = 0 = −∞;

ex, otherwise.

We prove that / · / is a non-Archimedean hyperabsolute value on T.
(Non-negativity and definiteness): Clearly, for all x ∈ T, we have /x/ ≥ 0,
and /x/ = 0 if and only if x = −∞.
(Multiplicativity): Let x, y ∈ T. Then,

/x� y/ =

{
ex+y = ex · ey, if x 6= −∞, y 6= −∞;

0, otherwise
= /x/ · /y/.

(Triangle inequality for hyperaddition): Let z ∈ x ⊕ y. We consider the
following cases:

• Case 1: x 6= y. Then z = max{x, y}. Without loss of generality,
suppose x > y. Then

/z/ = ex > ey, so /z/ = ex ≤ ex + ey = /x/+ /y/.
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• Case 2: x = y = −∞. Then z = −∞, so

/z/ = 0 = /x/ = /y/, and /z/ ≤ /x/+ /y/ = 0 + 0 = 0.

• Case 3: x = y 6= −∞. Then z ≤ x = y, and

/z/ = ez ≤ ex = /x/ ≤ /x/+ /x/ = /x/+ /y/.

Finally, it is easy to see that / · / is non-Archimedean, as for any x, y ∈ T,
we always have:

/x⊕ y/ ⊆ {z ∈ T : /z/ ≤ max{/x/, /y/}},

which violates the Archimedean inequality in general. Therefore, / · / is a
non-Archimedean hyperabsolute value on T.

Example 3.6. Let (C,⊕,�) be the complex tropical hyperfield and define
/ · / of C as follows: For all x ∈ C, /x/ = |x|. We prove that / · / is a
non-Archimedean hyperabsolute value of C.

It is clear that Conditions (1) and (2) of Definition 3.1 is satisfied. We prove
Condition (3). Let x, y ∈ C and z ∈ x ⊕ y. We consider the following three
cases:

• Case |x| 6= |y|. We get that /z/ = max{|x|, |y|} = max{/x/, /y/}.
• Case x = −y. We get that /z/ = |z| ≤ |x| = /x/ ≤ max{/x/, /y/}.
• Case |x| = |y| and x + y 6= 0. We get that /z/ = |z| = |x| = /x/ ≤

max{/x/, /y/}.

Proposition 3.7. (Generalized Triangle inequality) Let K be a hyper-
field, n be a positive integer greater than 1, / · / be a hyperabsolute value of K
and xi ∈ K for all i = 1, 2, . . . , n. Then

sup /z/z∈x1+x2+...+xn ≤ /x1/+ /x2/+ . . .+ /xn/.

Proof. We prove by induction on the value of n. For n = 2, the proof follows
from Definition 3.1, Condition (3). Suppose that sup /z/z∈x1+x2+...+xn−1 ≤
/x1/+ /x2/+ . . .+ /xn−1/ and let t ∈ x1 + x2 + . . .+ xn−1 + xn. Then there
exists z ∈ x1+x2+ . . .+xn−1 such that t ∈ z+xn−1. Definition 3.1, Condition
(3) asserts that /z/ ≤ /t/+/xn−1/. Thus, /z/ ≤ /x1/+/x2/+ . . .+/xn−1/+
/xn/. �

Proposition 3.8. Let K be a hyperfield, / · / be a non-Archimedean hyperab-
solute value of K and xi ∈ K for all i = 1, 2, . . . , n. Then

sup /z/z∈x1+x2+...+xn ≤ max{/x1/, /x2/, . . . , /xn/}.

Proof. The proof is straightforward. �
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Proposition 3.9. Let K be a hyperfield, / · / be a hyperabsolute value of K
and x, y ∈ K. Then the following are true:

(1) /1/ = 1;
(2) /x−1/ = 1

/x/ ;

(3) /− 1/ = 1;
(4) /− x/ = /x/;
(5) If there exists d ∈ N such that xd = 1 then /x/ = 1;
(6) If /x/ < ε for all ε > 0 then x = 0;
(7) If x ∈ 1 + 1 + . . . 1︸ ︷︷ ︸

n−times

then /x/ ≤ n.

Proof. (1) Having 1 � 1 = 1 implies that /1/ = /1 � 1/ = /1//1/. Since
/1/ > 0, it follows that /1/ = 1.

(2) The proof follows from having 1 = /1/ = /x � x−1/ = /x//x−1/ and
/x/ 6= 0.

(3) Having (−1)−1 = −1 implies that / − 1/ = 1
/−1/ . And since −1 6= 0

(otherwise, 1 = 0), it follows that /− 1/ = 1.
(4) The proof follows from 3. and having /−x/ = /(−1)(x)/ = /−1//x/ =

/x/.
(5) We have that 1 = /1/ = /xd/ = /x/d. Thus, /x/ = 1.
(6) Suppose, for contradiction, that x 6= 0, then the equation is true for

ε = /x/
2 . The latter implies that /x/ ≤ /x/

2 .
(7) The proof follows from Generalized Triangle Inequality and from (1).

�

Corollary 3.10. Let K be a hyperfield, / · / be a non-Archimedean hyperab-
solute value of K and x ∈ K. If x ∈ 1 + 1 + . . . 1︸ ︷︷ ︸

n−times

, then /x/ ≤ 1.

Proof. Since / · / is a non-Archimedean hyperabsolute value of K and x ∈
1 + 1 + . . . 1︸ ︷︷ ︸

n−times

, it follows, by Proposition 3.8 and Proposition 3.9, that /x/ ≤

max{/1/, . . . , /1/} = /1/ = 1. �

Proposition 3.11. Let K be a hyperfield, / · / be a non-Archimedean hyper-
absolute value of K and /x/ 6= /y/ ∈ K. Then /z/ = max{/x/, /y/} for all
z ∈ x+ y.

Proof. Without loss of generality, let /x/ > /y/. For all z ∈ x + y, we have
that /z/ ≤ max{/x/, /y/} = /x/. Since z ∈ x + y, it follows that x ∈ z − y.
And hence, /x/ ≤ max{/z/, / − y/} = max{/z/, /y/}. Having /y/ < /x/
implies that /x/ ≤ /z/. �
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Proposition 3.12. Let K be a hyperfield, / ·/ be a non-Archimedean hyperab-
solute value of K and xi ∈ K such that /xi 6= /xj/ for all i 6= j = 1, 2, . . . , n.
Then for all z ∈ x1 + x2 + . . .+ xn,

/z/ = max{/x1/, /x2/, . . . , /xn/}.

Proof. We prove by induction on n. For n = 2, our statement is true by
Proposition 3.11. Assume that

/t/ = max{/x1/, /x2/, . . . , /xn−1/}
for all t ∈ x1+x2+ . . .+xn−1. Let z ∈ x1+x2+ . . .+xn. Then there exists t ∈
x1+x2+. . .+xn−1 such that z ∈ t+xn. Since /t/ = max{/x1/, /x2/, . . . , /xn−1/}
and /x/n 6= /xi/ for all i = 1, 2, . . . , n − 1, it follows (by Proposition 3.11)
that /z/ = max{/t/, /xn/} = max{/x1/, /x2/, . . . , /xn/}. �

Proposition 3.13. Let K be a finite hyperfield and / · / be a hyperabsolute
value of K. Then / · / is the trivial hyperabsolute value of K.

Proof. Let x ∈ K \ {0} and let the cardinality of K be r ∈ N. Since xr = 1,
it follows by Proposition 3.9, Condition (5) that /x/ = 1. �

Proposition 3.14. Let K be a hyperfield, x, y, k ∈ K,k 6= 0 and / · / be a
hyperabsolute value of K. Then inf /kx− ky/ = /k/ inf /x− y/.

Proof. Let z ∈ x−y, t ∈ kx−ky such that inf /kx−ky/ = /t/ and inf /x−y/ =
/z/. Having z ∈ x − y implies that kz ∈ kx − ky and hence, /kz/ ≥ /t/ =
inf /kx − ky/. Having t ∈ kx − ky implies that k−1t ∈ x − y and hence,
/t/
/k/ = /k−1t/ ≥ inf /x− y/ = /z/. Therefore, /t/ = /kz/. �

Proposition 3.15. Let K be a hyperfield, / · / be a hyperabsolute value of K
and x, y ∈ K. Then

inf /z/z∈x−y ≥ |/x/− /y/|.

Proof. Let z ∈ x − y. By using the definition of a hyperfield, we get that
x ∈ z+ y and y ∈ x− z. The triangle inequality implies that /x/ ≤ /z/+ /y/
and that /y/ ≤ /x/+ /− z/ = /x/+ /z/. We get that /x/− /y/ ≤ /z/ and
that /y/− /x/ ≤ /z/. Thus, /z/ ≥ |/x/− /y/|. �

Proposition 3.16. Let K be any hyperfield and / · / be a hyperabsolute value
of K. Define / · /n for n ∈ N as follows:

/x/n = /x/
1
n for all x ∈ K.

Then / · /n is a hyperabsolute value of K.

Proof. Let x, y ∈ K. We check the conditions of Definition 3.1 for / · /n.
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• /x/n = 0⇔ /x/
1
n = 0⇔ /x/ = 0. The latter is equivalent to x = 0.

• /xy/n = /xy/
1
n = (/x//y/)

1
n = /x/

1
n /y/

1
n = /x/n/y/n.

• Let z ∈ x+ y. Then /z/ ≤ /x/+ /y/. The latter implies that

/z/n = /z/
1
n ≤ (/x/+ /y/)

1
n ≤ /x/

1
n + /y/

1
n = /x/n + /y/n. �

Proposition 3.17. Let K be any hyperfield and / · / be a non-Archimedean

hyperabsolute value of K. Define / · /(t) for t ∈ R≥0 as follows:

/x/(t) = /x/t for all x ∈ K.

Then / · /(t) is a non-Archimedean hyperabsolute value of K.

Proof. Let x, y ∈ K.

• /x/(t) = 0⇔ /x/t = 0⇔ /x/ = 0. The latter is equivalent to x = 0.

• /xy/(t) = /xy/t = (/x//y/)t = /x/t/y/t = /x/(t)/y/(t).
• Let z ∈ x + y. Then /z/ ≤ max{/x/, /y/}. The latter implies that

/z/t ≤ max{/x/t, /y/t}. Thus, /z/(t) ≤ max{/x/(t), /y/(t)}. �

4. Hypermetric spaces and equivalent hyperabsolute values

In this section, we use the concept of hyperabsolute value of a hyperfield,
that is defined in Section 3, to define hypermetric space. Also, we introduce the
concept of equivalent hyperabsolute values and find a necessary and sufficient
condition for two hyperabsolute values of a hyperfield to be equivalent.

4.1. Hypermetric spaces.

Definition 4.1. Let X be a nonempty set and a mapping d : X×X −→ R≥0.
Then (X, d) is called a pseudo metric space if for all x, y, z ∈ K, the following
conditions are satisfied.

(1) d(x, x) = 0;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).

Example 4.2. Let K be any hyperfield and define d : K × K −→ R≥0 as
follows:

d(x, y) =

{
0, if x = y;
1, otherwise.

Then (K, d) is a hypermetric space. Moreover, this hypermetric is induced by
the trivial hyperabsolute value of K, that is, d(x, y) = inf /x− y/.
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Definition 4.3. Let (K, d) be a hypermetric space. We define the open balls,
Br(x) in K as follows: For x ∈ K, r > 0,

Br(x) = {y ∈ K : d(x, y) < r}.
Open subsets in K are defined to be union of open balls in K.

Example 4.4. Let (V,⊕,�) be the triangle hyperfield and define d on V as
follows:

d(x, y) = inf /x⊕ y/ for all x, y ∈ V.
Then (V, d) is a hypermetric space. We show that the conditions of hyperme-
tric space are satisfied.

• We have d(x, x) = inf /x⊕ x/ = inf /c/0≤c≤2x = 0.
• Let d(x, y) = inf /x⊕ y/ = 0. We get that 0 = d(x, y) = |x− y|. Thus,
x = y.
• d(x, y) = inf /x⊕ y/ = /y ⊕ x/ = d(y, x).
• d(x, z) = inf /x⊕z/ = |x−z| ≤ |x−y|+ |y−z| = inf /x⊕y/+inf /y⊕
z/ = d(x, y) + d(y, z).

Moreover, B1(0) = {x ∈ V : d(x, 0) = inf /x ⊕ 0/ = /x/ = x < 1} = [0, 1[
and B1(1) = {x ∈ V : d(x, 1) = inf /x ⊕ 1/ = |x − 1| < 1} =]0, 2[. One can
conclude that [0, 2[= B1(0) ∪B1(1) is an open subset of V.

Example 4.5. Let (T,⊕,�) be the Tropical hyperfield and define d on T as
follows:

d(x, y) = inf /x⊕ y/ for all x, y ∈ T.
Then (T, d) is a hypermetric space. We show that the conditions of hyperme-
tric space are satisfied.

• We have d(x, x) = inf /x⊕ x/ = /−∞/ = 0.
• Let d(x, y) = inf /x ⊕ y/ = 0 and suppose that x 6= y. We get that

0 = max{ex, ey}. Then, x = y = −∞, a contradiction.
• d(x, y) = inf /x⊕ y/ = /y ⊕ x/ = d(y, x).
• d(x, z) = inf /x ⊕ z/. If x = z or x = y or y = z, we are done. If
x 6= z, x 6= y and y 6= z, then d(x, z) = max{ex, ez} ≤ max{ex, ey} +
max{ey, ez} = d(x, y) + d(y, z).

For a ∈ T, B1(a) = {y ∈ T : d(a, y) < 1} = {y ∈ T : inf{/t/ : t ∈ a−y} < 1}.
Clearly, a ∈ B1(a). Note that, for any y ∈ T, y = −y. Now, for y 6= a,
a − y = a ⊕ (−y) = a ⊕ y = max{a, y}, and so, d(a, y) = inf{/t/ : t ∈
a ⊕ (−y)} = max{ea, ey}. For 0 ≤ a, this gives 1 ≤ e0 ≤ d(a, y) and hence,
B1(a) = {a}. However, for a, y < 0, d(a, y) < e0 and so B1(a) = [−∞, 0[.

Proposition 4.6. Let K be a hyperfield and / · / be the trivial hyperabsolute
value of K. Then all subsets of K are open.
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Proof. It suffices to show that singletons are open subsets in K. Let x ∈ K,
we consider the open ball B1(x) = {y ∈ K : inf /y − x/ < 1}. Since / · /
is the trivial hyperabsolute value of K and inf /y − x/ 6= 1, it follows that
inf /y − x/ = 0. Thus, x = y. Therefore, we get that B1(x) = {x} is open in
K. �

Corollary 4.7. Let K be a finite hyperfield. Then the power set topology is
the only topology induced by the hyperabsolute value of K.

Proof. The proof is obvious from Propositions 3.13 and 4.6. �

The next theorem shows that a hyperabsolute value of K induces a pseu-
dometric space in the following manner, d(x, y) = inf /x− y/.

Theorem 4.8. Let /·/ be a hyperabsolute values of K and define d : K×K −→
R≥0 as d(x, y) = inf /x− y/ for all x, y ∈ K. Then (K, d) is a pseudo metric
space.

Proof. Let x, y, z ∈ K. Since 0 ∈ x− x for all x ∈ K, it follows that d(x, x) =
inf /x− x/ = 0. Proposition 3.14 implies that d(y, x) = inf /y− x/ = inf /x−
y/ = d(x, y). We need to show that the triangle inequality is satisfied, that
is, inf /x − z/ ≤ inf /x − y/ + inf /y − z/. Let α ∈ x − y, β ∈ y − z. Then
−y ∈ α − x and y ∈ β + z. We get that 0 ∈ −y + y ⊆ α − x + β + z.
The latter implies that 0 ∈ α + β + t for some t ∈ z − x. We get now that
−t ∈ α + β. Applying the definition of hyperabsolute values, we get that
/ − t/ = /t/ ≤ /α/ + /β/. Since t ∈ z − x, it follows that inf /x − z/ =
inf /z − x/ ≤ /t/. Thus inf /x− z/ ≤ /α/+ /β/ for all α ∈ x− y, β ∈ y − z.
Therefore, inf /x− z/ ≤ inf /x− y/+ inf /y − z/. �

Condition (*): For a hyperabsolute function / · / defined on a hyperfield K,
suppose inf/x − y/ = 0 implies x = y holds for all x, y, then / · / induces a
metric on K.

Remark 4.9. Example 4.2, 4.4 and 4.5 form pseudo metric spaces with respect
to the map defined in Theorem 4.8.

The hyperabsolute function defined on a hyperfield K together with the
Condition (*) becomes a metric on K. Condition (*) holds good for Examples
6,7 and 8.

Definition 4.10. Let K be a hyperfield, / · / be a hyperabsolute value of
K and {xn} be a sequence in K. Then {xn} is said to converge to x ∈ K
(xn −→ x) if for every ε > 0, there exists a natural number N such that
inf /xn − x/ < ε for all n ≥ N .
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Example 4.11. Let K be a hyperfield, / · / be a hyperabsolute value of
K and x ∈ K. The constant sequence {x} is convergent. This is because
d(x, x) = inf /x− x/ = 0 < ε.

Example 4.12. Let K be a hyperfield, / ·/ be a hyperabsolute value of K and
x ∈ K with the property that /x/ < 1. Then the sequence {xn} is convergent
to 0. This is because /xn/ = /x/n.

Proposition 4.13. Let K be a hyperfield and / · / be a hyperabsolute value of
K. Then every convergent sequence in K has a unique limit.

Proof. Let x and y be two limits for {xn} and let ε > 0. Then there exists
a natural number N such that inf /xn − x/ < ε/2 and inf /xn − y/ < ε/2 for
all n ≥ N . Since inf /x − y/ ≤ inf /xn − x/ + inf /xn − y/ < ε, it follows by
Proposition 3.9 (7), that x = y. �

Proposition 4.14. Let K be a hyperfield, k ∈ K and / · / be a hyperabsolute
value of K. Then the followings are true:

(1) If xn −→ x then /xn/ −→ /x/;
(2) xn −→ 0 if and only if /xn/ −→ 0;
(3) If xn −→ x then kxn −→ kx;
(4) If xn −→ 0 and yn −→ 0 then zn −→ 0 for all zn ∈ xn + yn.

Proof. (1) Let ε > 0. Then there exists N ∈ N such that inf /xn − x/ < ε
for all n ≥ N . Applying Proposition 3.15, we get that |/xn/− /x/| ≤
inf /xn − x/ < ε. Thus, /xn/ −→ /x/.

(2) If xn −→ 0 then by (1), we get that /xn/ −→ 0. If /xn/ −→ 0 then
for every ε > 0, there exists N ∈ N such that /xn/ = |/xn/| < ε for all
n ≥ N .

(3) The proof follows from having inf /kxn−kx/ = /k/ inf /xn−x/ (Propo-
sition 3.14).

(4) Let ε > 0 and zn ∈ xn + yn. Then there exist N1, N2 > 0 such that
/xn/ = inf /xn − 0/ < ε

2 , /yn/ = inf /yn − 0/ < ε
2 for all n ≥ N =

max{N1, N2}. Applying the triangle inequality, we get that /zn/ < ε
for all n ≥ N . �

Definition 4.15. Let K be a hyperfield and / · / be a hyperabsolute value of
K. A sequence {xn} in K is said to be bounded if there exists M > 0 such
that /xn/ ≤M for all n ∈ N.

Proposition 4.16. Let K be a hyperfield and / · / be a hyperabsolute value of
K. Then every convergent sequence in K is bounded.



734 Madeleine Al-Tahan, Bijan Davvaz, Pallavi Panjarike and Harikrishnan Panackal

Proof. Let {xn} be a sequence in K such that xn −→ x ∈ K. Applying
the definition of convergent sequences, we get that: there exists N > 0 such
that inf /xn − x/ < 1 for all n ≥ N . Since xn ∈ xn − x + x, it follows,
by the triangle inequality, that /xn/ ≤ inf /xn − x/ + /x/ = 1 + /x/. Let
M = max{/x1/, . . . , /xN−1/, 1 + /x/}. It is easy to see that /xn/ ≤M for all
n ∈ N. �

Definition 4.17. Let K be a hyperfield, / · / be a hyperabsolute value of K
and (xn) be a sequence in K. Then {xn} is said to be a Cauchy sequence if
for every ε > 0, there exists a natural number N such that inf /xn − xm/ < ε
for all n,m ≥ N .

Proposition 4.18. Let K be a hyperfield and / · / be a hyperabsolute value of
K. Then every convergent sequence in K is Cauchy.

Proof. Let {xn} be a convergent sequence in K with x ∈ K as a convergent
limit and ε > 0. Then there exists N > 0 such that inf /xn−x/ < ε

2 , inf /xn−
xm/ <

ε
2 for all m,n ≥ N implies that inf /xn − xm/ < ε. �

The converse of Proposition 4.16 is not true. We illustrate it with the
following example.

Example 4.19. Let K = F2 = {0, 1} with the trivial hyperabsolute value on
K and xn = {0, 1, 0, 1, . . . , 0, 1, . . .} be a bounded sequence in K. One can
easily see that inf /xn+1− xn/ = 1 for all n ∈ N. Thus, {xn} is not Cauchy in
K. Therefore, {xn} is not convergent in K.

Proposition 4.20. Let K be a hyperfield and / · / be a hyperabsolute value of
K. Then every Cauchy sequence in K is bounded.

Proof. The proof is similar to that of Proposition 4.16. �

Remark 4.21. Let {xn} be a sequence in K and n1 < n2 < n3 < . . .. A
subsequence of {xn} is denoted as {xnk

}.

Proposition 4.22. Let K be a hyperfield and / · / be a hyperabsolute value of
K. Then a sequence in K is convergent if and only if every subsequence of it
is convergent in K.

Proof. Let {xn} be a sequence in K. Since {xn} is a subsequence of itself, it
follows that if all subsequences of {xn} are convergent then {xn} is convergent.
Let {xn} be a convergent sequence with convergent limit x ∈ K, {xnk

} be a
subsequence of {xn} and ε > 0. Having xn −→ x implies that there exists
N > 0 such that inf /xn − x/ < ε for all n ≥ N . The latter implies that
inf /xnk

− x/ < ε for all nk ≥ N . �
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4.2. Equivalent hyperabsolute values. Throughout we consider a hyper-
asolute function / · / satisfing Condition (*).

Definition 4.23. Let K be a hyperfield and / · /1, / · /2 hyperabsolute values
of K. Then / · /1 and / · /2 are equivalent hyperabsolute values of K if they
induce same metric topology in K. In this case we denote by / · /1 ∼ / · /2.

Remark 4.24. The relation / · /1 ∼ / · /2 is an equivalence relation.

Lemma 4.25. Let K be a hyperfield and / · /1, / · /2 be hyperabsolute values
of K. If there exists a positive number t such that /x/2 = /x/t1 for all x ∈ K,
then / · /1 and / · /2 are equivalent hyperabsolute values of K.

Proof. It suffices to show that open balls in / · /1 are open balls in / · /2 and
vice versa. Let x ∈ K and r > 0. An open ball in / · /1 is of the form
{y ∈ K : inf /x − y/1 < r}. Let z ∈ x − y such that /z/1 = inf /x − y/1.
Then /z/2 = /z/t1 = inf /x − y/2 < rt. The latter implies that {y ∈ K :
inf /x− y/1 < r} = {y ∈ K : inf /x− y/2 < rt}. In a similar manner, we can
show that open balls in / · /2 are open balls in / · /1. �

Lemma 4.26. Let K be a hyperfield, x ∈ K and / · /1, / · /2 be equivalent
hyperabsolute values of K. Then /x/1 < 1 if and only if /x/2 < 1.

Proof. If /x/1 < 1, then the sequence xn −→ 0 (Example 4.12). The latter
implies that for every open subset of K containing 0, there exist N > 0 such
that xn ∈ U for all n ≥ N . If /x/1 ≥ 1, then /xn/ ≥ 1 for all n ∈ N. The
open ball B1(0) = {y ∈ K : /y/1 < 1} contains 0 and does not contain xn for
all n ∈ N. We get similar results if we put /x/2 instead of /x/1. We get now
that both conditions: /x/1 < 1 and /x/2 < 1 are equivalent to saying that for
every open subset U (containing 0) of K, xn ∈ U for all but finitely many n.
Thus, /x/1 < 1 if and only if /x/2 < 1. �

Corollary 4.27. Let K be a hyperfield, x ∈ K and / · /1, / · /2 be equivalent
hyperabsolute values of K. Then

/x/1 > 1 if and only if /x/2 > 1.

Proof. Since /x/1 > 1, it follows that x 6= 0 and that x−1 exists. Having
/x−1/1 = 1

/x/1
< 1 is equivalent to saying /x−1/2 = 1

/x/2
< 1. The latter is

equivalent to saying /x/2 > 1. �

Corollary 4.28. Let K be a hyperfield, x ∈ K and / · /1, / · /2 be equivalent
hyperabsolute values of K. Then

/x/1 = 1 if and only if /x/2 = 1.



736 Madeleine Al-Tahan, Bijan Davvaz, Pallavi Panjarike and Harikrishnan Panackal

Proof. /x/1 = 1 is equivalent to /x/1 ≮ 1 and /x/1 ≯ 1. Using Lemma 4.26
and Corollary 4.27, we get that our statement is equivalent to /x/2 ≮ 1 and
/x/2 ≯ 1. The latter is equivalent to /x/2 = 1. �

Corollary 4.29. Let K be a hyperfield and / · /1 be the trivial hyperabsolute
value of K. If / · /2 is an equivalent hyperabsolute value of K to / · /1 then
/ · /2 is the trivial hyperabsolute value of K.

Proof. Let x ∈ K \ {0}. Then /x/1 = 1. Using Corollary 4.28, we get that
/x/2 = 1. �

Lemma 4.30. Let K be a hyperfield and /·/1, /·/2 be equivalent hyperabsolute
values of K. Then there exists a positive number t such that /x/2 = /x/t1 for
all x ∈ K.

Proof. Let x, y ∈ K \{0}. If /x/1 = 1 then /x/2 = 1 = /x/t1 by Corollary 4.28.
Without loss of generality, we assume that /x/1 > 1. If /x/1 < 1, we get that

/x−1/1 > 1. Let t = log /x/2
log /x/1

> 0. We claim that log /x/2
log /x/1

= log /y/2
log /y/1

. If log /x/2
log /x/1

6=
log /y/2
log /y/1

, then either log /x/2
log /x/1

< log /y/2
log /y/1

or log /x/2
log /x/1

> log /y/2
log /y/1

. We consider the case
log /x/2
log /x/1

< log /y/2
log /y/1

. The other is done in a similar manner. The case log /x/2
log /x/1

<
log /y/2
log /y/1

implies that log /x/2
log /y/2

< log /x/1
log /y/1

over the set of real numbers. The density

of rational numbers in R implies that there exists a rational number m
n such

that log /x/2
log /y/2

< m
n < log /x/1

log /y/1
. Simplifying our inequality, we get:

n log /x/2 < m log /y/2 and m log /y/1 < n log /x/1.

The latter implies that

/xny−m/2 =
/xn/2
/ym/2

< 1 and /xny−m/1 =
/xn/1
/ym/1

> 1.

The latter contradicts the result of Lemma 4.26. �

Theorem 4.31. Let K be a hyperfield and / · /1, / · /2 be hyperabsolute values
of K. Then / · /1 and / · /2 are equivalent hyperabsolute values of K if and
only if there exists a positive number t such that /x/2 = /x/t1 for all x ∈ K.

Proof. The proof results from Lemmas 4.25 and 4.30. �

5. Relationship between hyperabsolute values and
hypervaluation

In [6], hypervaluation of a hyperfield onto a totally ordered canonical hy-
pergroup was defined. In this section, We consider R as our totally ordered
canonical hypergroup.
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Definition 5.1. ([6]) Let K be a hyperfield. A hypervaluation on K is a map
v : K −→ R ∪ {∞} that satisfies the following conditions for all x, y ∈ K:

(1) v(x) =∞ if and only if x = 0;
(2) v(xy) = v(x) + v(y);
(3) v(z) ≥ min{v(x), v(y)} for all z ∈ x+ y.

Example 5.2. Let K be any hyperfield and define v : K −→ R ∪ {∞} as
follows:

v(x) =

{
∞, if x = 0;
0, otherwise.

Then it is easy to see that v is hypervaluation on K. Such hypervaluation is
called trivial hypervaluation.

Lemma 5.3. ([6]) Let H be a totally ordered canonical hypergroup with iden-
tity e and v : K → H ∪ {∞} be a hypervaluation on K. Then

(1) v(1) = e;
(2) v(x−1) = −v(x).

Proposition 5.4. Let K be any hyperfield and v be a hypervaluation on K.
Then the following are true for all x ∈ K:

(1) v(−1) = 0;
(2) v(x) = v(−x);
(3) If there exist d ∈ N with the property that xd = 1, then v(x) = 0.

Proof. (1) Since (−1)(−1) = 1, it follows that 0 = v(1) = v(−1) + v(−1).
Thus, v(−1) = 0.

(2) Applying (1), we get that v(−x) = v(−1) + v(x) = v(x).
(3) 0 = v(1) = v(xd) = dv(x). �

Starting from a hyperabsolute value ofK, we can construct a hypervaluation
on K and vice versa.

Theorem 5.5. Let K be any hyperfield, s > 0 and / ·/ be a non-Archimedean
hyperabsolute value of K. Define vs : K −→ R ∪ {∞} as follows:

vs(x) =

{
∞, if x = 0;
−s log /x/, otherwise.

Then vs is a hypervaluation on K.

Proof. We prove that the conditions of Definition 5.1 are satisfied for vs. Let
x, y ∈ K. vs(x) =∞ if and only if x = 0 as −s log /x/ 6=∞.

vs(xy) =

{
∞, if x = 0 or y = 0;
−s log /xy/, otherwise.
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Since /·/ is an absolute value ofK, it follows that−s log /xy/ = −s log(/x//y/)
= −s log /x/ − s log /y/. It is easy to see now that vs(xy) = vs(x) + vs(y).
Let z ∈ x + y. If z = 0, then v(z) = ∞ ≥ min{v(x), v(y)}. If z 6= 0,
then vs(z) = −s log /z/. Having /z/ ≤ max{/x/, /y/} implies that log /z/ ≤
max{log /x/, log /y/}. The latter implies that

vs(z) = −s log /z/
≥ −smax{log /x/, log /y/}
= min{−s log /x/,−s log /y/}
= min{vs(x), vs(y)}.

�

Example 5.6. Let (T,⊕,�) be the Tropical hyperfield and define v on T as
follows: For all x ∈ T,

v(x) =

{
∞, if x = 0 = −∞;
−x, otherwise.

Example 3.5 and Theorem 5.5 assert that v is a hypervaluation on T.

Example 5.7. Let (C,⊕,�) be the complex tropical hyperfield and define v
on C as follows: For all x ∈ C,

v(x) =

{
∞, if x = 0;
− ln(|x|), otherwise.

Example 3.6 and Theorem 5.5 assert that v is a hypervaluation on C.

Theorem 5.8. Let K be any hyperfield, q > 1 and v be a hypervaluation on
K. Define / · /q : K −→ R≥0 as follows:

/x/q =

{
0, if x = 0;

q−v(x), otherwise.

Then / · /q is a non-Archimedean hyperabsolute value of K.

Proof. Let x, y ∈ K. We show that conditions of Definition 3.1 are satisfied
for / · /q. Since q−v(x) 6= 0 for all x ∈ K, it follows that /x/q = 0 if and only
if x = 0.

/xy/q =

{
0, if x = 0 or y = 0;

q−v(xy), otherwise.

Since v is a hypervaluation on K, it follows that v(xy) = v(x) + v(y). Thus,

q−v(xy) = q−v(x)−v(y) = q−v(x)q−v(y). We get now that /xy/q = /x/q/y/q/.
Let z ∈ x + y. Having v is a hypervaluation on K implies that v(z) ≥

min{v(x), v(y)}. The latter implies that

−v(z) ≤ −min{v(x), v(y)} = max{−v(x),−v(y)}.
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We get now that q−v(z) ≤ max{q−v(x), q−v(y)}. �

Corollary 5.9. Let K be a finite hyperfield and v be a hypervaluation on K.
Then v is the trivial hypervaluation.

Proof. Suppose, for contradiction, that v is a non-trivial hypervaluation on K.
Theorem 5.8 asserts that / · /2 : K −→ R≥0 as follows:

/x/2 =

{
0, if x = 0;

2−v(x), otherwise

is a hyperabsolute value of K. Using Proposition 3.13, we get that / ·/2 is the
trivial hyperabsolute value of K. �

Corollary 5.10. Let K be a hyperfield and v a hypervaluation on K. Then

(1) the set Rv = {x ∈ K : v(x) ≥ 0} = {x ∈ K : /x/q ≥ 1} is a Krasner
hyperring;

(2) the set Uv = {x ∈ K : v(x) = 0} = {x ∈ K : /x/q = 1} is the group of
units of Rv;

(3) the set Mv = {x ∈ K : v(x) > 0} = {x ∈ K : /x/q > 1} is the only
maximal hyperideal of Rv.

Proof. The proof of (1) is straightforward. To prove (2), let x be a unit in
Rv with inverse x′ in Rv. Then v(xx′) = v(1) = 0. The latter implies that
v(x) + v(x′) = 0. Since v(x) ≥ 0 and v(x′) = −v(x) ≥ 0, it follows that
v(x′) = v(x) = 0. To prove (3), let M be a hyperideal of Rv such that
Mv ⊂ M ⊆ Rv. Then there exists x ∈ M with v(x) = 0. Using (2), we get
that x is a unit in Rv. Since M is a hyperideal of Rv and x ∈ Rv, it follows
that x′x = 1 ∈M and hence, M = Rv. �
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