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Abstract. In this article, we introduce two new algorithms for solving equilibrium prob-

lem involving pseudo-monotone and Bregman Lipschitz-type bifunction in reflexive Banach

spaces. The algorithms are constructed around the extragradient method and the advan-

tage of the algorithms is that it is done without the prior knowledge of Bregman Lipschitz

coefficients. Theorems of strong convergence are established under mild conditions. Finally,

a numerical experiments are reported to illustrate the efficiency of the proposed algorithm.

1. Introduction

Let X be a reflexive real Banach space and C be a nonempty closed and
convex subset of X. Throughout this paper, we shall denote the dual space of
X byX∗. The norm and the duality pairing betweenX andX∗ are respectively
denoted by ‖ · ‖ and 〈·, ·〉. The minimization problem for a function f : C → R
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is defined as

Find x∗ ∈ C such that f(x∗) ≤ f(y), ∀y ∈ C. (1.1)

In this case, x∗ is called a minimizer of f and

Argminy∈Cf(y)

denotes the set of minimizers of f . Minimization problems are very useful in
optimization theory as well as convex and nonlinear analysis. We introduce
the equilibrium problem (EP ) of find x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C, (1.2)

where f : C × C → R is a bifunction.
The set of solutions of (1.2) is denoted by EP (f). It unifies many im-

portant mathematical problems, such as optimization problems, complemen-
tarity, fixed point, Nash equilibria, optimization, saddle point, and varia-
tional inequality problems can be reformulated as equilibrium problems (cf.
[10, 18, 24]).

In recent decades, many methods have been proposed and analyzed for
approximating solution of equilibrium problems (cf. [23, 25, 27, 34]). However,
there are only a few papers that deal with iterative procedures for solving
equilibrium problems in finite as well as infinite-dimensional spaces (cf. [20,
26, 33, 42, 43]).

Recently, iterative methods for finding a common element of the set of
solutions of equilibrium problems and the set of fixed points of operators in
Hilbert spaces have been developed further by several authors [3, 4, 42].

In [36], Reich and Sabach proposed two algorithms for finding common
fixed points of finitely many Bregman firmly nonexpansive operators defined
on a nonempty, closed and convex subset C of a reflexive Banach spaces X.
Also, they have presented several methods for solving equilibrium problems
in reflexive Banach spaces, see [35, 37, 38]. Inspired by the aforementioned
results, the main purpose of this paper is to extend the method in [22] to
equilibrium problems (1.2) with the Bregman distance.

The paper is organized as follows: In section 2, we present some definitions
and preliminaries needed in the paper. We introduce our two algorithms and
prove the main result in the Section 3. Finally, sections 4 include applications
of algorithms and we give a example of equilibrium problems to which our
main theorem can be applied. Finally, a numerical example to support our
main theorem will be exhibited in a non-Hilbertian space.
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2. Preliminaries

In this section, we recall some definition and results that will be used in the
sequel.

Let f : X→(−∞,∞] be a proper convex and lower semicontinuous function.
The set of minimizers of f is denoted by Argmin f . If Argmin f is a singleton,
its unique element is denoted by argminx∈X f(x). Also we denote by dom f ,
the domain of f , that is the set {x ∈ X : f(x)<∞}. Let x∈int domf . Then
subdifferential of f at x is the convex set defined by:

∂f(x) = {ξ ∈ X∗ : f(x) + 〈y − x, ξ〉 ≤ f(y), ∀y ∈ X},
and the Fenchel conjugate of f is the convex function

f∗ : X∗ → (−∞,∞], f∗(ξ) = sup{〈x, ξ〉 − f(x) : x ∈ X}.
It is well known that ξ∈∂f(x) is equivalent to

f(x) + f∗(ξ) = 〈x, ξ〉. (2.1)

It is not difficult to check that f∗ is proper convex and lower semicontinuous
function. The function f is said to be cofinite if dom f∗=X∗. For any convex
mapping f :X→(−∞,+∞], we denote by f◦(x, y) the right-hand derivative of
f at x∈int domf in the direction y, that is,

f◦(x, y) := lim
t↓0

f(x+ ty)− f(x)

t
. (2.2)

If the limit as t→ 0 in (2.2) exists for each y, then the function f is said to
be Gâteaux differentiable at x. In this case, the gradient of f at x is the linear
function ∇f(x), which is defined by 〈y,∇f(x)〉 : =f◦(x, y) for all y∈X. The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable
at each x∈int domf. When the limit as t→0 in (2.2) is attained uniformly for
any y∈X with ‖y‖=1, we say that f is Fréchet differentiable at x. Finally, f
is said to be uniformly Fréchet differentiable on a subset E of X if the limit
is attained uniformly for x∈E and ‖y‖=1.

The function f is said to be Legendre if it satisfies the following two condi-
tions:

(L1) int domf 6=∅ and ∂f is single-valued on its domain,

(L2) int domf∗ 6=∅ and ∂f∗ is single-valued on its domain.

Because the spaceX is assumed to be reflexive, we always have (∂f)−1=∂f∗.
(see[11], p. 83). This fact, when combined with conditions (L1) and (L2),
implies the following equalities:

∇f = (∇f∗)−1,
ran ∇f = dom ∇f∗ = int dom f∗,
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ran ∇f∗ = dom ∇f = int dom f.

Also, conditions (L1) and (L2), in conjunction with Theorem 5.4 of [8], imply
that the functions f and f∗ are strictly convex on the interior of their respective
domains and f is Legendre if and only if f∗ is Legendre. Several interesting
examples of Legendre functions are presented in [6, 8]. Among them are the
functions 1

p‖ · ‖
p with p∈(1,∞), where the Banach space X is smooth and

strictly convex.

In 1967, Bregman [12] introduced the concept of Bregman distance, and
he discovered an elegant and effective technique for the use of the Bregman
distance in the process of designing and analyzing feasibility and optimization
algorithms.

From now on, we assume that f :X→(−∞,+∞] is also Legendre. The Breg-
man distance with respect to f , or simply, Bregman distance is the bifunction
Df :domf×int domf→[0,+∞], defined by:

Df (y, x) := f(y)− f(x)− 〈y − x,∇f(x)〉.

It should be noted that Df is not a distance in the usual sense of the term.
Clearly, Df (x, x)=0, but Df (y, x)=0 may not imply x=y. In our case, when
f is Legendre this indeed holds (see [8], Theorem 7.3(vi), p. 642). In general,
Df is not symmetric and does not satisfy the triangle inequality. However,
Df satisfies the three point identity

Df (x, y) +Df (y, z)−Df (x, z) = 〈x− y,∇f(z)−∇f(y)〉,

and four point identity

Df (x, y) +Df (w, z)−Df (x, z)−Df (w, y) = 〈x− w,∇f(z)−∇f(y)〉

for any x,w∈domf and y, z∈int domf.
During the last 30 years, Bregman distances, have been studied by many

researchers (see [1, 7, 8, 13, 14, 29] ).

The modulus of total convexity at x ∈ int domf is the function υf (x, .) :
[0,∞)→ [0,∞], defined by:

υf (x, t) := inf{Df (y, x) : y ∈ dom f, ‖y − x‖ = t}.

The function f is called totally convex at x∈int domf if υf (x, t) is positive
for any t>0. This notion was first introduced by Butnariu and Iusem in [14].
Let E be a nonempty subset of X. The modulus of total convexity of f on E
defined by:

υf (E, t) = inf{υf (x, t) : x ∈ E ∩ int dom f}.
The function f is called totally convex on bounded subsets if υf (E, t) is positive
for any nonempty and bounded subset E and for any t>0.
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We will use the following lemmas in the proof of our results.

Lemma 2.1. ([38]) If f :X→R is uniformly Fréchet differentiable and bounded
on bounded subsets of X, then ∇f is uniformly continuous on bounded subsets
of X from the strong topology of X to the strong topology of X∗.

Recall that the function f is called sequentially consistent (see [16]) if for
any two sequences {xn} and {yn} in X such that the first one is bounded,

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.2. ([14]) If dom f contains at least two points, then the function f
is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 2.3. ([38]) Let f :X→R be a Gâteaux differentiable and totally convex
function. If x0∈X and the sequence {Df (xn, x0)} is bounded, then the sequence
{xn} is also bounded.

Lemma 2.4. ([39]) Let f :X→R be a Legendre function such that ∇f∗ is
bounded on bounded subsets of int domf∗. Let x0∈X, if {Df (x0, xn)} is
bounded then the sequence {xn} is bounded too.

The Bregman projection (see[12]) with respect to f of x∈int domf onto
a nonempty, closed and convex set C⊂int domf is defined as the necessarily

unique vector
←−−
projfC(x)∈C, which satisfies

Df (
←−−
projfC(x), x) = inf{Df (y, x) : y ∈ C}.

Similarly to the metric projection in Hilbert spaces, the Bregman projec-
tion with respect to totally convex and Gâteaux differentiable functions has a
variational characterization ([16], Corollary 4.4, p. 23]).

Lemma 2.5. ([16]) Suppose that f is Gâteaux differentiable and totally convex
on int dom f . Let x∈ int domf and C⊂int domf be a nonempty, closed, and
convex set. If x̂∈C, then the following conditions are equivalent:

(i) The vector x̂∈C is the Bregman projection of x onto C with respect
to f.

(ii) The vector x̂∈C is the unique solution of the variational inequality

〈z − y,∇f(x)−∇f(z)〉 ≥ 0, ∀y ∈ C.
(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x), ∀y ∈ C.
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Following [2] and [17], we make use of the function Vf :X×X∗→[0,+∞]
associated with f , which is defined by:

Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗), ∀x ∈ X, x∗∈X∗.

Then

Vf (x, x∗) = Df (x,∇f∗(x∗)) (2.3)

for all x∈X and x∗∈X∗. Moreover, by the subdifferential inequality, we have

Vf (x, x∗) + 〈∇f∗(x∗)− x, y∗〉 ≤ Vf (x, x∗ + y∗) (2.4)

for all x∈X and x∗, y∗∈X∗ (see [28]). In addition if f :X→(−∞,+∞] is a
proper lower semicontinuous function, then f∗:X∗→(−∞,+∞] is a proper
weak∗ lower semicontinuous and convex function (see [31]). Hence Vf is convex
in the second variable. Thus, for all z∈X, we have

Df

(
z,∇f∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi), (2.5)

where {xi}Ni=1⊂X and {ti}Ni=1⊂(0, 1) with
∑N

i=1 ti=1.

Let B and S be the closed unit ball and the unit sphere of a Banach space
X. Let rB={z∈X : ‖z‖≤r} for all r>0. Then the function f :X→R is said
to be uniformly convex on bounded subsets (see [45]) if ρr(t)>0 for all r, t>0,
where ρr:[0,∞)→[0,∞] is defined by:

ρr(t) = inf
x,y∈rB,‖x−y‖=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)

for all t≥0. The function ρr is called the gauge of uniform convexity of f . It
is known that ρr is a nondecreasing function. If f is uniformly convex, then
the following lemma is known.

Lemma 2.6. ([30]) Let X be a Banach space, r>0 be a constant and f :X→R
be a uniformly convex function on bounded subsets of X. Then

f

( n∑
k=0

αkxk

)
≤

n∑
k=0

αkf(xk)− αiαjρr(‖xi − xj‖)

for all i, j∈{0, 1, 2, · · · , n}, xk∈rB, αk∈(0, 1) and k = 0, 1, 2, · · · , n with
n∑
k=0

αk = 1, where ρr is the gauge of uniform convexity of f .
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The function f is also said to be uniformly smooth on bounded subsets (see

[45]) if lim
t↓0

σr(t)

t
=0 for all r>0, where σr:[0,∞)→[0,∞] is defined by:

σr(t)= sup
x∈rB,y∈S,α∈(0,1)

αf(x+ (1− α)ty) + (1− α)f(x− αty)− f(x)

α(1− α)

for all t≥0. A function f is said to be super coercive if lim
|x|→∞

f(x)

|x|
= +∞.

We will use the following theorems.

Theorem 2.7. ([45]) Let f :X→R be a convex function which is super coercive.
Then the following are equivalent:

(i) f is bounded on bounded subsets and uniformly smooth on bounded
subsets of X;

(ii) f is Fréchet differentiable and ∇f is uniformly norm-to-norm contin-
uous on bounded subsets of X;

(iii) dom f∗=X∗, f∗ is super coercive and uniformly convex on bounded
subsets of X∗.

Theorem 2.8. ([45]) Let f :X→R be a convex function which is bounded on
bounded subsets of X. Then the following are equivalent:

(i) f is super coercive and uniformly convex on bounded subsets of X;

(ii) dom f∗=X∗, f∗ is bounded on bounded subsets and uniformly smooth
on bounded subsets of X∗;

(iii) dom f∗=X∗, f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-
to-norm continuous on bounded subsets of X∗.

Theorem 2.9. ([15]) Suppose that f :X→(−∞,+∞] is a Legendre function.
The function f is totally convex on bounded subsets if and only if f is uniformly
convex on bounded subsets.

Lemma 2.10. ([44]) Let C be a nonempty convex subset of X and f :C→R
be a convex and subdifferentiable function on C. Then f attains its minimum
at x∈C if and only if 0∈∂f(x)+NC(x), where NC(x) is the normal cone of C
at x, that is,

NC(x) := {x∗ ∈ X∗ : 〈x− z, x∗〉 ≥ 0, ∀z ∈ C}.

Lemma 2.11. ([19]) If f and g are two convex functions on X such that there
is a point x0∈dom f∩dom g, where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x), ∀x ∈ X.
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A function g : C×C→(−∞,+∞], where C⊂X is a closed and convex subset,
such that g(x, x)=0 for all x∈C is called a bifunction.

Definition 2.12. Let C be a nonempty, closed and convex subset of X, the
bifunction g is said to be

(i) monotone on C if for any x, y ∈ C,

g(x, y) + g(y, x) ≤ 0,

(ii) pseudo-monotone on C if for any x, y ∈ C the following implication
holds:

g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0,

(iii) γ-strongly pseudo-monotone if there exists a constant γ≥0 such that
for all x, y∈C,

g(x, y) ≥ 0 ⇒ g(y, x) ≤ −γ
(
Df (y, x) +Df (y, x)

)
.

(iv) Bregman-Lipschitz type continuous if there exist two positive constants
c1, c2 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1Df (y, x)− c2Df (z, y), ∀x, y, z ∈ C,

where f :X→(−∞,+∞] is a Legendre function. The constants c1, c2
are called Bregman-Lipschitz coefficients with respect to f .

Throughout this paper, we assume that the bifunction g satisfies the fol-
lowing conditions:

A1: g is pseudo-monotone on C and g(x, x)=0 for all x∈X.
A2: g is Bregman-Lipschitz-type continuous on X.
A3: g(x, .) is convex, lower semicontinuous and subdifferentiable on X for

every fixed x∈X.
A4: g is jointly weakly continuous on X×C in the sense that, if x∈X, y∈C

and {xn}, {yn} converge weakly to x, y, respectively, then g(xn, yn)→
g(x, y) as n→∞.

A5: EP (g) is nonempty.

Lemma 2.13. ([21]) Let C be a nonempty, closed convex subset of a reflex-
ive Banach space X, and f :X→R be a Legendre and super coercive function.
Suppose that g : C×C→R is a bifunction satisfying A1−A4. For the arbi-
trary sequences {xn}⊂C and {λn}⊂(0,+∞), let {wn} and {zn} be sequences
generated by:{

wn = argmin{λng(xn, y) +Df (y, xn) : y ∈ C},

zn = argmin{λng(wn, y) +Df (y, xn) : y ∈ C}.
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Then for all x∗∈EP (g),

Df (x∗, zn) ≤ Df (x∗, xn)− (1− λnc1)Df (wn, xn)− (1− λnc2)Df (zn, wn).

Remark 2.14. If g satisfies A1−A4, then EP (g) is closed and convex ([9, 12]).

Let f :X→(−∞,+∞] be a Gâteaux differentiable function, recall that the
proximal mapping of a proper convex and lower semicontinuous function
g : C→(−∞,+∞] with respect to f is defined by:

proxfg (x) := argmin{g(y) +Df (y, x) : y ∈ C}, x ∈ X. (2.6)

Lemma 2.15. ([21]) Let f :X→(−∞,+∞] be a super coercive and Legendre
function. Let x∈intdomf, C⊂intdomf and g:C→(−∞,+∞] be a proper con-
vex and lower semicontinuous function. Then the following inequality holds:

g(y)− g(proxfg (x)) + 〈proxfg (x)− y,∇f(x)−∇f(proxfg (x))〉 ≥ 0, ∀y ∈ C.
(2.7)

3. Main results

In this section, we assume that f : X→R is a Legendre, super coercive and
totally convex function on bounded subsets of X such that ∇f∗ is bounded on
bounded subsets of intdomf∗ and the bifunction g:X×X→R satisfies A1−A4.
We introduce two new algorithms for solving equilibrium problems and finding

the solution x∗=
←−−
projfEP (g)(x0), where x0 is a suggested starting point.

Now, we present the first algorithm and prove a convergence theorem.

Algorithm 3.1.

Initialization. Choose initial points x0, x1∈X, and two sequences {λn}
and {θn} such that

(H1) {λn}⊂[a, b]⊂
(

0,min(
1

c1
,

1

c2
)
)
,

(H2) {θn}⊂[−θ, θ] for some θ>0.

Set n=1 and go to Step 1.

Step 1. Given the current iterates xn−1, xn compute,
wn = ∇f∗

(
∇f(xn) + θn

(
∇f(xn)−∇f(xn−1)

))
,

yn = proxfλng(wn,.)
(wn),

zn = proxfλng(yn,.)(wn).

If yn=wn, then stop and yn is a solution of problem (EP ). Otherwise,
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Step 2. Construct two half-spaces,{
Cn = {v ∈ X : Df (v, zn) ≤ Df (v, wn)},
Qn = {v ∈ X : 〈xn − v,∇f(xn)−∇f(x0)〉 6 0},

then compute

xn+1 =
←−−
projfCn∩Qn

(x0).

If yn=wn, then stop and yn is a solution. Otherwise, set n=n+1 and go back
Step 1.

Remark 3.2. By Lemma 2.15 and definition of yn, it is easy to show that if
yn=wn, then yn is a solution of problem (EP ).

Now, we proof a strong convergence theorem for Algorithm 3.1.

Theorem 3.3. Under conditions A1−A5, the sequence {xn} generated by

Algorithm 3.1 converges to a solution x∗∈EP (g), where x∗=
←−−
projfEP (g)(x0).

Proof. We divide the proof of Theorem 3.3 into four steps.

Step 1. In the first step we proof the following inequality for each n≥0 and
each y∈C,

Df (y, zn) ≤ Df (y, wn)−(1−λnc1)Df (wn, yn)−(1−λnc2)Df (yn, zn)+λng(yn, y).

Note that, yn=proxfλng(wn,·)(wn). By Lemma 2.15, we obtain

λn

(
g(wn, y)− g(wn, yn)

)
+ 〈yn − y,∇f(wn)−∇f(yn)〉 ≥ 0, ∀y ∈ C, (3.1)

in particular, substituting y=zn into the last inequality, we obtain that

λn

(
g(wn, zn)− g(wn, yn)

)
≥ 〈yn − zn,∇f(yn)−∇f(wn)〉 ≥ 0. (3.2)

Similarly, by definition of zn and using Lemma 2.15, we get

λn

(
g(yn, y)− g(yn, zn)

)
+ 〈zn − y,∇f(wn)−∇f(zn)〉 ≥ 0, ∀y ∈ C,

thus

λng(yn, y) + 〈zn − y,∇f(wn)−∇f(zn)〉 ≥ λng(yn, zn), (3.3)

the last relations and the Lipschitz-type condition of f , imply that

λng(yn, y)+〈zn − y,∇f(wn)−∇f(zn)〉≥λn
(
g(wn, zn)−g(wn, yn)

−c1Df (yn, wn)−c2Df (zn, yn)
)
.

(3.4)
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Combining (3.4) with relation (3.2), we obtain

λng(yn, y)+〈zn−y,∇f(wn)−∇f(zn)〉 ≥〈zn−yn,∇f(wn)−∇f(yn)〉
−λnc1Df (yn, wn)−λnc2Df (zn, yn).

(3.5)

By the three point identity, we obtain that

Df (y, zn) +Df (zn, wn)−Df (y, wn) = 〈y − zn,∇f(wn)−∇f(zn)〉, (3.6)

and similarly, we have

Df (zn, yn) +Df (yn, wn)−Df (zn, wn) = 〈zn − yn,∇f(wn)−∇f(yn)〉. (3.7)

Using inequality (3.5) by taking into account equalities (3.6) and (3.7), we
obtain the desired conclusion.

Step 2. We show that EP (g)⊂Cn∩Qn for all n≥0.

Assume that x∗∈EP (g) and substituting y=x∗ in Step 1, we have

Df (x∗, zn)≤Df (x∗, wn)−(1−λnc1)Df (wn, yn)−(1−λnc2)Df (yn, zn)+λng(yn, x
∗).

(3.8)
As x∗∈EP (g) and yn∈C, we obtain that g(x∗, yn)≥0. By the pseudo-mono-
tonicity of g, we have g(yn, x

∗)≤0. Hence, from (3.8) and hypothesis (H1), we
get

Df (x∗, zn) ≤ Df (x∗, wn), ∀n ≥ 0, x∗ ∈ EP (g). (3.9)

By definition of Cn, we have EP (g)⊂Cn for all n≥0. Next we show that
EP (g)⊂Cn∩Qn for all n≥0 by induction. It is obvious that, EP (g)⊂Q0=X
and EP (g)⊂C0∩Q0. Assume that EP (g)⊂Cn∩Qn for some n≥0. As EP (g)6=∅,
we have Cn∩Qn 6=∅ and thus xn+1 is well defined. By the definition of xn+1

and Lemma 2.5 (ii), we have

〈xn+1 − v,∇f(x0)−∇f(xn+1)〉 ≥ 0, ∀v ∈ Cn ∩Qn.

Since EP (g)⊂Cn ∩Qn, we obtain

〈xn+1 − v,∇f(x0)−∇f(xn+1)〉 ≥ 0, ∀v ∈ EP (g).

This together with definition of xn+1 implies that EP (g)⊂Qn+1. Therefor,
EP (g)⊂Cn+1 ∩Qn+1 and the proof of Step 2 is complete.

Step 3. We show that {xn} is bounded and

lim
n→∞

Df (xn, xn+1)= lim
n→∞

Df (xn, wn)= lim
n→∞

Df (wn, yn)= lim
n→∞

Df (yn, zn) = 0.

In view of xn+1=
←−−
projfCn∩Qn

(x0) and by the definition of Bregman projection,
we get

Df (xn+1, x0) ≤ Df (v, x0) , ∀v ∈ Cn ∩Qn,
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from Step 2 and x∗∈EP (g), we have

Df (xn+1, x0) ≤ Df (x∗, x0).

This implies that the sequence {Df (xn+1, x0)} is bounded. Therefore, by
Lemma 2.3 the sequence {xn} is bounded.

By definition of Qn, we have

〈v − xn,∇f(x0)−∇f(xn)〉 ≥ 0, ∀v ∈ Qn,
from Lemma 2.5, we get

xn =
←−−
projfQn

(x0),

in addition

Df (v, xn) +Df (xn, x0) ≤ Df (v, x0), ∀v ∈ Qn.
By the definition of xn+1 and substituting v=xn+1 into the above inequality,
we obtain

Df (xn+1, xn) +Df (xn, x0) ≤ Df (xn+1, x0), (3.10)

since Df (xn+1, xn)≥0, so we have

Df (xn, x0) ≤ Df (xn+1, x0),

which implies that, the sequence {Df (xn, x0)} is nondecreasing. Thus, the
limit of Df (xn, x0) exists. Passing to the limsup in inequality (3.10) as n→∞,
we obtain

lim sup
n→∞

Df (xn+1, xn) = 0.

Therefore,
lim
n→∞

Df (xn+1, xn) = 0. (3.11)

Since {xn} is bounded and f is sequentially consistent, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

From definition of wn, we get

∇f(wn)−∇f(xn)=θn(∇f(xn)−∇f(xn−1).

Passing to the limit in this relation and using hypothesis (H2), we get

lim
n→∞

‖∇f(wn)−∇f(xn)‖=0.

Since ∇f∗ is uniformly continuous on bounded subset of X∗, this implies that
lim
n→∞

‖wn − xn‖=0. Hence, {wn} is bounded . We have the following fact

‖wn − xn+1‖ ≤ ‖wn − xn‖+ ‖xn − xn+1‖.
Passing to the limit in above inequality as n→∞, we obtain

lim
n→∞

‖wn − xn+1‖ = 0. (3.12)
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By the three point identity, we obtain that

Df (xn, wn) +Df (wn, xn+1)−Df (xn, xn+1) = 〈xn−wn,∇f(xn+1)−∇f(wn)〉,
passing to the limit in above inequality as n→∞, we obtain

lim
n→∞

Df (xn, wn) = lim
n→∞

Df (wn, xn+1) = 0.

Since xn+1∈Cn, it follows from the definition of Cn that

Df (xn+1, zn)≤Df (xn+1, wn).

Thus, lim
n→∞

Df (xn+1, zn)=0 and we have

lim
n→∞

‖xn+1 − zn‖ = 0. (3.13)

From relations (3.12) and (3.13), we obtain that lim
n→∞

‖zn−wn‖=0. This implies

that
lim
n→∞

Df (wn, zn) = 0. (3.14)

This together with the three point identity, relation (3.8) and (H1) imply that

lim
n→∞

Df (yn, wn) = 0.

In a similar way, we obtain

lim
n→∞

Df (yn, zn) = 0.

Step 4. Let ωw(xn) be the set of weak cluster points of the sequence {xn}.
First we show that ωw(xn)⊂EP (g).

In the following we prove that

Df (xn, x0) ≤ Df

(←−−
projfEP (g)(x0), x0

)
for all n > 0 and also xn →

←−−
projfEP (g)(x0) as n→∞.

We assume that p∈ωw(xn). Thus, there exists a subsequence {xnm} of {xn}
such that xnm → p. Using Step 3, we have

lim
n→∞

Df (yn, xn) = 0.

Therefore,
lim
n→∞

‖xn − yn‖ = 0.

Substituting n=nm into the last relation, we obtain that ynm ⇀ p.

We know that the feasible set C is closed and convex in X. Thus C is
weakly closed. Hence, from {ynm}⊂C, we derive that p∈C. From Step 1, we
have

g(yn, y) ≥
Df (y, zn)−Df (y, wn)

λn
+

1− λnc1
λn

Df (wn, yn)+
1− λnc2
λn

Df (yn, zn)
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for each y∈C and each n≥0. In particular, substituting n=nm, passing to the
limsup in above inequality as m→∞ and using the three point identity, we
obtain

lim sup
m→∞

g(ynm , y) ≥ 0.

From ynm ⇀ p and A4, we get

g(p, y) ≥ lim sup
m→∞

g(ynm , y) ≥ 0, ∀y ∈ C,

that is implying

p ∈ EP (g).

On the other hand, by definition of Qn, we know that xn∈Qn and by the
definition of Bregman projection, we have

Df (xn, x0) ≤ Df (v, x0), ∀v ∈ Qn.

Substituting v=
←−−
projfEP (g)(x0) in the last equality, we get

Df (xn, x0) ≤ Df (
←−−
projfEP (g)(x0), x0). (3.15)

We denote u:=
←−−
projfEP (g)(x0). Using the there point identity, (3.15) and the

definition of Bregman distance, we have

Df (xn, x0) = Dn(xn, x0) +Df (x0, u)− 〈∇f(u)−∇f(x0), xn − x0〉
≤ Dn(u, x0) +Df (x0, u)− 〈∇f(u)−∇f(x0), xn − x0〉
= 〈∇f(u)−∇f(x0), u− x0〉+ 〈∇f(u)−∇f(x0), xn − x0〉
= 〈∇f(u)−∇f(x0), u− xn〉.

Substituting n=nm, passing to the limsup in above inequality as m→∞, we
have

lim sup
m→∞

Df (xnm , u) ≤ lim sup
m→∞

〈∇f(u)−∇f(x0), u− xnm〉,

we note that xnm ⇀ p and using Lemma 2.5(ii), we obtain

lim sup
m→∞

Df (xnm , u) ≤ 〈∇f(u)−∇f(x0), u− p〉 ≤ 0.

Therefore,

lim
m→∞

Df (xnm , u) = 0.

This implies that ‖xnm−u‖→0, so the whole sequence {xn} converges strongly
to u. Thus

xn →
←−−
projfEP (g)(x0).

This completes the proof. �
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Next, we introduce the second algorithm for solving equilibrium problems.
Unlike in Algorithm 3.1, we use here the shrinking projection method to design
the algorithm.

Algorithm 3.4.

Initialization. Choose initial points x0, x1∈X, and two sequences {λn}
and {θn} such that conditions (H1) and (H2) above hold. Assume that C0=X.
Set n=1 and go to Step 1.

Step 1. Given the current iterates xn−1, xn compute,
wn = ∇f∗

(
∇f(xn) + θn∇f(xn − xn−1)

)
,

yn = proxfλng(wn,.)
(wn),

zn = proxfλng(yn,.)(wn).

If yn=wn, then stop and yn is a solution of equilibrium problem. Otherwise,

Step 2. Construct the half-space

Hn = {v ∈ X : Df (v, zn) ≤ Df (v, wn)}.

Set Cn+1=Cn∩Hn. Then compute

xn+1 =
←−−
projfCn+1

(x0).

Set n = n+ 1 and return to Step 1.

It follows from the definition of Cn that, for each n≥0, Cn is the intersection

of finitely many half-spaces. In fact, we can write Cn=
n⋂
i=0

Hi, where C0=X

and Hi is defined at Step 2. Moreover,

X = C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ · · · .

This is the reason why Algorithm 3.4 is called the shrinking projection al-
gorithm. In order to establish the convergence of Algorithm 3.4, we weaken
hypothesis A4 and introduce the following weaker one.

A4a. lim sup
n→∞

g(xn, y)≤g(x, y) for each sequence {xn}⊂C converging strongly

to x.

The reason for considering assumption A4a, which is weaker than A4, comes
from the shrinking property of the set-sequence {Cn}. The convergence of
Algorithm 3.4 is ensured by the following theorem.
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Theorem 3.5. Assume that hypotheses A1 − A3, A4a and A5 hold. Then
the sequence {xn} generated by Algorithm 3.4 converges to a solution of the

equilibrium problem, that is, xn → x∗∈EP (g), where x∗=
←−−
projfEP (g)(x0).

Proof. In Step 1 of the proof of Theorem 3.3, we obtain that

Df (y, zn) ≤Df (y, wn)− (1− λnc1)Df (wn, yn)

− (1− λnc2)Df (yn, zn) + λng(yn, y) (3.16)

for each n≥0 and each y∈C. We assume x∗∈EP (g) and substitution y=x∗ in
the above inequality, we get

Df (x∗, zn) ≤Df (x∗, wn)− (1− λnc1)Df (wn, yn)

− (1− λnc2)Df (yn, zn) + λng(yn, x
∗).

Note that g(yn, x
∗)>0, so

Df (x∗, zn) ≤ Df (x∗, wn)−(1−λnc1)Df (wn, yn)−(1−λnc2)Df (yn, zn). (3.17)

From hypothesis (H1), we obtain

Df (x∗, zn) ≤ Df (x∗, wn), ∀x∗ ∈ EP (g).

By definition of Hn, we have EP (g)∈Hn for all n≥0. Therefore, since C0=X,
we obtain by induction that EP (g)⊂Cn for all n≥0.

Note that, X=C0⊃C1⊃ · · · , Cn=

n⋂
i=0

Hi and EP (g)⊂Hn, therefore, EP (g)⊂Cn.

By xn=
←−−
projfCn

(x0) and Lemma 2.5 (ii), we find

Df (v, xn) +Df (xn, x0) ≤ Df (v, x0), ∀v ∈ Cn, (3.18)

substituting v=x∗ ∈ EP (g) in above inequality, we get

Df (x∗, xn) ≤ Df (x∗, x0), ∀x∗ ∈ EP (g), (3.19)

this implies that the sequences {Df (xn, x
∗)} and {xn} are bounded.

In a similar way, using Step 3 of Theorem 3.3, the sequences {wn}, {yn},
and {zn} are also bounded. Since xn+1∈Cn+1 ⊂ Cn, substitution v=xn+1 in
(3.18), we get

Df (xn+1, xn) +Df (xn, x0) ≤ Df (xn+1, x0). (3.20)

Then

Df (xn, x0) ≤ Df (xn+1, x0),

this implies that the sequence {Df (xn, x0)} is nondecreasing. Hence,

lim
n→∞

Df (xn, x0)
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exists. Now, passing to the limit in relation (3.20) as n→∞, we obtain

lim
n→∞

Df (xn+1, xn) = 0, (3.21)

then
lim
n→∞

‖xn+1 − xn‖ = 0,

this implies that, the limit of {xn} exists.
Similarly to the proof of Theorem 3.3, we obtain

lim
n→∞

Df (xn, wn) = lim
n→∞

Df (zn, wn)

= lim
n→∞

Df (wn, yn)

= lim
n→∞

Df (yn, zn)

= 0. (3.22)

Hence,

lim
n→∞

‖xn − wn‖ = lim
n→∞

‖zn − wn‖

= lim
n→∞

‖wn − yn‖

= lim
n→∞

‖yn − zn‖

= 0.

Let n≥0 and k≥1. Note that

xn+k=
←−−
projfCn+k

(x0)∈Cn+k⊂Cn.

Thus, from the relation (3.18) and subsituting v=xn+k, we get

Df (xn+k, xn) +Df (xn, x0) ≤ Df (xn+k, x0), ∀k ≥ 1,∀n ≥ 0. (3.23)

Passing to the limit in (3.23) as n, k→∞ and noting that the limit ofDf (xn, x0)
exists, we obtain

lim
n→∞

Df (xn+1, xn) = 0. (3.24)

Therefore, the sequence {xn} is a Cauchy sequence, and there exists p∈X such
that

lim
n→∞

xn = p, (3.25)

from (3.22) and (3.25), we obtain

lim
n→∞

wn = lim
n→∞

yn = lim
n→∞

zn = p. (3.26)

Note that {yn}⊂C and C is a closed convex set in X. Therefore, we obtain
p∈C. From relation (3.16), we get

g(yn, y) ≥
Df (y, zn)−Df (y, wn)

λn
+

1−λnc1
λn

Df (wn, yn)+
1−λnc2
λn

Df (yn, zn)
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for each y∈C and each n≥0. Passing to the limit in the last inequality as n→∞
and using hypotheses (H1), A4a and relation (3.22), we obtain

g(p, y) ≥ lim sup
n→∞

g(yn, y) ≥ 0, ∀y ∈ C.

Thus, p∈EP (g). The proof of xn→
←−−
projfEP (g)(x0) is similar to the one of The-

orem 3.3 and the proof of Theorem 3.4 is complete. �

4. Application

In this section, we consider the particular equilibrium problem correspond-
ing to the function g defined for every x, y∈X by g(x, y)=〈y−x,Ax〉 with
A:X→X∗ being L-Lipschitz continuous, that is, there exists L>0 such that

‖Ax−Ay‖ 6 L‖x− y‖, ∀x, y∈X.
Doing so, we obtain the classical variational inequality:

Find z ∈ C such that 〈y − z,Az〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of this problem is denoted by V I(A). We have [21, Lemma
4.1]

argmin{λng(xn, y)+Df (y, xn) : y∈C}
= argmin{λn〈y−yn, Axn〉+Df (y, xn) : y∈C}

=
←−−
projfC

(
∇f∗(∇f(xn)−λnAxn)

)
.

Therefore, we derive that

argmin{λn〈y−yn, Ayn〉+Df (y, xn) : y ∈ Tn}=
←−−
projfTn(∇f∗(∇f(xn)−λnAyn).

Let X be a real Banach space. The modulus of convexity δX :[0, 2]→[0, 1] is
defined by

δX(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}
.

The space X is called:

(1) uniformly convex if δX(ε)>0 for every ε∈(0, 2],

(2) p-uniformly convex if p≥2 and there exists cp>0 such that δX(ε)≥cpεp
for any ε∈(0, 2],

(3) The modulus of smoothness ρX(t):[0,∞)→[0,∞) is defined by

ρX(t) = sup
{‖x+ ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
,

(4) The space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.
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For a p-uniformly convex space, the metric and Bregman distance have the
following relation [40]:

τ‖x− y‖p ≤ D 1
p
‖.‖p(x, y) ≤ 〈x− y, JpX(x)− JpX(x)〉, (4.2)

where τ>0 is a fixed number and the duality mapping JpX(x):X→2X
∗

is defined
by

JpX(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1}

for every x∈X.
We know that X is smooth if and only if JpX is a single-valued mapping of

X into X∗. We also know that X is reflexive if and only if JpX is surjective,
and X is strictly convex if and only if JpX is one-to-one. Therefore, if X is a
smooth, strictly convex and reflexive Banach space, then JpX is a single-valued
bijection and in this case, JpX=(JqX∗)−1 where JqX∗ is the duality mapping of
X∗.

For p=2, the duality mapping JpX , is called the normalized duality mapping
and is denoted by J. The function φ:X2→R is defined by:

φ(y, x)= ‖ y ‖2 −2〈y, Jx〉+ ‖ x ‖2

for all x, y∈X. The generalized projection ΠC from X onto C is defined by:

ΠC(x) = argminy∈Cφ(y, x), ∀x ∈ X,

where C is a nonempty closed and convex subset of X.
Let X be a uniformly smooth and uniformly convex Banach space, and

f = 1
2‖ · ‖

2. Therefore

∇f = J, D 1
2
‖·‖2(x, y) =

1

2
φ(x, y) and

←−−
proj

1
2
‖·‖2

C = ΠC .

In particular, if X is a Hilbert space, then

∇f = I, D 1
2
‖·‖2(x, y) =

1

2
‖x− y‖2 and

←−−
proj

1
2
‖·‖2

C = PC ,

where PC is the metric projection. In this situation, we give the following
algorithms for solving variational inequalities.

Algorithm 4.1.

Initialization. Choose initial points x0, x1∈X, and two sequences {λn}
and {θn} such that (H1) {λn}⊂[a, b]⊂

(
0,min(

1

c1
,

1

c2
)
)
, (H2) {θn}⊂[−θ, θ] for

some θ>0. Set n=1 and go to Step 1.
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Step 1. Given the current iterates xn−1, xn compute,
wn = J−1

(
J(xn) + θnJ(xn − xn−1)

)
,

yn = ΠC

(
J−1(J(wn)− λnA(wn))

)
,

zn = ΠC

(
J−1(J(wn)− λnA(yn))

)
.

If yn=wn, then stop and yn is a solution of variational inequality. Otherwise,

Step 2. Construct two half-spaces{
Cn = {v ∈ X : ‖v − zn‖p ≤ ‖v − wn‖p},
Qn = {v ∈ X : 〈xn − v, J(xn)− J(x0)〉 6 0},

then compute
xn+1 = ΠCn∩Qn(x0).

If yn=wn, then stop and yn is a solution. Otherwise, set n=n+1 and go back
Step 1. Now, we have a strong convergence corollary for Algorithm 4.1.

Corollary 4.2. Under conditions A1−A5, the sequence {xn} generated by
Algorithm 4.1 converges to a solution x∗∈V I(A), where x∗=ΠV I(A)(x0).

Finally, we present the following algorithm and strong convergence corollary.

Algorithm 4.3.

Initialization. Choose initial points x0, x1∈X, and two sequences {λn}
and {θn} such that conditions (H1) and (H2) above hold. Assume that C0=X.
Set n=1 and go to Step 1.

Step 1. Given the current iterates xn−1, xn compute
wn = J−1

(
J(xn) + θnJ(xn − xn−1)

)
,

yn = ΠC

(
J−1(J(wn)− λnA(wn))

)
zn = ΠC

(
J−1(J(wn)− λnA(yn))

)
.

If yn=wn, then stop and yn is a solution of problem (V I). Otherwise,

Step 2. Construct the half-space

Hn = {v ∈ X : ‖v − zn‖p ≤ ‖v − wn‖p}.
Set Cn+1 = Cn ∩ Hn. Then compute xn+1 = ΠCn+1(x0). Set n=:n+1 and
return to Step 1.

Corollary 4.4. Assume that hypotheses A1 − A3, A4a and A5 hold. Then
the sequence {xn} generated by Algorithm 4.3 converges to a solution of the

variational inequality, that is, xn → x∗∈V I(A) where x∗=
←−−
projfV I(A)(x0).
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5. Numerical experiment

In this section, numerical example is given in a non-Hilbertian space to show
that our results are efficient. We will use the following theorem and lemma.

Theorem 5.1. ([41]) Let 1<p<∞. The normalized duality mapping on Lp has
the following form

Jf =
| f |p−1 sign(f)

‖f‖p−2p

.

Lemma 5.2. ([32]) Let r≥0 and C={x∈X:‖x‖ ≤ r}. Then

ΠC(x) =
r

max{‖x‖, r}
x, ∀x ∈ X.

Example 5.3. Let p=
4

3
, X=Lp[0, 1] and C={x∈X:‖x‖≤1}.DefineA : C→X∗

by Ax:=
(4

3
−‖x‖

)
Jx. It follows from [32, Example 5.1] that A is pseudo-

monotone on C and τ =
p− 1

2
=

1

6
. Furthermore, for all x, y ∈ C, we have

‖Ax−Ay‖ =
∥∥∥(

4

3
− ‖x‖)Jx− (

4

3
− ‖y‖)Jy

∥∥∥
=
∥∥∥(

4

3
− ‖x‖)(Jx− Jy) + Jy(‖y‖ − ‖x‖)

∥∥∥
≤ (

4

3
− ‖x‖)‖Jx− Jy‖+ ‖Jy‖

∣∣∣‖y‖ − ‖x‖∣∣∣
= (

4

3
− ‖x‖)‖Jx− Jy‖+ ‖Jy − J0‖

∣∣∣‖y‖ − ‖x‖∣∣∣
≤ 4

3τ
‖x− y‖+

1

τ
‖x− y‖

= 14‖x− y‖.

This implies that A is 14-Lipschitz continuous. It follows from ([21] Corollary
4.2] that g(x, y) = 〈y−x,Ax〉 is Bregman-Lipschitz-type continuous and c1 =

c2 =
L

2τ
= 42. Note that V I(A) = {0} and A is bounded on C and hence all

conditions of Corollaries 4.2 and 4.4 are satisfied. Using Theorem 5.1, Lemma
5.2 and Algorithms 4.1, 4.3 with the initial points x0 = exp(t), x1 = 1 and
λn = 0.02. As seen, θn can be taken arbitrarily small or large value, even be
negative. Therefore, by the experiment, we use these algorithms with inertial
parameters of θn = 0.5. We have the numerical results of Algorithms 4.1 and
4.3 in Figures 1 and 2.
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Figure 1. Plotting of
‖xn‖p in Example 5.3
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Figure 2. Plotting of
‖xn−xn−1‖p in Exam-
ple 5.3
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[40] F. Schöpfer, T. Schuster and A.K. Louis, An iterative regularization method for the
solution of the split feasibility problem in Banach spaces, Inverse Problems, 24(5) (2008),
24/5/055008.



Hybrid method for solving pseudo-monotone equilibrium problems 829

[41] V.V. Semenov, Hybrid Splitting Methods for the System of Operator Inclusions with
Monotone Operators 1, Cybern. Syst. Anal., 50 (2014), 741-749.

[42] W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method
for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory
Appl., 2008: 528476 (2018), 1–11.

[43] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium
problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70
(2009), 45–57.

[44] J.V. Tiel, Convex Analysis: An introductory text, John Wiley & Sons Ltd. 1984.
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