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Abstract. In this paper, we prove two common fixed point theorems for a pair of generalized
weakly expansive self-maps by using compatibility of type (E) and weak reciprocal continuity
in metric spaces. Two examples and an application of the existence of solution for an integral

equation are given to illustrate our results.

1. INTRODUCTION

The famous Banach principle has been generalized to various ways, and
there are some results given under different type of contractive condition. On
other hand the expansive mappings has been used and studied to obtain a
fixed point or common fixed point, Wang [44] proved the existence of fixed
point for expansive mappings, later Manro et al. [22] proved a common fixed
point theorem for two self-mappings in a metric space by using the concept
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of weak reciprocal continuity with compatibility. Under the same conditions,
Khan et al.[16] introduced the concept of ¢-weakly expansive maps and proved
some common fixed point results.

Jungck [12] introduced the notion of compatible maps, the same author
Jungck and Rhoades [13] weakened the concept of compatibility to the weak
compatibility. Singh et al. [42, 43] introduced new type of compatibility, called
compatibility of type (E), by using this concept they obtain some results of
common fixed point. Pant [24] obtained some results for non-compatible maps
by using new concept called reciprocally continuous maps, which has been
weakened to weakly reciprocally continuous maps by Pant et al. [25]. Other
authors had presented many generalized contraction (see [4, 21, 35, 36]).

In present paper, we will define the concept of generalized weakly expansive
maps and prove two common fixed point theorems, in the first one we should
use compatibility of type (E), in the second we combine two concepts, compat-
ibility of type (E) with weak reciprocal continuity, our results generalize and
improve the results of Manro et al. [22], results in paper [16, 20] and several
others.

2. PRELIMINARIES

Definition 2.1. ([18]) A quasi-partial metric is a function ¢ : X x X — R+
satisfying
(1) g(z,z) < q(y,x) (small self-distances),
(2) q(z,z) < q(x,y) (small self-distances),
(3) x =y if and only if ¢(z,z) = ¢(z,y) and ¢(y,y) = q(y,x) (indistancy
implies equality and vice versa),
(4) q(z,2) +q(y,y) < q(z,y) +q(y, 2) (triangularity),
for all z,y,z € X.
Then The pair (X, q) is called a quasi-partial metric space.

Karapinar et al. [19] have taken:
(3") if 0 < gq(x,z) = q(x,y) = q(y,y), then z = y (equality), in place of (3).

If g satisfies all these conditions except possibly (1), then ¢ is called a
lopsided partial quasi-metric [18]. It is interesting to see here that for ¢(z,y) =
q(y,x), (X, q) becomes a partial metric space. Also for a quasi-partial metric
q on X, the function d, : X X X — R defined by

dq(z,y) = q(z,y) + ay, =) — q(2,2) — q(y, y)
is a (usual) metric on X.
Example 2.2. ([18]) The pair (R*,q) with
(1) gq(z,y) = |z =yl + |z[;
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(2) q(z,y) = max{y — z,0} + z;
are quasi-partial metric spaces.

Definition 2.3. ([19]) Let (X, ¢q) be a quasi-partial metric space.

(1) A sequence {z,} C X in a quasi-partial metric space converges to a
point z € X if q(z,x) = limq(z, x,) = lim q(zy, ).

(2) A subset E of a quasi-partial metric space (X, q) is closed if whenever
{zy} is a sequence in E such that {x,} converges to some x € X, then
rz e k.

Lemma 2.4. ([19]) Let (X, q) be a quasi-partial metric space. Then following
hold:

(1) If q(z,y) =0, then z = y;
(2) If x #y, then q(z,y) > 0 and q(y,x) > 0.

Definition 2.5. Let (X, d) be a metric space, a self-mapping T is called to
be expansive if there exists h > 1 such for all z,y € X we have

d(Tz,Ty) = hd(z,y).

Definition 2.6. ([25]) Let (X,p) be a metric space and S,T : X — X two
self- maps, (S,T) is said to be weakly reciprocally continuous if
lim TSz, =Tz

n—oo
or
lim STz, =Sz,

n—oo
whenever {z,} is a sequence in X such that

lim Sz, = lim Tz, = z,
n—oo n—oo

for some € X.

Definition 2.7. ([26]) Let (X,d) be a metric space and 5,7 : X — X two
self- maps, (5,7 is said to be T" weakly reciprocally continuous if

lim TSz, =Tz

n—o0
or

lim S%z, = Sz,
n—oo

whenever {z,} is a sequence in X such

lim Sz, = lim Tz, = z
n—oo n—o0

for some z € X.
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Example 2.8. Let X = [0, 2] endowed with usual metric, define two maps S
and T as follows:
Sx:{ l—z, 0<z<l, :{ l+z, 0<z<1,
2, l<a<2, 0, l<az<2.

Consider the sequence {z,} which satisfying =, — 0, as n — oo and 0 <
x, <1foralln>0.

lim Sz, = lim Tz, =1,
n—oo n—oo

lim TSz, = lim T(1 —z,) =2=T1.
n—oo

n—o0

Then (S,T) is T-weakly reciprocally continuous.

3. MAIN RESULTS

Definition 3.1. Let (X, q) be a complete quasi-partial metric space and T :
X — X be a self-mapping. Then T is said to be generalized weakly expansive,
if

q(Tz, Ty) = m(z,y) + ¢(m(z,y)), (3.1)
where ¢ : [0,00) — [0,00) is a continuous function such that ¢(0) = 0 and
¢(t) >t for all t > 0 and

m(x,y) = min{q(Sz, Sy), q(Sz, Ty), ¢(Sy, Tx)}.

Example 3.2. Let X = [0,1] endowed with quasi-partial metric ¢(z,y) =
|z — y| + |z|, define T' as Tx = 4o and ¢(x) = 2z. Then we have:

q(Tx,Ty) > 4|z —y| > |z —y| + 2|z — y|.

Theorem 3.3. Let (X, q) be a complete metric space and T be a self- mapping
on X such that (3.1) is satisfied. If the pair (S,T) is compatible of type (E),
then S and T have a unique common fized point in X.

Proof. Let zg € X, since SX C T X there exists 1 € X such Tz; = Sxg, so
by continuing in this manner we can construct a sequence {y,} as follows:

Yn = Txny1 = Sy (3.2)

Suppose yn, # Yn+1 for all n > 0. If ¢(yn—1,yn) < q(Yn, Yn+1), by using (3.1)
we get

QYn-1,Yn) = ¢(Txp, Txns1) > m(@n, Tni1) + ¢(M(Tn, Tnt1)),
it implies that
A Yn-1,Yn) = ¢ Yn—1,Yn) + ¢(¢(Yn—1, Yn)
> Qq(yn*hyn)v
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which is a contradiction. Therefore, the sequence {q(yn—1,yn)} is decreasing
and bounded at below, so it is convergent to r = inf{q(yn—1,yn)}-
If » > 0, by using (3.1), we get:

d(yn—b yn) = d(Tw’m Txn—‘rl) > m(m’m xn—&—l) + qﬁ(m(xn, $n+1)),
letting n — oo we obtain:
r>r+o(r) > 2r,

which is a contradiction. Hence lim d(y,—1,yn) = 0.
n— o0

Now, we claim {y,} is a Cauchy sequence, if not so there exist £ > 0 and
positive integers n(k)), m(k) such for m(k) > n(k) > k we have

A(Yn, Ym) > €.
for each k. Let m(k) be the least integer such m(k) > n(k) > k and satisfying
d(Yn, Ym) > € and d(Yn(k), Ym(k)-1) < € (3.3)
By using triangular inequality we get:
e< d(yn7 ym)

< dWUn(k) Ynk)-1) + AWUnk)—1 Ymk)-1) + AUmk)—1> Ym(k))

< 2d(Yn(k)s Yn(k)—1) € T AYmk)—15 Ym(®))»
letting n — oo, then we obtain:

Jm d(ynk)s Ymr)) = €
By using (3.1), we get:
d(Yn ym) =d(Txpq1, T$m+1)
> m(xn+la xm—l—l) + ¢(m(xn+la mm—i—l))y

letting n — oo we obtain:

e >e+¢(e) > 2,

which is a contradiction. Hence {y,} is a Cauchy sequence, since X is a
complete so the sequence {y,} is convergent to some w € X.
Since (S,T) is compatible of type (E), we have

lim T%z, = lim TSz, = Sw and lim S%z, = lim STz, = Tw.
n—00 n—00 n—00 n—-+00

Now, we show Sw = T'w, if not, by using (3.1) we get;
d(Tz,TSxy,) > m(w, Sxy,) + ¢p(m(z, Szy)),



762 S. Mahideb, H. Qawaqgneh, H. Alsamir and S. Beloul

letting n — oo, we get: m(z, xpy1) — d(Tw, Sw), so we have
d(Tz,8z) > d(Tw, Sw) + ¢(d(Tw, Sw))
> 2d(Tw, Sw),
which is a contradiction. Hence Tw = Sw. Putting z = Tw = Sw, so we get,
Sz=8Tw=TS5w="Txz.
We will prove that z is a common fixed point for S and T, if not by using
(3.1) we get;
d(Tw,Tz) > m(w, z) + p(m(w, 2)),
which implies that:
d(Tz,z) > d(z,Tz) + ¢(d(T'z, z))
> 2d(T'z, z),
which is a contradiction. Hence z = T'z.
For the uniqueness, suppose that ¢ is another common fixed point for S and
T, by using (3.1) we get:
d(z,t) =d(Tz,Tt)) > m(z,t) + ¢(m(z,t))
=d(z,t) + ¢(d(z,1))
> d(Sz,Tt),
which is a contradiction. Hence, the uniqueness is proved. O

We can get the following Corollary 3.4.

Corollary 3.4. Let (X,d) be a complete metric space and let S and T be two
self-maps on X . If there exists ¢ > 1 such for all x,y € X we have

d(Tz,Ty) > qmin{d(Sz, Sy),d(Sz, Ty),d(Sy, Tx)}.

Moreover if the pair (S,T) is compatible of type (E), then S and T have a
common fixed point.

Theorem 3.5. Let (X,d) be a complete metric space, S and T be two self-
mappings on X such SX C TX and satisfying (3.1). Further if the pair (S,T)
is S-compatible of type (E) and T-weakly reciprocally continuous, then S and
T have a unique common fized point in X.

Proof. As in proof of Theorem 3.3, the sequence {y,} which defined in (3.2)
is convergent to some w in X. The pair (S,T) is S compatible of type (E)
implies that

lim STz, = lim TSx, = Tw.
n—oo n—oo
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Firstly we shall show Sw = T'w, if not, by using (3.1) we get:
d(Tw,TSz,) > m(w, Sx,) + ¢(m(z, Szy)),
letting n — oo, we get m(w, Sx,) = m(w, xp4+1) — d(Tw, Sw), so we have
d(Tw, Szw) > d(Tw, Sw) + ¢(d(Tw, Sw))
> 2d(Tw, Sw),

which is a contradiction. Then Tw = Sw. The pair is T-weakly reciprocally
continuous, if
lim T'Sx, = Tw,

n—oo
so the pair (S,T) is compatible, therefore weakly compatible.
or

lim S2%z, = Sw,
n—oo

we get
ILm d(TSxy, STx,) =0,

and so (5,T) is compatible, then weakly compatible.

For z = Sw = Tw implies Sz = Tz and the rest of proof is similar as in
proof of Theorem 3.3.

If lim Sz, = Sw, then also (S,T) is compatible, then it is weakly com-

n—o0

patible. 0
We can get the following two corollaries.

Corollary 3.6. Let (X, d) be a complete metric space and let T be a surjective

and a generalized weakly expansive mapping,that is, for all x,y € X we have

d(Tz,Ty) > min{d(z,y),d(z,Ty),d(y, Tz)}

+ o min{d(z, y), d(z, Ty), d(y, T2)} ).
then T has a fixed point.

Corollary 3.7. Let (X,d) be a complete metric space, S and T be two-self
mappings on X such that SX C TX and satisfying (3.1). If the pair (S,T) is
compatible of type (E) and weakly reciprocally continuous, then Sand T have
a common fized point in X .

Example 3.8. Let X = [0, 2] endowed with usual metric, define two maps S
and T as follows:

1, 0<x<1, 2—z, 0<2<1,
Sx=¢ 2 1<z<2, Tex=<] i, l1<xz<2,
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Consider the sequence {x,} which converges to 0 and 0 < z,, < 1 for all
n > 0.
lim Sz, = lim Tz, =1,

n—o0 n—o0
lim S%z, = lim ST;,) =T1=1.
n—oo n—o0
lim T%z, = lim TSz, = S1=1.
n—o0 n—oo

Then (S,T) is compatible of type (E).
For the inequality (3.1), we have the following cases:
(1) For z,y € [0, 1], we have

d(Tz,Ty) = |z —y| > Zd(Sm,Sy) = 0.

(2) For z € [0,1] and 1 < y < 2, we have

7 9 9
(3) For x € (1,2] and y € [0, 1], we have
7 9 9
T, Ty)=|-—y|l>—=- .
d(Tz, Ty) =7 —yl 2 1z = ;d(Sz, 5y)

(4) For z,y € (1,2], we have
d(Txz,Ty) =0> zd(Sx, Sy = 0.

So, it is obviously that (3.2) holds. Consequently all hypotheses of Theorem
3.3, with ¢(t) = %t are satisfied, therefore 1 is the unique common fixed for S
and T.

Example 3.9. Let X = [0,00) endowed with usual metric, define two maps
S and T as follows:

%x, 0<x <2 4r, 0<zx <2,
Sr=< 3, x>2, Te={ 2, z>2

Consider the sequence {x,} such lim z, =0and 0 < z, <1 for all n > 1.
n—oo

lim Sz, = lim Tz, =0,
n—oo n—oo

lim S%z, = lim ST,) =T0=0,

n—oo

lim lim TSz, =T0=0.

n—00 N—00
Then (S, T) is compatible of type (E).
For the inequality (3.1) we have the following cases:
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(1) For =,y € [0,2], we have
3
d(Tz,Ty) = 4|z —y| 2 5|z — y| = 3d(5z, Sy).
(2) For z € [0,2] and y > 2, we have
3
d(Tz, Ty) =4z — 7|2 \ | d(Sz, Sy).
(3) For x € (2,00) and y € [0, 2], we have
3,3 3
d(Tz,Ty) =4y——|> -ly— | =d .
(4) For x,y € (2,00), we have

d(Tz,Ty) =0 d(Sz,Sy) =0.

So it is obviously (3.1) holds. Consequently all hypotheses of Theorem 3.5,
with ¢(t) = 2t are satisfied, therefore 0 is the unique common fixed for S and
T.

4. APPLICATION

In this section, we focus on the existence of solutions of some nonlinear inte-
gral equations as an application to the results proved in the previous section.
To delve further into these applications, we recommend consulting contempo-
rary publications such as [3, 5, 9, 10, 17, 23, 32, 33, 34, 37, 38, 39]. We will
utilize our results of Corollary 3.6 to prove the existence of solution for the
following integral equation:

/Kts:c (4.1)

where f € X = C([0,1],R) and K : [0,1] x [0,1] x R — R is continuous
function.

For z,y define a metric as follows:

d(@,y) = & = ylloo = max | -yl

Clearly (X,d) is a complete metric space.

Theorem 4.1. Assume that:
(1) there exists a function 0 : [0,1] x [0,1] — Ry such that

1
| / K(t,s,2(s) — K(t, s, y(s)ds| > 0(0)[(t) — y(t)],
0

92) inf O(t) =6 > 1.
()téfé,u() >

Then the equation (4.1) has a solution in X .
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Proof. Define
1
Txz(t) = f(t) +/ K(t,s,x(s))ds.
0

The equation (4.1) has a solution, if and only if the self mapping T" has a fixed
point in X. Since f,z € X so T is a self-mapping from X into itself. We have
also,

1
|Tz(t) — Ty(t)| = |/0 K(t,s,xz(s) — K(t,s,y(s)ds|

> 0(t)]x(t) —y(¥)]
> smin{|z(t) — y(@)|, [Tz (t) — z(8)], ly(t) — Ty(t)],
|=(8), Ty ()] + [y(t) — Silz(t)]}-

Consequently, all hypotheses of Corollary 3.6 are satisfied, then the equation
(4.1) has a unique solution. O
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