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Abstract. In this paper, we investigate new fixed point theorems within the framework of

C∗-algebra-valued generalized metric spaces. We extend the concepts of the Hardy-Rogers

contraction principle as well as those of Ćirić-Jachymski-Matkowski in these spaces. Our

results improve and extend some recent works available in the literature. Several non-trivial

examples are given to illustrate our results. As applications, we discuss the existence and

the uniqueness of solution of an integral equation and of an operator equation.

1. Introduction

The fixed point theory plays a crucial role in the development of methods
to solve problems in mathematics and science. Specifically, this theory has
been widely employed to prove the existence and uniqueness of solutions to
various functional equations.
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Since the pioneering establishment of the famous Banach contraction princi-
ple, fixed point theory and its applications have developed rapidly in the past
one hundred years and the Banach contraction principle has been the subject
of numerous generalizations and extensions. Among these generalizations, the
Hardy-Rogers contraction [16], introduced in 1973, is noteworthy. The Hardy-
Rogers contraction is denoted by the following theorem. In a complete metric
space (X, d), if T : X → X is a mapping such that

d(Tx, Ty) ≤ u1d(x, y) + u2d(x, Tx) + u3d(y, Ty) + u4d(y, Tx) + u5d(x, Ty)

for all x, y ∈ X, with ui are positive constants, such that
5∑

i=1
ui < 1, then T

has a unique fixed point x∗ in X.

Another interesting generalization of the Banach contraction principle was
proposed in 1969 by Meir and Keeler [23]. This generalized version initi-
ated many studies in this field and led to significant contributions to met-
ric fixed point theory. It also facilitate the way for further generalizations,
such as Matkowski contractions [27], Wardowski contractions [34], and Ćirić-
Jachymski-Matkowski contractions [11, 15], which state that, in a complete
metric space (X, d), if T : X → X is a mapping that satisfies the following
conditions

(1) For all ε > 0, there exists a number δ > 0 satisfying d(x, y) < ε+δ =⇒
d(Tx, Ty) < ε for all x, y ∈ X

(2) x 6= y =⇒ d(Tx, Ty) < d(x, y) for all x, y ∈ X,

then T has a unique fixed point x∗ in X.

In 2007, Huang and Zhang [18] introduced the innovative concept of con-
ical metric spaces, which represents an extension of metric spaces where the
underlying space of the metric is replaced by a Banach space E.

In 2013, Liu and Xu [24] developed the notion of conical metric spaces over
Banach algebras, thereby substituting the Banach space E with a Banach
algebra A as the underlying structure. Liu and Xu demonstrated several
fixed point theorems for generalized Lipschitz mappings using the concept of
spectral radius while imposing natural and weaker constraints.

Building on previous developments, Ma et al. [25] replaced the Banach
algebra A with a C∗-algebra and introduced the concept of a C∗-algebra-
valued metric in 2014. This advancement led to the demonstration of several
fixed point theorems within this new framework. For more details, see [9, 26,
28, 32, 31].

In 2015, Jleli and Samet introduced an innovative concept of generalized
metric spaces, known as JS-metric spaces [19], which encompass various types
of topological spaces. These spaces include not only standard metric spaces
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but also b-metric spaces [12], extensions of Kamran’s b-metric spaces [22],
dislocated metric spaces [17], Branciari’s rectangular spaces [3], and Nakano’s
modular metric spaces [30]. In this framework, Jleli and Samet developed
generalized versions of metric fixed-point theorems. More recently, in 2019,
Chaira et al. [5, 6, 7] extended some well-known fixed point theorems, such
as those for Banach, Chatterjea, and Kannan contractions, by applying them
to the generalized metric space of Samet-Jleli equipped with a digraph.

In the continuity of the ideas mentioned above, Chaira et al. [4] are recently
introduced, in 2024, a new concept of generalized metric spaces called a C∗-
algebra-valued generalized metric space. This innovative concept encompasses
various topological spaces, including JS-metric spaces, C∗-algebra-valued met-
ric spaces as considered by Ma et al., and C∗-algebra-valued b-metric spaces
as studied by Kamran et al., as well. Within this framework, we establish the
extension of the Hardy-Rogers and Ćirić-Jachymski-Matkowski contractions.
We apply our results to solve an integral equation and an operator equation.

2. Preliminaries

In this section, we will first review some notable concepts and definitions of
C∗-algebras spaces that will be utilized in the subsequent sections.

Let A be a unital algebra (over the field C) with the unit element 1A and
the zero element 0A. A conjugate linear map ∗ : A → A is an involution on
A if (uv)∗ = v∗u∗ and (u∗)∗ = u for all u, v in A. The pair (A, ∗) is called a
∗-algebra.

Now let recall that a Banach ∗-algebra is a ∗-algebra A endowed with a
complete sub-multiplicative norm. A C∗-algebra is a Banach ∗-algebra (A, ∗)
such that ‖uu∗‖ = ‖u‖2 for all u of A.

We denote by Ah the set of all elements u of A satisfying u∗ = u. An
element u in A is said to be positive if u ∈ Ah and σ(u) ⊆ R+, where σ(u) is
the spectrum of u, and we write in this case 0A � u. By using the positive
elements, we define a partial order on Ah as follows

u � v if and only if 0A � v − u.
Finally, we denote by A+ the set of all positive elements of A.

In the following, we recall some useful results.

Lemma 2.1. ([13, 29]) Let A be a unitary C∗-algebra with a unit 1A.

(i) For any u ∈ A+, we have

u � 1A ⇐⇒ ‖u‖ 6 1.

(ii) If 0A � u � v, then ‖u‖ 6 ‖v‖.
(iii) Suppose that u, v ∈ A+ such that uv = vu. Then 0A � uv.
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Lemma 2.2. ([25]) Let A be a unital C∗-algebra with unit 1A. For all u, v ∈ A
and w ∈ A′+ := A+ ∩ A′, if u � v, then wu � wv, where

A
′

=
{
u ∈ A : uv = vu, ∀ v ∈ A}.

Theorem 2.3. ([13]) If u is an arbitrary element of a C∗-algebra A, then u∗u
is positive.

Lemma 2.4. ([2]) Let (xn)n∈N be a sequence of non-negative real numbers

and let (an)n∈N be a real sequence in [0, 1] such that
∞∑
n=0

an = ∞. If for a

given ε > 0 there exists a positive integer n0 such that

xn+1 ≤ (1− an)xn + εan

for all n ≥ n0, then we have 0 ≤ lim sup
n→∞

xn ≤ ε.

The concept of C∗-algebra-valued generalized metric space was introduced
by Chaira et al. in [4, 8].

Definition 2.5. ([4]) Let X be a nonempty set, A be a C∗-algebra and D :
X ×X → A be a given mapping. Let x ∈ X and (xn)n∈N be sequence in X.
We say that {xn}n∈N is D-convergent to x with respect to A and we write
lim
n→∞

‖D(xn, x)‖ = 0, if for given ε > 0, there exists a positive integer N such

that ‖D(xn, x)‖ < ε for all n > N .

For every x ∈ X, let us define the set

C(D, X, x) =
{

(xn)n∈N ⊂ X : lim
n→+∞

‖D(xn, x)‖ = 0
}
.

Definition 2.6. ([4]) Let X be a nonempty set. Suppose that the mapping
D : X ×X → A is defined and satisfies the following properties.

(D1) 0A � D(x, y) for all x and y in X;
(D2) D(x, y) = 0A =⇒ x = y;
(D3) D(x, y) = D(y, x) for all x and y in X;
(D4) There exists c ∈ A+ with c 6= 0A such that if (x, y) ∈ X×X, (xn)n∈N ∈

C(D, X, x) and lim sup
n→∞

‖D(xn, y)‖ <∞, then

D(x, y) �
(

lim sup
n→+∞

‖D(xn, y)‖
)
c.

In this case, D is said to be a C∗-algebra-valued generalized metric on X
and (X,A,D) is said to be a C∗-algebra-valued generalized metric space.

Let recall also, the concept of D-convergent and D-Cauchy sequence with
respect to A as well as the D-completeness.
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Definition 2.7. ([4]) Let (X,A,D) be a C∗-algebra-valued generalized metric
space.

(i) A sequence {xn}n∈N in X is said to be D-convergent to x with respect
to A if (xn) ∈ C(D, X, x).

(ii) A sequence {xn}n∈N in X is said to be a D-Cauchy sequence with
respect to A if for given ε > 0, there exists a positive integer N such
that ‖D(xn, xm)‖ < ε for all n,m ≥ N .

(iii) We say that (X,A,D) is a D-complete C∗-algebra-valued generalized
metric space if every D-Cauchy sequence is D-convergent with respect
to A in X.

As shown in [4], the limit of {xn}n∈N of D-convergent with respect to A
sequence is unique, that is, for all (x, y) ∈ X2, we have

C(D, X, x) ∩ C(D, X, y) 6= ∅ =⇒ x = y.

Note that, in C∗-algebra-valued generalized metric space, a D-convergent
with respect to A sequence may not be a D-Cauchy sequence with respect to
A, as shown by the following example.

Example 2.8. Let X = R+ and A be the set of continuous linear operators
on a Hilbert space H, equipped with the usual norm

‖v‖ = sup
x∈H\{0}

‖v(x)‖H
‖x‖H

.

Then A becomes a C∗-algebra.

Consider the mapping D : X ×X → A defined by

D(x, y) =


(
x+ y

)
.u∗u, if x = 0 or y = 0,(

5 +
x+ y

4

)
.u∗u, otherwise,

where u ∈ A with u 6= 0A.

Now, in this structure, let us consider the sequence {xn}n>1, where xn =
1

n
for all n > 1. Then, we have lim

n→+∞
‖D(xn, 0)‖ = 0, implies that the sequence

{xn}n≥1 is D-convergent to 0 with respect to A. But, lim
n,m→+∞

‖D(xn, xm)‖ =

5‖u‖2. This shows that {xn}n≥1 is a D-convergent with respect to A sequence
but not a D-Cauchy sequence.
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3. Main results

In this section, we introduce the extension of generalized Hardy-Rogers
contraction and we establish the existence of fixed points for this type of
mapping. Our results are supported by some examples. As application, we
also use this results to resolve integral equations.

Definition 3.1. Let (X,A,D) be a C∗-algebra-valued generalized metric space.
We say that a mapping T : X → X is a C∗-algebra-valued generalized Hardy-
Rogers contractive mapping on X, if there exists ui ∈ A+ for i ∈ {1, 2, 3, 4, 5}

such that
5∑

i=1
‖ui‖ < 1 such that for all x, y ∈ X,

D(Tx, Ty) � u1D(x, y) + u2D(x, Tx) + u3D(y, Ty)

+ u4D(y, Tx) + u5D(x, Ty). (3.1)

Remark 3.2. Note that in the case where A = R, the relation (3.1) is reduced
to a standard contraction according to Hardy-Rogers [16].

For an element x0 in a C∗-algebra-valued generalized metric space (X,A,D)
and for an arbitrary mapping T : X → X, we denote by the following

δ(D, T, x0) := sup
{
‖D(T ix0, T

jx0)‖ : i, j ∈ N
}
.

Theorem 3.3. Let (X,A,D) be a D-complete C∗-algebra-valued generalized
metric space with constant c and T : X → X be a C∗-algebra-valued generalized
Hardy-Rogers contractive mapping on X such that ‖u2‖‖c‖+ ‖u4‖ < 1.
If there exists an x0 in X such that δ(D, T, x0) < ∞, then T has a unique
fixed point x∗ in X.

Proof. Let n ∈ N (n > 1). Since T is a C∗-algebra-valued generalized Hardy-
Rogers contractive mapping on X, then for all i, j ∈ N, we have

D(Tn+ix0, T
n+jx0) = D(TTn−1+ix0, TT

n−1+jx0)

� u1D(Tn−1+ix0, T
n−1+jx0)

+ u2D(Tn−1+ix0, T
n+ix0)

+ u3D(Tn−1+jx0, T
n+jx0)

+ u4D(Tn−1+jx0, T
n+ix0)

+ u5D(Tn−1+ix0, T
n+jx0).
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Hence,

D(Tn+ix0, T
n+jx0) �

(
‖u1‖‖D(Tn−1+ix0, T

n−1+jx0)‖

+ ‖u2‖‖D(Tn−1+ix0, T
n+ix0)‖

+ ‖u3‖‖D(Tn−1+jx0, T
n+jx0)‖

+ ‖u4‖‖D(Tn−1+jx0, T
n+ix0)‖

+ ‖u5‖‖D(Tn−1+ix0, T
n+jx0)‖

)
· 1A

�
( 5∑
i=1

‖ui‖
)
δ(D, T, Tn−1x0) · 1A

� αδ(D, T, Tn−1x0) · 1A,

where α =
5∑

i=1
‖ui‖ < 1. By Lemma 2.1, we obtain

‖D(Tn+ix0, T
n+jx0)‖ � αδ(D, T, Tn−1x0) for all i, j ∈ N.

So,

δ(D, T, Tnx0) � αδ(D, T, Tn−1x0) for all n ∈ N∗.

Using induction reasoning, we get

δ(D, T, Tnx0) � αnδ(D, T, x0).

So, for all (i, j) ∈ N× N, we have

D(Tn+ix0, T
n+jx0) � αδ(D, T, Tn−1x0) · 1A

� αn−1δ(D, T, x0) · 1A.

Since the sequence
{
αn−1δ(D, T, x0) · 1A

}
n∈N is D-convergent to 0A with re-

spect to A, it follows that
{
D(Tn+ix0, T

n+jx0)
}
n∈N is D-convergent to 0A with

respect to A. Therefore, {Tnx0}n∈N is a D-Cauchy sequence with respect to
A in X. Since (X,A,D) is D-complete, the sequence {Tnx0}n∈N convergent
to a x∗ ∈ X with respect to A.

Now, let us show that x∗ is a fixed point of T , that is, Tx∗ = x∗. Indeed,

‖D(Tx∗, Tn+1x0)‖ 6 ‖u1‖‖D(x∗, Tnx0)‖+ ‖u2‖‖D(x∗, Tx∗)‖
+ ‖u3‖‖D(Tnx0, T

n+1x0)‖
+ ‖u4‖‖D(Tnx0, Tx

∗)‖
+ ‖u5‖‖D(x∗, Tn+1x0)‖.
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By setting
λn = ‖D(Tx∗, Tnx0)‖,
γn = ‖u1‖‖D(x∗, Tnx0)‖+ ‖u3‖‖D(Tnx0, T

n+1x0)‖
+‖u5‖‖D(x∗, Tn+1x0)‖

and
β = ‖u2‖‖D(x∗, Tx∗)‖,

we obtain λn+1 6 ‖u4‖λn + γn + β.

Since lim
n→∞

γn = 0, we have for all ε >
β

1− ‖u4‖
> 0, there exists an integer

Nε such that γn 6 ε(1− ‖u4‖)− β for all integer n ≥ Nε. Then, we get

λn+1 6 ‖u4‖λn + ε(1− ‖u4‖) for all n ≥ Nε.

By using Lemma 2.4, we get 0 6 lim sup
n→∞

λn ≤ ε for all ε >
β

1− ‖u4‖
.

Then,

0 6 lim sup
n→∞

λn 6
β

1− ‖u4‖
.

Since {Tn+1x0} is D-convergent to x∗ with respect to A, we have

D(Tx∗, x∗) �
(

lim sup
n→∞

‖D(Tx∗, Tn+1x0)‖
)
· c

�
(

lim sup
n→∞

λn
)
· c

� β

1− ‖u4‖
· c.

By Lemma 2.1, we get

‖D(Tx∗, x∗)‖ 6 β‖c‖
1− ‖u4‖

6
‖c‖u2‖

1− ‖u4‖
‖D(Tx∗, x∗)‖.

Thus, (
1− ‖c‖‖u2‖

1− ‖u4‖
)
‖D(Tx∗, x∗)‖ 6 0.

Since
‖c‖‖u2‖
1− ‖u4‖

< 1, ‖D(Tx∗, x∗)‖ = 0, which implies that D(Tx∗, x∗) = 0A.

Therefore, Tx∗ = x∗.
Now, suppose that the mapping T has two fixed points x∗ and y∗ in X.

Since T is C∗-algebra-valued Hardy-Rogers contractive mapping on X, we
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have

D(x∗, x∗) = D(Tx∗, Tx∗)

� u1D(x∗, x∗) + u2D(x∗, Tx∗) + u3D(x∗, Tx∗)

+ u4D(x∗, Tx∗) + u5D(x∗, Tx∗).

= u1D(x∗, x∗) + u2D(x∗, x∗) + u3D(x∗, x∗)

+ u4D(x∗, x∗) + u5D(x∗, x∗).

Then (1−α)‖D(x∗, x∗)‖ 6 0, which gives ‖D(x∗, x∗)‖ = 0, thereforeD(x∗, x∗) =
0A. Similarly, we get also D(y∗, y∗) = 0A.

On the other hand, we have

D(x∗, y∗) = D(Tx∗, Ty∗)

� u1D(x∗, y∗) + u2D(x∗, Tx∗)

+ u3D(y∗, Ty∗) + u4D(y∗, Tx∗) + u5D(x∗, T y∗)

= u1D(x∗, y∗) + u2D(x∗, x∗) + u3D(y∗, y∗)

+ u4D(y∗, x∗) + u5D(x∗, y∗).

= u1D(x∗, y∗) + u4D(x∗, y∗) + u5D(x∗, y∗).

Then, we have

‖D(x∗, y∗)‖ 6 ‖u1‖‖D(x∗, y∗)‖+ ‖u4‖‖D(x∗, y∗)‖+ ‖u5‖‖D(x∗, y∗)‖,

this implies that(
1− (‖u1‖+ ‖u4‖+ ‖u5‖)

)
‖D(x∗, y∗)‖ 6 0.

Since ‖u1‖+ ‖u4‖+ ‖u5‖ < 1, so ‖D(x∗, y∗)‖ = 0. Therefore, D(x∗, y∗) = 0A
and x∗ = y∗, which show the uniqueness of the fixed point of T . �

Example 3.4. Let X = R+, the set of positive real numbers, and let A =
M2(C), the set of all 2× 2 complex matrices. Then A is a C∗-algebra.

Consider the mapping D : X ×X → A defined by

D(x, y) =



(
x+ y 0

0 x+ y

)
, if x = 0 or y = 0,

x+ y

3
0

0
x+ y

3

 , otherwise.
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So, (X,A, D) is a D-complete C∗-algebra-valued generalized metric space.
The mapping T : X → X defined by

Tx =


x2

2
, if x ∈ [0, 1],

1

4
, if x > 1,

is a C∗-algebra-valued generalized Hardy-Rogers contractive mapping on X

for u1 =
1

2
· 1A and ui =

1

9
· 1A for all i ∈ {2, 3, 4, 5}.

Now, we can show that all the conditions of Theorem 3.3 are satisfied.
Consequently, T has a unique fixed point, namely x∗ = 0.

Remark 3.5. Note that in Theorem 3.3, if we take

(1) u2 = u3 = u4 = u5 = 0A, we obtain an extension of Banach contraction
[1] to C∗-algebra-valued generalized metric space.

(2) u2 = u3 and u1 = u4 = u5 = 0A, we obtain an extension of Kannan
contraction [20] to C∗-algebra-valued generalized metric space.

(3) u4 = u5 and u1 = u2 = u3 = 0A, we obtain an extension of Chatterjea
contraction [10] to C∗-algebra-valued generalized metric space.

(4) u4 = u5 = 0A, we obtain an extension of Reich contraction [33] to
C∗-algebra-valued generalized metric space.

Now, we extend the Hardy-Rogers contraction principle to the class of C∗-
algebra-valued generalized metric space endowed with a partial order.

Definition 3.6. Let (X,A,D) be a C∗-algebra-valued generalized metric space
and �A be a partial order on X.

(1) The space (X,A,D,�A) is called an C∗-algebra-valued ordered gener-
alized metric space.

(2) Two elements x and y in X are said to be comparable if x �A y or
y �A x.

(3) A self-mapping T on X is said to be non-decreasing or order preserving
mapping if Tx �A Ty, whenever x �A y.

(4) The space (X,A,D,�A) is said to be regular with respect to A, if for
every non-decreasing sequence (xn)n∈N in X that D-converges to some
x ∈ X with respect to A, we have xn �A x for all n ∈ N.

Theorem 3.7. Let (X,A,D,�A) be a D-complete C∗-algebra-valued ordered
generalized metric space and T : X → X a C∗-algebra-valued generalized or-
dered contractive of Hardy-Rogers type, that is, for all comparable x, y ∈ X,



Fixed point results in C∗-algebra-valued generalized metric spaces 795

we have

D(Tx, Ty) � u1D(x, y) + u2D(x, Tx)

+ u3D(y, Ty) + u4D(y, Tx) + u5D(x, Ty),
(3.2)

where ui ∈ A+ for all i ∈ {1, 2, 3, 4, 5} and ‖u2‖‖c‖+ ‖u4‖ < 1.
If the following conditions are satisfied

(1) There exists x0 ∈ X such that δ(D, T, x0) <∞ and x0 �A Tx0;
(2) T is non-decreasing;
(3) X is regular with respect to A,

then, T has a fixed point in X. Moreover, if
5∑

i=1
‖ui‖ < 1, then the set of fixed

points of T is totally ordered if and only if T has a unique fixed point.

Proof. Let x0 ∈ X satisfying the condition (1) of the above theorem. We
define the Picard sequence {xn}n∈N by xn = Tnx0 for all n ∈ N. As T is
non-decreasing and x0 �A Tx0, we deduce that

x0 �A x1 �A x2 �A · · · �A xn �A xn+1 �A . . . , (3.3)

that is, the two elements Tn+ix0 and Tn+jx0 are comparable in X for all i, j
and n ∈ N.

Using reasoning similar to the proof of Theorem 3.3, we conclude that the
sequence {xn}n∈N is a D-Cauchy sequence with respect to A. Since (X,A,D)
is a D-complete with respect to A, there exists a point x∗ ∈ X such that {xn}
is D-convergent to x∗ with respect to A.

Now, we show that x∗ is a fixed point of T , that is, Tx∗ = x∗. Indeed, as X
is regular with respect to A and according to (3.3), we have xn �A x

∗ which
implies that Txn �A Tx∗. Thus, Txn and Tx∗ are comparable. By using
(3.2), we get

D(Tx∗, Txn) � u1D(x∗, xn) + u2D(x∗, Tx∗) + u3D(xn, Txn)

+ u4D(xn, Tx
∗) + u5D(x∗, Txn).

According to Lemma 2.1, we have

‖D(Tx∗, Tn+1x0)‖ 6 ‖u1‖‖D(x∗, Tnx0)‖+ ‖u2‖‖D(x∗, Tx∗)‖
+ ‖u3‖‖D(Tnx0, T

n+1x0)‖+ ‖u4‖‖D(Tnx0, Tx
∗)‖

+ ‖u5‖‖D(x∗, Tn+1x0)‖.
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By setting
λn = ‖D(Tx∗, Tnx0)‖,
γn = ‖u1‖‖D(x∗, Tnx0)‖+ ‖u3‖‖D(Tnx0, T

n+1x0)‖
+ |u5‖‖D(x∗, Tn+1x0)‖

and
β = ‖u2‖‖D(x∗, Tx∗)‖,

we get λn+1 6 ‖u4‖λn + γn + β. Since lim
n→∞

γn = 0, we have for all ε >

β

1− ‖u4‖
> 0, there exists an integer Nε such that γn 6 ε(1 − ‖u4‖) − β for

all n ≥ Nε. Then, we get

λn+1 6 ‖u4‖λn + ε(1− ‖u4‖) for all n ≥ Nε.

By Lemma 2.4, we have 0 6 lim sup
n→∞

λn ≤ ε for all ε >
β

1− ‖u4‖
.

Then,

0 6 lim sup
n→∞

λn 6
β

1− ‖u4‖
.

Since Tn+1x0 → x∗ as n→∞, we have

D(Tx∗, x∗) �
(

lim sup
n→∞

‖D(Tx∗, Tn+1x0)‖
)
· c

�
(

lim sup
n→∞

λn
)
· c

� β

1− ‖u4‖
· c.

By Lemma 2.1, we get

‖D(Tx∗, x∗)‖ 6 β‖c‖
1− ‖u4‖

6
‖c‖u2‖

1− ‖u4‖
‖D(Tx∗, x∗)‖.

Thus, (
1− ‖c‖‖u2‖

1− ‖u4‖
)
‖D(Tx∗, x∗)‖ 6 0.

As
‖c‖‖u2‖
1− ‖u4‖

< 1, then ‖D(Tx∗, x∗)‖ = 0. This gives D(Tx∗, x∗) = 0A, there-

fore Tx∗ = x∗.

Now, we assume that
5∑

i=1
‖ui‖ < 1 and we suppose that the set of fixed

points of T is totally ordered. By using a reasoning by the absurd, we claim
that the fixed point of T is unique. Indeed, suppose that there exists y∗ ∈ X
another fixed point of T such that x∗ 6= y∗.
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Since x∗ �A x∗ and y∗ �A y∗, we obtain with the same way as the proof
of Theorem 3.3, D(x∗, x∗) = 0A and D(y∗, y∗) = 0A. Since x∗ and y∗ are
comparable, and using again (3.2), with x = x∗ and y = y∗, we get

D(x∗, y∗) = D(Tx∗, T y∗)

� u1D(x∗, y∗) + u2D(x∗, Tx∗)

+ u3D(y∗, T y∗) + u4D(y∗, Tx∗) + u5D(x∗, T y∗)

= u1D(x∗, y∗) + u4D(x∗, y∗) + u5D(x∗, y∗).

Then, we have

‖D(x∗, y∗)‖ 6 ‖u1‖‖D(x∗, y∗)‖+ ‖u4‖‖D(x∗, y∗)‖+ ‖u5‖‖D(x∗, y∗)‖.

So, (
1− (‖u1‖+ ‖u4‖+ ‖u5‖)

)
‖D(x∗, y∗)‖ 6 0.

Since ‖u1‖+ ‖u4‖+ ‖u5‖ < 1, so ‖D(x∗, y∗)‖ = 0. Therefore, D(x∗, y∗) = 0A
and x∗ = y∗.

Conversely, if T has a unique fixed point, then the set of fixed points of T ,
being a singleton, is totally ordered. �

Definition 3.8. Let (X,A,D) be a C∗-algebra-valued generalized metric space.

We say that a mapping T : X → X is a C∗-algebra-valued generalized Ćirić-
Jachymski-Matkowski contraction (CJM, for short) mapping on X, if the fol-
lowing hold

(1) For all ε � 0A, there exists an element σ � 0A satisfying

D(x, y) ≺ ε+ σ =⇒ D(Tx, Ty) ≺ ε for all x, y ∈ X,

(2) x 6= y =⇒ D(Tx, Ty) ≺ D(x, y) for all x, y ∈ X.

Remark 3.9. Note that if A = R, then the Definition 3.8 is reduced to a
standard contraction according to Ćirić-Jachymski-Matkowski [11].

Theorem 3.10. Let (X,A,D) be a D-complete C∗-algebra-valued general-
ized metric space and T : X → X be a C∗-algebra-valued generalized CJM-
contraction mapping on X. Then T has either a unique fixed point or a peri-
odic point in X.

Proof. Choose x0 ∈ X an arbitrary element and construct the sequence {xn}n∈N
defined by the following iterative scheme xn+1 = Txn for all n ∈ N.

If xn+p = xn for some n ∈ N with p > 1 an arbitrary element of N, then
T px0 = x0, therefore x0 is a periodic point of T .
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If xn+p 6= xn for all n ∈ N and p > 1. Using (2) of the Definition 3.8, we
get

D
(
xn+p+1, xn+1

)
= D

(
Txn+p, Txn

)
≺ D(xn+p, xn) for all n ∈ N,

that is, the sequence
{
Dn

}
n∈N, where Dn = D(xn+p, xn) for all n ∈ N, is

bounded below and strictly decreasing. Thus, it is D-convergent with respect
to A and lim

n→∞
Dn = ` � 0A.

Now, we claim that ` = 0A, which implies that {xn}n∈N is a D-Cauchy
sequence with respect to A. Indeed, assume that ` � 0A. Then there exists
n0 ∈ N and σ � 0A such that

` ≺ Dn ≺ `+ σ for all n > n0. (3.4)

Using (1) of the Definition 3.8, we obtain

D(Txn+p, Txn) ≺ ` for all n > n0.

This means that Dn+1 ≺ ` for all n > n0, which is in contradiction with (3.4).
Thus, lim

n→∞
D(xn+p, xn) = 0A, that is to say that {xn}n∈N is a D-Cauchy

sequence with respect to A. Since (X,A,D) is D-complete, then there exists
x∗ ∈ X such that {xn} is D-convergent to x∗ with respect to A.

Now, let we show that x∗ is a fixed point of T , that is, Tx∗ = x∗. The
sequence {αn}n∈N, where αn = D(xn, x

∗), is decreasing and is D-convergent
to 0A with respect to A, then there exists n1 ∈ N such that αn � 0A for all
n > n1. Otherwise, if αn = 0A for all n ∈ N, then xn = xn+1 = x∗. Therefore,
Tx∗ = Txn = x∗, that is, x∗ is a fixed point of T .

Consequently, there exists σ � 0A such that D(xn, x
∗) ≺ αn + σ for all

n > n1.
By using (1) of the Definition 3.8, we get

D(Txn, Tx
∗) ≺ αn.

Thus,

‖D(Txn, Tx
∗)‖ < ‖αn‖ for all n > n1 ( by the Lemma 2.1).

On the other hand, since xn → x∗ as n→∞, there exists c � 0A such that

D(Tx∗, x∗) �
(

lim sup
n→∞

‖D(Tx∗, xn+1)‖
)
· c

=
(

lim sup
n→∞

‖D(Tx∗, Txn)‖
)
· c

�
(

lim sup
n→∞

‖αn‖
)
· c

= 0A,

this implies that D(Tx∗, x∗) = 0A, that is, Tx∗ = x∗. Therefore, x∗ is a fixed
point of T .
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Now, let us show the uniqueness of the fixed point of T . Suppose that x∗, y∗

are two fixed points of T in X. If x∗ 6= y∗, then D(Tx∗, Ty∗) ≺ D(x∗, y∗), that
implies D(x∗, y∗) ≺ D(x∗, y∗) which is a contradiction. �

Example 3.11. In the same context of Example 3.4, we define a mapping
T : X → X by

Tx =


x4

3
, if x ∈ [0, 1],

0, if x > 1.

Then the mapping T is a C∗-algebra-valued generalized CJM-contraction map-
ping on X. Since all conditions of Theorem 3.10 are satisfied, T has a unique
fixed point, namely x∗ = 0.

Remark 3.12. Note that the C∗-algebra-valued generalized metric spaces
include both JS-metric spaces and C∗-algebra-valued b-metric space, we can
conclude that our results generalize those presented in [11, 15].

4. Applications

In the above, we use Theorem 3.3 to solve an operator equation and an
integral equation.

Theorem 4.1. Consider the following integral equation

x(t) = α

∫
E
K(t, s)Ψ

(
s, x(s)

)
ds, t ∈ E, (4.1)

where E is a Lebesgue measurable set and α is a real number. Assume the
following

(1) Ψ : E × R → R is continuous and satisfied |Ψ(t, x)| 6 λ(t)|x| for all
t ∈ E and x ∈ R, where function λ is continuous on E such that

0 6 α‖λ‖ < 1

2
.

(2) K : E × R→ R is continuous and sup
t∈E

∫
E |K(t, s)|ds ≤ 1.

Then, the integral equation (4.1) has a unique solution x∗ in X.

Proof. Let X = C(E,R) the set of bounded and continuous functions on E
with the following norm: ‖x‖∞ = sup

t∈E
|x(t)| for all x ∈ X, then it forms a

C∗-algebra.
We define the mapping D : X ×X → X by

D(x, y) =

 0, if x = y,

max
{
‖x‖∞, ‖y‖∞

}
.u∗u, otherwise,
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where u is an element of X. So, (X,X,D) is a D-complete C∗-algebra-valued
generalized metric space with c = 1X . Let’s define the mapping T : X → X
by

Tx(t) = α

∫
E
K(t, s)Ψ

(
s, x(s)

)
ds for all t ∈ E and x ∈ X.

Now, our problem (4.1) can be reformulated as the search for a fixed point
of T . Thus,

|Tx(t)| = |α
∫
E
K(t, s)Ψ(s, x(s))ds|

≤ α
∫
E
|K(t, s)Ψ(s, x(s))|ds

= α

∫
E
|K(t, s)||Ψ

(
s, x(s)

)
|ds

≤ α‖λ‖‖x‖∞ sup
t∈E

∫
E
|K(t, s)|ds

6 α‖λ‖‖x‖∞.
Therefore, ‖Tx‖∞ 6 α‖λ‖‖x‖∞ for all x ∈ X. Similarly, we have

‖Ty‖∞ 6 α‖λ‖‖y‖∞
for all x ∈ X.

Now, if Tx 6= Ty, we have

D(Tx, Ty) = max
{
‖Tx‖∞, ‖Ty‖∞

}
· u∗u

� α‖λ‖max{‖x‖∞, ‖y‖∞} · u∗u
= α‖λ‖ · D(x, y).

If Tx = Ty, we have D(Tx, Ty) = 0, so D(Tx, Ty) � α‖λ‖.D(x, y). Therefore,

D(Tx, Ty) � α.D(x, y)

for all x ∈ X and y ∈ X, that is, to say

D(Tx, Ty) � u1D(x, y) + u2D(x, Tx) + u3D(y, Ty)

+ u4D(y, Tx) + u5D(x, Ty)

for all x, y ∈ X, where u1 = α‖λ‖.1X and u2 = u3 = u4 = u5 =
α‖λ‖

5
.1X .

On the other hand, we have

‖Tx‖∞ 6 α‖λ‖‖x‖∞
for all x ∈ X. By induction reasoning, we get

‖Tnx‖∞ 6 αn−1‖λ‖n−1‖x‖∞
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for all (x, n) ∈ X × N. So, for all i, j ∈ N, we have

‖D(T ix0, T
jx0)‖ 6 max{αi−1‖λ‖i−1‖x0‖∞, αj−1‖λ‖j−1‖x0‖∞}.

Since

max

{
αi−1‖λ‖i−1‖x0‖∞, αj−1‖λ‖j−1‖x0‖∞

}
→ 0 as i, j →∞,

we get δ(D, T, x0) <∞. We have also

‖c‖‖u2‖
1− ‖u4‖

=
α‖λ‖

5− α‖λ‖
< 1.

Consequently, all the conditions of Theorem 3.3 are fully satisfied, and the
integral equation (4.1) has a unique solution x∗ in X. �

Theorem 4.2. Consider the following nonlinear operator equation

X =
∞∑
n=1

A∗nf(X)An, (4.2)

where A1, A2, A3, .., An ∈ L(H) with L(H) denoting the set of continuous lin-

ear operators on a Hilbert space H, and satisfy
∞∑
n=1
‖An‖2 < 1. The function

f : L(H) → L(H) is such that ‖f(X)‖ 6 α‖X‖ for all X ∈ L(H), where

α <
5

9
. Then, the operator equation (4.2) has a unique solution X∗ in L(H).

Proof. Let λ =
∞∑
n=1
‖An‖2. Clear that if λ = 0, then the An = 0 for all n ∈ N∗

and the equation (4.2) has a unique solution X∗ in L(H).
Now, if λ > 0, we define the mapping D : L(H)× L(H)→ L(H) by

D(X, 0) = D(0, X) =
1

2
‖X‖.A∗A for all X ∈ L(H),

D(X,Y ) =

(
‖X‖+ ‖Y ‖

)
.A∗A if X 6= 0 and Y 6= 0,

where A ∈ L(H). Then, (L(H), L(H),D) is a D-complete C∗-algebra-valued
generalized metric space. Consider the mapping T : L(H)→ L(H) defined by

T (X) =
∞∑
n=1

A∗nf(X)An.
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Then, if T (X) 6= 0 and T (Y ) 6= 0, then

D
(
T (X), T (Y )

)
=

(
‖T (X)‖+ ‖T (Y )‖

)
·A∗A

=

(
‖
∞∑
n=1

A∗nf(X)An‖+ ‖
∞∑
n=1

A∗nf(Y )An‖

)
.A∗A

�

( ∞∑
n=1

‖A∗nf(X)An‖+
∞∑
n=1

‖A∗nf(Y )An‖

)
·A∗A

�

( ∞∑
n=1

‖An‖2‖f(X)‖+
∞∑
n=1

‖An‖2‖f(Y )‖

)
·A∗A

� αλ
(
‖X‖+ ‖Y ‖

)
·A∗A

= αλD(X,Y ).

On the other hand, we have

D
(
0, T (X)

)
= D

(
T (X), 0

)
=
‖T (X)‖

2
·A∗A

� 1

2

∞∑
n=1

‖An‖2‖f(X)‖ ·A∗A

� 1

2
αλ‖X‖ ·A∗A

� αλ · D(0, X).

Then, for both cases, we have

D
(
T (X), T (Y )

)
� U1D(X,Y ) + U2D

(
X,T (X)

)
+ U3D

(
Y, T (Y )

)
+ U4D

(
Y, T (X)

)
+ U5D

(
X,T (Y )

)
for all X,Y ∈ L(X), where U1 = αλ.1L(H) and Ui =

αλ

5
.1L(H) for all i ∈

{2, 3, 4, 5}. Consequently, it is easy to verify that all the postulates of Theorem
3.3 are satisfied and that the operator equation (4.2) has a unique solution X∗

in L(H). �

5. Conclusion

This work proposes an extension of the Hardy-Rogers and Ćirić-Jachymski-
Matkowski (CJM) contraction theorem in a C∗-algebra-valued generalized
metric. Indeed, the results obtained represent both a generalization and an
improvement of several previous works. Based on our results, we have derived
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outcomes for C∗-algebra-valued variants of the contractions of Kannan [20],
Chatterjee [10], Reich [33], and Banach [1]. This work concludes with the
application of the obtained results to the resolution of an integral equation
and an operator equation.

Acknowledgments: The authors would like to thank the referees of this
paper for their insightful suggestions and numerous corrections.
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