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Abstract. Fixed point (FP) theory is an important subject of analysis that can give effec-

tive techniques for handling nonlinear issues. The existence and uniqueness of solutions to

integral and differential equations are proven using FP theory. Computing the exact value

of a solution to a nonlinear issue is frequently challenging. In such a case, the proposed

solution’s approximate value is always considered. Finding a FP using particular schematic

methods requires analyzing various features of FPs, such as data dependence, convergence,

and stability. Research on new iterative techniques for functional equation solving and FP

analysis is active and has many useful applications. The first iterative approach for ap-

proximating a FP of a contraction mapping T on a nonempty subset S of a Banach space

(BN-space) D is the Picard iterative approach. Numerous authors have created a variety

of methods for estimating the FP. This paper proposes an efficient new iterative approach

for approximating the FP under the Chatterjee-Suzuki-C CSC condition which is called the

R* iterative approach. In the beginning, a new iterative approach is provided. Afterward,

it is shown via analytical demonstration that the suggested method converges to an FP for

contraction map more quickly than some well-known methods. Furthermore, some impor-

tant weak and strong convergence results of the proposed iterative approach are established

in the setting of BN-space. To support the primary conclusions, a brief example has been

presented to demonstrate the efficiency of the recommended iterated procedure via the class

of the defined mappings that fulfill CSC condition.
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1. Introduction

Many applied science fields have problems that are either extremely difficult
or impossible to answer with the common analytical methods covered in this
literature. The estimated value of the desired answer is always required in an
instance like this. FP theory offers a number of helpful methods, including
approximating the values of such solutions. For these kinds of issues, the ideal
approximation solution may be expressed as the FP of a suitable operator,
that is, as the resolution of an analogous FP equation Ts = s, where the
self-map T is any relevant operator defined on a subset of a given space. A
large number of authors have studied the FP theory in many fields and have
obtained many fruitful results [2, 13, 17, 19]. In addition, several authors have
recently addressed the generalization of non-expansive(Non-exp) mappings for
various applications see [3, 5, 8, 14, 22].

In this context, other additional mapping classes with intriguing features
were developed in the subsequent years. Suzuki [23] proposed a new type of
generalized Nonexpansive mappings in 2008, which he refers to as Suzuki’s
generalized Nonexpansive or condition (C). In 2018, Patir et al [15] presented
an additional generalization of Nonexpansive mappings, referred to as the
condition Bγ, and demonstrated some convergence outcomes for these map-
pings in BN-spaces that are uniformly convex(UC-Space). In [24] the authors
describe a new family of generalized nonexpansive operators, denoted (α, β, γ)-
nonexpansive mappings.

Many authors have utilized various iterative approaches for estimating the
FPs. A novel iterative approach was presented by Mann [10] in 1953.

λn+1 = (1− un) λn + unTλn, for n ≥ 0, (1.1)

where T : S → S is a mapping such that S is a subset of BN-space D, un ∈
(0,1) and a sequence {λn} is generated by λ◦ ∈ S.

Another iterative approach was developed by Noor [11].
ωn = (1− vn)λn + vnTλn,

ρn = (1− sn)λn + snTωn,

λn+1 = (1− un)λn + unTρn,

(1.2)

where un, vn, sn ∈ (0,1).

Agarwal et al. [1] presented an iterative approach as follows.{
ρn = (1− sn)λn + snT λn,

λn+1 = (1− un)T λn + unTρn.
(1.3)
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Change et al. [6] presented an iterative approach called CR- iterative.
ωn = (1− vn)λn + vnTλn,

ρn = (1− sn)Tλn + snTωn,

λn+1 = (1− un)ρn + unTρn.

(1.4)

Prominent mathematicians have recently proposed numerous iterative ap-
proaches that accelerate convergence to the FP [9, 16, 18, 21].

In 2011, Erdal and Kenan [7] introduced a new condition called Chatterjee–
Suzuki–C (CSC) condition which is a modification of Suzuki’s C-condition.

In this study, under this condition, certain convergence findings of a novel
suggested iterative approach known as R∗-iteration approach are given. A nu-
merical comparison is made between the new iteration approach’s convergence
speed and that of the other iteration approach.

2. Preliminaries

This section begins with some basic ideas and established findings that are
needed in order to get at the primary findings.

For the mapping T, an FP is a point g◦ ∈ S that fulfills the formula g◦ =
Tg◦ . Typically, the FP set of T is represented by FT.

Definition 2.1. ([7]) A mapping T : S → S fulfills CSC condition if the
inequality described below is valid. If 1

2 ||s1 − Ts2|| ≤ ||s1 − s2|| , then

||Ts1 − Ts2|| ≤
1

2
(||s1 − Ts2||+ ||s2 − Ts1||).

Definition 2.2. ([12]) A BN-space D fulfills Opial’s condition if and only if
the sequence {λn} ⊆ D converges in the weak sense to s◦ ∈ S, and

limsup
n→∞

‖λn − s◦‖ < limsup
n→∞

‖λn − a◦‖

for all a◦ ∈ D –{s◦} is hold.

Definition 2.3. ([25]) Let {λn} ⊆ D be a bounded sequence. If ∅6=S ⊆
D (where S is convex and closed), then the asymptotic radius of {λn} which

corresponds to S is given by

N(S, {λn}) = inf{limsup
n→∞

‖λn − s‖ : s ∈ S}.

Likewise, {λn} corresponding to S has an asymptotic center that is specified
and demonstrated via the formula

A(S, {λn}) = {s ∈ S : lim sup
n→∞

‖λn − s‖ = N(S, {λn})}. (2.1)
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Proposition 2.4. ([7]) Suppose D be a BN-space and ∅6=S ⊆ D is closed. For
the map T : S → S the subsequent attributes are valid:

(1) If T satisfies the CSC condition, and FT 6= ∅, then ‖Ts− g‖≤‖s− g‖
for each s ∈ S and g ∈ FT.

(2) If T satisfies the CSC condition, then FT is closed. Moreover, FS is
convex if S is convex and D is strictly convex.

(3) If T satisfies the CSC condition, then for arbitrary s1, s2 ∈ S,

||s1 − Ts2|| ≤ 5||s1 − Ts1|| + ||s1 − s2||.
(4) If T satisfies CSC condition, {λn} is weakly convergent to g, and

limn→∞ ||Tλn − λn|| = 0 , then g ∈ FT given that D fulfills Opial’s
condition.

Lemma 2.5. ([20]) Let 0 < γ ≤ ϑn ≤ δ < 1 and D is UCB−space. If there
is a ≥ 0 (real number) such that {pn} and {qn} in D fulfill

limsupn→∞‖pn‖ ≤ a, limsupn→∞‖qn‖ ≤ a
and

limsupn→∞‖ϑnpn + (1− ϑn)qn‖ = a,

then
limsupn→∞‖pn − qn‖ = 0.

Definition 2.6. ([4]) Let {pn}, {qn} be two sequences of real numbers con-

verging to p and q respectively. If limn−→∞
|pn−p|
|qn−q| = 0, then {pn} converges

faster than {qn}.

3. Main results

Inspired by the aforementioned iterative approaches, a novel iterative ap-
proach called R*- iteration is present in the following manner:

λ1 = λ ∈ S,
ωn = T((1− vn)λn + vnTλn),

ρn = T(Tωn),

λn+1 = T((1− un)Tωn + unTρn).

(3.1)

In this section, it is first demonstrated that the proposed method reaches
the FP of the contraction map faster than some other known methods. This
section of this study also presents some convergence results for the mapping
that satisfies the CSC condition using the new iteration technique Eq.(3.1).
In addition, a numerical example is provided that compares the proposed
iteration speed with the other iteration methods.
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The following shows that iteration Eq.(3.1) converges faster than the iter-
ation of Mann, Noor, Agrawal and CR for contraction mappings in the sense
of Berinde [4].

Initially, the following outcome is required.

Theorem 3.1. Let {λn} be a sequence generated using a novel approach Eq.
(3.1). Then {λn} converges to FP of T.

Proof. Through Eq.(3.1), for every s ∈ FT

‖ωn − s‖ = ‖T((1− vn)λn + vnTλn)− s‖
≤ ‖k((1− vn)λn + vnTλn)− s‖
≤ k(1− vn)‖λn − s‖+ kvn‖Tλn − s‖
≤ k(1− vn)‖λn − s‖+ k2vn‖λn − s‖
≤ k(1− (1− k)vn)‖λn − s‖,

(3.2)

so that
‖ρn − s‖ = ‖T(Tωn)− s‖

≤ k‖Tωn − s‖
≤ k2‖ωn − s‖

(3.3)

and
‖λn+1 − s‖ = ‖T((1− un)Tωn + unTρn)− s‖

≤ ‖k((1− un)Tωn + unTρn)− s‖
≤ k(1− un)‖Tωn − s‖+ kun‖Tρn − s‖
≤ k2(1− un)‖ωn − s‖+ k2un‖ρn − s‖
≤ k3(1− un)(1− (1− k)vn)‖λn − s‖

+ k4un(1− (1− k)vn)‖λn − s‖
≤ k3[1− (1− k)un][1− (1− k)vn]‖λn − s‖.

(3.4)

By using the fact that 0 < 1 − (1− k)un ≤ 1 and 0 < 1 − (1− k) vn≤ 1,
we have

‖λn+1 − s‖ ≤ k3 ‖λn − s‖ . (3.5)

Inductively, we get

‖λn+1 − s‖ ≤ k3(n+1) ‖λ0−s‖ . (3.6)

Since 0<k<1, {λn} converges to s. �

Theorem 3.2. Suppose that the sequence {λ1,n}is introduced by Mann Eq.(1.1),
{λ2,n} by Noor Eq.(1.2), {λ3,n} by Agrawal Eq.(1.3), {λ4,n} by CR Eq.(1.4),
and {λn} by iterative Eq.(3.1) which converges to the same point s. Then
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iterative scheme Eq.(3.1) converges faster to a FP than all the approaches
Eq.(1.1)–Eq.(1.4).

Proof. Applying Eq.(3.6) of Theorem 3.1 yields,

‖λn+1 − s‖ ≤ k3(n+1) ‖λ0 − s‖ = cn. (3.7)

From Eq.(1.2),

‖ωn − s‖ = ‖(1− vn)λn + vnTλn − s‖
≤ (1− vn‖λn − s‖+ vn‖T λn − s‖
≤ (1− vn)‖λn − s‖+ kvn‖λn − s‖
≤ (1− (1− k)vn)‖λn − s‖.

(3.8)

It can be easily seen that 0 < 1− (1− k)vn ≤ 1, so we obtain

‖ωn − s‖ ≤ ‖λn − s‖ . (3.9)

Using Eq.(1.4), we obtain that

‖ρn − s‖ = ‖(1− sn)λn + snT ωn − s‖
≤ (1− sn)‖λn − s‖+ sn‖T ωn − s‖
≤ (1− sn)‖λn − s‖+ ksn| ωn − s‖
≤ (1− sn) ‖λn − s‖ + ksn(1− (1− k)vn) ‖λn − s‖
≤ [1− (1− k + kvn − k2vn )sn] ‖λn − s‖ .

(3.10)

Again It can be easily seen that 0 < 1− (1− k+ kvn− k2vn )sn ≤ 1, then we
obtain

‖ρn − s‖ ≤ ‖λn − s‖ . (3.11)

Using Eq.(3.11), we obtain that

‖λn+1 − s‖ = ‖((1− unλn + unT ρn − s‖
≤ (1− un) ‖λn − s‖+ un ‖T ρn − s‖
≤ (1− un‖λn − s‖+ kun‖ ρn − s‖
≤ (1− un)‖λn − s‖

+ kun(1− (1− k + kvn − k2vn)sn) ‖λn − s‖
≤ [1− (1− k + ksn − k2sn + k2snvn − k3snvn)un]‖λn − s‖.

(3.12)
Using the fact that

0 < 1−
(
1− k + ksn − k2sn + k2snvn − k3snvn

)
un ≤ 1,

then we obtain

‖λn+1 − s‖ ≤ ‖λn − s‖. (3.13)
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Inductively, we get

‖λn+1 − s‖ ≤ ‖λ0 − s‖ . (3.14)

Let

‖λ2,n − s‖ ≤ ‖λ0,n − s‖ = c2,n.

Then

cn
c2,n

=
k3(n+1) ‖λ0 − s‖
‖λ2,0 − s‖

.

Hence, {λn} converges faster than {λ2,n} to s because 0 < k < 1, then cn
c2,n
−→

0 as n −→∞.
Using an analogous approach, it can also demonstrate that iterative Eq.(3.1)

possesses a faster rate of convergence to s than any other leading iterative
approaches. �

The following are some convergence outcomes for the map that fulfills the
CSC condition utilizing the novel iteration approach Eq.(3.1). First, the fol-
lowing main lemma will be discussed.

Lemma 3.3. Suppose that D is UC-Space and ∅6=S ⊆ D (where S closed and
convex ). Consider T : S → S fulfill CSC condition and FT 6= ∅. If {λn}
produced by the iteration approach Eq.(3.1), then

lim
n→∞

‖T λn − g◦‖

exists for all g◦ ∈ FT.

Proof. Consider g◦ ∈ FT. Based on Proposition 2.4(1), we get

‖ωn − g◦‖ = ‖T((1− vn)λn + vnTλn)− g◦‖
≤ ‖((1− vn)λn + vnTλn)− g◦‖
≤ (1− vn)‖λn − g◦‖+ vn‖Tλn − g◦‖
≤ (1− vn)‖λn − g◦‖+ vn‖λn − g◦‖
= ‖λn − g◦‖.

(3.15)

Moreover,

‖ρn − g◦‖ = ‖T(T(ωn)) − g◦‖
≤ ‖T(ωn) − g◦‖
≤ ‖ωn − g◦‖.

(3.16)
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It is evident from Eq.(3.16) that

‖λn+1 − g◦‖ = ‖T((1− un)T(ωn) + unT(ρn))− g◦‖
≤ ‖(1− un)T(ωn) + unT(ρn)− g◦‖
≤ (1− un)‖T(ωn)− g◦‖+ un‖Tρn − g◦‖
≤ (1− un)‖ωn − g◦‖+ un‖ρn − g◦‖
≤ (1− un)‖λn − g◦‖+ un‖λn − g◦‖
= ‖λn − g◦‖.

Thus, limn→∞ ‖λn − g◦‖ exists for all g◦ ∈ FT. �

Theorem 3.4. Assume that D is UC-Space and ∅6=S ⊆ D (where S closed
and convex set). Let T : S → S satisfying CSC condition such that FT 6= ∅.
If {λn} produced by the iteration approach Eq.(3.1), then FT 6= ∅ if and only
if limn→∞ ‖Tλn − λn‖ = 0 and {λn} is bounded.

Proof. Assume that FT 6= ∅ and consider g◦ ∈ FT. According to the pre-
ceding Lemma 3.3, limn→∞ ‖λn − g◦‖ exists and {λn} is bounded. Let

lim
n→∞

‖λn − g◦‖ = β. (3.17)

To prove limn→∞ ‖λn − g◦| = 0. From Eq.(3.15), we can write

‖ωn − g◦‖ ≤ ‖λn − g◦‖,

it implies that

lim sup
n→∞

‖ωn − g◦‖ ≤ lim sup
n→∞

‖λn − g◦‖ = β. (3.18)

According to Proposition 2.4 (1), we obtain

lim sup
n→∞

‖Tλn − g◦‖ ≤ lim sup
n→∞

‖λn − g◦‖ = β. (3.19)

On the other hand,

‖λn+1 − g◦‖ = ‖T((1− un)T(ωn) + unT(ρn))− g◦‖
≤ ‖(1− un)T(ωn) + unT(ρn)− g◦‖
≤ (1− un)‖Tωn − g◦‖+ un‖Tρn − g◦‖
≤ (1− un)‖ωn − g◦‖+ un‖ωn − g◦‖
≤ ‖ωn − g◦‖.

Combining this with Eq.(3.17) yields that

β ≤ lim
n→∞

inf‖ωn − g◦‖. (3.20)
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Utilizing Eq.(3.18) and Eq.(3.20), we get

lim
n→∞

‖ωn − g◦‖ = β. (3.21)

Since

‖ωn − g◦‖ = ‖T((1− vn)(λn − g◦) + vn(Tλn − g◦)‖,

by Eq.(3.21) we have

lim
n→∞

‖T((1− vn)(λn − g◦) + vn(T λn − g◦)‖ = β. (3.22)

Based on Eq.(3.17), Eq.(3.19), Eq.(3.22), and Lemma 3.3, we conclude that

lim
n→∞

‖T λn − λn‖ = 0.

In contrast, consider that limn→∞ ‖T λn − λn‖ = 0 and {λn} is bounded.
Let g◦ ∈ A(S, {λn} ). Then according to Proposition 2.4 (3), we obtain,

A(Tg◦, {λn}) = limsup
n→∞

‖λn − Tg◦‖

≤ 5 lim sup
n→∞

‖Tλn − λn‖+ ‖λn − g◦‖

≤ lim sup
n→∞

‖λn − g◦‖

= A(g◦, {λn}).

This illustrates that Tg◦ ∈ A(S, {λn}). Thus Tg◦ = g◦ and FT 6= ∅. �

Theorem 3.5. Suppose D is UC-Space and ∅6=S ⊆ D (where S weakly com-
pact set and convex). If T : S → S satisfying CSC condition with FT 6= ∅
and {λn} is a sequence of R∗ iteration Eq.(3.1), then {λn} converges weakly
in FT given that D fulfills Opial’s condition.

Proof. Because S is weakly compact, then there is {λnj} a subsequence of
{λn} and λ◦ ∈ S with {λnj} converges weakly to λ◦. From the perspective
of Theorem 3.4, it is evident that,

lim
j→∞

||λnj − Tλnj || = 0.

As a result, λ◦ ∈ FT since each of the prerequisites of Proposition 2.4(2) are
fulfilled. Now to show that λ◦ is only a weak limit of {λn}. Suppose that λ◦
is not the weak limit for {λn}, this means, there is another subsequence {λnk

}
of {λn}, with a weak limit, λ◦

∗ 6= λ◦. Again using Theorem 3.4, observe that

lim
k→∞

||λnk
− Tλnk

|| = 0.
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All Proposition 2.4(2) criteria have been made accessible, therefore λ◦
∗ ∈ FT.

Utilizing Opial’s condition of D together with Lemma 3.3, we get

lim
n→∞

‖λn − λ◦‖ < lim
j→∞

∥∥λnj − λ◦
∥∥

< lim
j→∞

∥∥λnj − λ◦∗
∥∥

= lim
n→∞

‖λn − λ◦∗‖

= lim
k→∞

‖λnk
− λ◦∗‖

< lim
k→∞

‖λnk
− λ◦‖

= lim
n→∞

‖λn − λ◦‖ .

(3.23)

Thus, limn→∞ ‖λn − λ◦‖ < limn→∞ ‖λn − λ◦‖, which is a contradiction. This
terminates the proof. �

The following results demonstrate the strong convergence.

Theorem 3.6. Suppose that D is UC-Space and ∅6=S ⊆ D (where S is com-
pact and convex ). If T : S → S satisfying CSC condition with FT 6= ∅ and
{λn} is a sequence of R* iteration Eq.3.1, then {λn} converges s strongly in
FT.

Proof. Because S is compact and {λn} ⊂ S, then {λn} has a strongly conver-
gent subsequence {λnj} such that

lim
j→∞

∥∥λnj − s◦
∥∥ = 0, s◦ ∈ S.

Therefore, limj→∞ ||λnj − Tλnj || = 0 can be deduced from Theorem 3.4.
Now employing Proposition 2.4(3), we get

||λnj − Ts◦ || ≤ 5||λnj − Tλnj ||+ ||λnj − s◦ ||,

which implies that

λnj → Ts◦ as j →∞.
Also, we get Ts◦ = s◦, that is, s◦ ∈ FT. In addition limj→∞ ‖λj − s◦ ‖ exists
according to Lemma 3.3. Therefore, s◦ is a strong limit point for {λn}. �

4. Results and discussion

In support of the main findings, an example of a map that meets condition
CSC is provided. In addition, the convergence of the R∗ iterative approach
was assessed in contrast to other iterative approaches.
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Example 4.1. Let S = [6, 12] with ‖.‖ = |.| and T : S → S be a function
defined by

T(s) =

{
6 if s = 12,

s+6
2 otherwise.

(4.1)

First to show that T is meet condition CSC. Consider the following cases:

Case 1: If s1 = 12 = s2, then |Ts1 − Ts2| = 0.
Hence,

1

2
(|s1 − Ts2| + |s2 − Ts1|) ≥ 0 = |Ts1 − Ts2|.

Case 2: If 6 ≤ s1, s2 < 12, then |Ts1 − Ts2| = | s1− s2
2 |.

Hence,

1

2
(|s1 − Ts2|+ |s2 − Ts1|) = |

s1 − ( s2+6
2 )

2
|+ |

s2 − ( s1+6
2 )

2
|

≥ |
(s1 − ( s2+6

2 ))− (s2 − ( s1+6
2 )

2
|

= |3s1 − 3s2
4

|

≥ |s1 − s2
2

|

= |Ts1 − Ts2| .

Case 3: If s1 = 12 and 6 ≤ s2 < 12, then, |Ts1 − Ts2| = | s1−6
2 |.

Hence

1

2
(|s1 − Ts2|+ |s2 − Ts1|) = | s1 − 6

2
|+ |

s2 − ( s1+6
2 )

2
|

≥ | s1 − 6

2
|

= |Ts1 − Ts2|.

Case 4: If s2 = 12 and 6 ≤ s1 < 12, then, |Ts1 − Ts2| = | s2−62 |.
Hence

1

2
(|s1 − Ts2|+ |s2 − Ts1|) = |

s1 −
(
s2+6
2

)
2

|+ | s2 − 6

2
|

≥ | s2 − 6

2
|

= |Ts1 − Ts2|.

In all the above cases, we get

1

2
(|s1 − Ts2|+ |s2 − Ts1|) ≥ |Ts1 − Ts2|.
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Thus, T satisfies the condition CSC.

Now to demonstrate the effectiveness of the iteration Eq.(3.1) choosing in
this example the initial value λ1 = 8.5 with parameters vn = 0.86, un = 0.8,
and sn =0.8.

Table 1 and Figure 1 show how the new iterative approach’s rate of conver-
gence compares to other iterative approaches.

Table 1. Comparison of convergence rates for various itera-
tion approaches

step Mann Noor Agarwal CR R* iteration
1 8.5 8.5 8.5 8.5 8.5
2 7.425000 6.928000 6.820000 6.513000 6.071250
3 6.812250 6.344473 6.268960 6.105267 6.002030
4 6.462982 6.127868 6.088218 6.021600 6.000057
5 6.263900 6.047464 6.028935 6.004432 6.000001
6 6.150423 6.017618 6.009490 6.000909 6.000000
7 6.085741 6.006540 6.003113 6.000186
8 6.048872 6.002427 6.001021 6.000038
9 6.027857 6.000901 6.000334 6.000007
10 6.015878 6.000334 6.000109 6.000001
11 6.009050 6.000124 6.000036 6.000000
12 6.005158 6.000046 6.000011
13 6.002940 6.000017 6.000003
14 6.001676 6.000006 6.000001
15 6.000955 6.000002 6.000000
16 6.000544 6.000000
17 6.000310
18 6.000176
19 6.000100
20 6.000057
21 6.000032
22 6.000018
23 6.000010
24 6.000006
25 6.000003
26 6.000001
27 6.000001
28 6.000000



A new iterative approach for estimating fixed points 753

Figure 1. Graphic illustration of the convergence of iterative approaches

Table 2 indicates the number of iterations required for certain iterative
approaches to reach the FP. The new iterative approach R* converges more
quickly than the other methods, as shown in the data.

Table 2. Number of iterations

Iterative approaches Number of iterations
R* iteration 6

CR iteration 11

Agarwal iteration 15

Noor iteration 16

Mann iteration 28

Furthermore, iterative approaches are compared another time under var-
ious choices of beginning and set of parameters. In any case, the iteration
process Eq.3.1 appears to converge faster than the other iteration processes,
as indicated in Table 3 below:
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Table 3. Comparison of iteration with various initial points
and parameters

Iterative approaches Number of iterations
Initial Points : λ1 = 10, vn = 0.6, un = 0.7, sn = 0.7
R* iteration 7
CR iteration 14
Agarwal iteration 18
Noor iteration 23
Mann iteration 32

Initial Points : λ1 = 11.5, vn = 0.87, un = 0.66, sn = 0.77
R* iteration 6
CR iteration 12
Agarwal iteration 17
Noor iteration 20
Mann iteration 29

5. Conclusion

This paper presents a new iterative approach to estimating the FPs of maps
that meets the CSC requirement, called the R*−iterative Eq.3.1. Through
analytical proof, it is shown that the suggested method gets to an FP for the
contraction map faster than some other well-known methods. In addition,
certain convergence findings of a novel iterative method are also given under
condition CSC. Numerically, it is shown that the innovative iterative approach
converges faster than other iterative approaches in the literature.
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