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Abstract. Fixed point theory is an essential tool in both applied and theoretical mathemat-

ics, owing to its extensive applications. This research presents common fixed point theorems

pertaining to Geraghty neutrosophic contractions within the context of neutrosophic metric

spaces. Additionally, we derive several results concerning fixed points that are grounded in

our principal theorem.

1. Introduction

The notion of Fuzzy Sets (FSs), first introduced by Zadeh [43], has signif-
icantly influenced a wide range of scientific fields since its emergence. While
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this framework is highly pertinent to practical applications, it has not consis-
tently offered satisfactory solutions to various problems over the years. As a
result, there has been a renewed focus on research aimed at resolving these
difficulties. In this context, Atanassov [10] proposed Intuitionistic Fuzzy Sets
(IFSs) to tackle such challenges. Furthermore, the Neutrosophic Set (NS), cre-
ated by Smarandache [41], serves as a sophisticated extension of traditional set
theory. Fuzzy sets and its generalizations were extensively studied by many
authors see for example [5, 6, 18, 19, 44].

Neutrosophic sets demonstrate a wide array of applications across various
fields. For example, Ashika et al. [9] developed an enhanced neutrosophic set
approach combined with machine learning for improved breast cancer predic-
tion. For a more in-depth investigation into the applications of neutrosophic
sets and their extensive uses, it is advisable to refer to the literature cited in
[4, 8, 22] and the related references therein.

The Banach fixed-point theorem [12], commonly known as the Banach con-
traction principle, represents a pivotal theorem in mathematics, especially
within the realm of metric spaces. This theorem guarantees both the exis-
tence and uniqueness of fixed points for certain self-maps in metric spaces,
thereby offering a structured approach to locating these fixed points. Essen-
tially, the Banach fixed-point theorem provides a comprehensive foundation
for Picard’s method of successive approximations.

Recent work has extended fixed point theory to generalized metric spaces.
Malkawi et al. [27, 28, 29] developed fundamental results in MR-metric spaces,
while [21, 30, 31, 32] expanded to M*-metric and Mb-metric spaces. Related
contributions include fractional calculus [7] and symmetry analysis [3].

A multitude of mathematicians has explored various extensions and general-
izations across diverse mathematical fields of Banach’s result, as indicated by
the references in [1, 2, 11, 13, 14, 15, 16, 17, 23, 24, 25, 34, 35, 36, 37, 38, 39, 42].

A notable instance of this is the concept of neutrosophic metric space
(NMS), first introduced by Kirisci and Simsek [26]. This framework has been
employed to examine a variety of fixed point theorems. Particularly, fixed-
point theory plays a significant role in statistics, particularly through the ap-
plication of iterative algorithms and methodologies that focus on identifying
fixed points to address statistical challenges.

2. Preliminary

Triangular norms (abbreviated as TN), first proposed by Menger [33], rep-
resent a crucial concept in the realm of mathematical analysis. Menger’s
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pioneering methodology utilized probability distributions to evaluate the dis-
tance between two elements in a defined space, thereby transcending the con-
ventional dependence on numerical values. This approach enables the general-
ization of the triangle inequality within metric spaces via the implementation
of triangular norms.

Conversely, triangular conorms (abbreviated as CN) act as the dual coun-
terparts to t-norms. Both TN and CN play vital roles in fuzzy operations,
particularly in relation to intersections and unions. Through this manuscript,
R+ = (0,+∞), I = [0, 1].

Definition 2.1. ([33]) Consider an operation ⊗ : I × I → I. This operation
is classified as continuous t-norm (CTN) if it meets the following criteria: for
any elements σ, σ′, t, t′ ∈ I,

(1) σ ⊗ 1 = σ,
(2) if σ ≤ σ′ and t ≤ t′, then σ ⊗ t ≤ σ′ ⊗ t′,
(3) ⊗ is continuous,
(4) ⊗ is commutative and associate.

Definition 2.2. ([33]) Consider an operation ⊕ : I × I → I. This operation
is classified as continuous t-conorm (CTC) if it meets the following criteria:
for all elements σ, σ′, t, t′ ∈ I,

(1) σ ⊕ 0 = σ,
(2) if σ ≤ σ′ and t ≤ t′, then σ ⊕ t ≤ σ′ ⊕ t′,
(3) ⊕ is continuous,
(4) ⊕ is commutative and associate.

Definition 2.3. ([26]) Let F represent an arbitrary set, and define

N = {< ξ,ΠU (ξ),fU (ξ),ΘU (ξ) >: ξ ∈ F}
as a neutrosophic structure such that N : F×F×R+ → I. The symbols ⊗ and
⊕ denote the operations of (CTN) and (CTC), respectively. The quadruple
V = (F,N,⊗,⊕) is referred to as a neutrosophic metric space (NMS) when
the following conditions hold for all ξ, ω, c,∈ F .

(1) 0 ≤ Π(ξ, ω, λ) ≤ 1, 0 ≤ f(ξ, ω, λ) ≤ 1, 0 ≤ Θ(ξ, ω, λ) ≤ 1, ∀λ ∈ R+,
(2) 0 ≤ Π(ξ, ω, λ) + f(ξ, ω, λ) + Θ(ξ, ω, λ) ≤ 3, ∀λ ∈ R+,
(3) Π(ξ, ω, λ) = 1 for λ > 0 iff ξ = ω,
(4) Π(ξ, ω, λ) = H(ω, ξ, λ) for λ > 0,
(5) Π(ξ, ω, λ)⊗Π(ω, c, ρ) ≤ Π(ξ, c, λ+ ρ) for ρ, λ > 0
(6) Π(ξ, ω, ·) : R+ → I is continuous,
(7) lim

λ→+∞
Π(ξ, ω, λ) = 1,

(8) f(ξ, ω, λ) = 0 for λ > 0 iff ξ = ω,
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(9) f(ξ, ω, λ) = f(ω, ξ, λ) for λ > 0,
(10) f(ξ, ω, λ)⊕ f(ω, c, ρ) ≥ f(ξ, c, λ+ ρ) for ρ, λ > 0,
(11) f(ξ, ω, ·) : R+ → I is continuous,
(12) lim

λ→+∞
f(ξ, ω, λ) = 0,

(13) Θ(ξ, ω, λ) = 0 for λ > 0 iff ξ = ω,
(14) Θ(ξ, ω, λ) = Θ(ω, ξ, λ) for λ > 0,
(15) Θ(ξ, ω, λ)⊕Θ(ω, c, ρ) ≥ Θ(ξ, c, λ+ ρ) for ρ, λ > 0,
(16) Θ(ξ, ω, ·) : R+ → I is continuous,
(17) lim

λ→+∞
Θ(ξ, ω, λ) = 0,

(18) If λ ≤ 0, then Π(ξ, ω, λ) = 0, f(ξ, ω, λ) = Θ(ξ, ω, λ) = 1.

Then, the triplet N = (Π,f,Θ) is referred to as a neutrosophic metric (NM)
on the set F . The functions Π(ξ, ω, λ), f(ξ, ω, λ), and Θ(ξ, ω, λ) represent
the degrees of nearness, neutralness, and non-nearness between the elements
ξ and ω in relation to the parameter λ, respectively.

Definition 2.4. ([26]) Let V denote a NMS, 0 < ε < 1, λ > 0, ξ ∈ F . The
set

O(ξ, ε, λ) = {ω ∈ F : Π(ξ, ω, λ) > 1− ε, f(ξ, ω, λ) < ε, Θ(ξ, ω, λ) < ε}
is referred to as the open ball (OB) centered at the point ξ with a radius of ε
in relation to the parameter λ.

Definition 2.5. ([26]) Let {ξn} be a sequence in V = (F,N,⊗,⊕). Then

(1) {ξn} converges to ξ ∈ F , if for a given ε ∈ (0, 1), λ > 0, there is
n0 ∈ N such that for each n ≥ n0, Π(ξn, ξ, λ) > 1 − ε, f(ξn, ξ, λ) < ε,
Θ(ξn, ξ, λ) < ε, that is,

lim
n→+∞

Π(ξn, ξ, λ) = 1, lim
n→+∞

f(ξn, ξ, λ) = 0

and

lim
n→+∞

Θ(ξn, ξ, λ) = 0.

(2) {ξn} is called Cauchy, if for a given ε ∈ (0, 1), λ > 0, there is n0 ∈ N
such that for each n,m ≥ n0,

Π(ξn, ξm, λ) > 1− ε, f(ξn, ξm, λ) < ε, Θ(ξn, ξm, λ) < ε

that is,

lim
n.m→+∞

Π(ξn, ξm, λ) = 1, lim
n,m→+∞

f(ξn, ξm, λ) = 0

and

lim
n,m→+∞

Θ(ξn, ξm, λ) = 0.
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(3) V is called complete if each Cauchy sequence is convergent to an ele-
ment in F .

In [40], Simsek and Kirisci defined NC-contractions on neutrosophic metric
spaces and showed that every NC-contraction has a unique fixed point under
special considerations.

Definition 2.6. ([40]) Let V = (F,N,⊗,⊕) be a NMS. A mapping f : F → F
is called neutrosophic contraction if there is k ∈ (0, 1) such that for each
ξ, ω ∈ F and λ > 0, we have

1

Π(fξ, fω, λ)
− 1 ≤ k

(
1

Π(ξ, ω, λ)
− 1

)
,

1

f(fξ, fω, λ)
− 1 ≥ k

(
1

f(ξ, ω, λ)
− 1

)
and

1

Θ(fξ, fω, λ)
− 1 ≥ k

(
1

Θ(ξ, ω, λ)
− 1

)
.

In this scholarly endeavor, we commence by articulating a pivotal lemma
that will serve as a foundation for the ensuing discussions. Subsequently, we
employ Geraghty functions to forge an innovative category of contractions
within the realm of neutrosophic metric spaces. We introduce the (UC) prop-
erty pertinent to fuzzy sets. Assuming that all fuzzy sets embody the (UC)
property, we establish that each Geraghty neutrosophic contraction is endowed
with a singular fixed point within a complete neutrosophic metric space.

In conclusion, we unveil a series of fixed point theorems that emerge from
our principal discoveries.

3. Main result

Definition 3.1. In this context, we define a real-valued function of three
variables on F2 × (0,+∞), where F is any nonempty set, denoted as G, to
possess the property (UC) if, for any sequences {ξn} and {ωn} in F , the
following equality holds:

lim
λ→λ0

lim
n→+∞

G(ξn, ωn, λ) = lim
n→+∞

lim
λ→λ0

G(ξn, ωn, λ),

whenever the two limits are exist.

Throughout the remainder of this study, we will assume that each of the
fuzzy sets Π,f,Θ exhibits the (UC) property.

We begin by the following useful lemmas:
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Lemma 3.2. Let V = (F,N,⊗,⊕) be a NMS. Then

(1) Π(ξ, ω, ·) : R+ → R+ is non-decreasing,
(2) f(ξ, ω, ·) : R+ → R+ is non-increasing,
(3) Θ(ξ, ω, ·) : R+ → R+ is non-increasing.

Proof. (1) Let λ1, λ2 > 0 with λ1 > λ2. Then, there is δ > 0 such that
λ1 = λ2 + δ. From Definition 2.3-(5), we get

Π(ξ, ω, λ1) = Π(ξ, ω, λ2 + δ)

≥ Π(ξ, ω, λ2)⊗Π(ω, ω, δ)

= Π(ξ, ω, λ2).

The proofs for (2) and (3) are identical to that of (1). �

Lemma 3.3. Let V = (F,N,⊗,⊕) be a NMS and let {ξn} be a sequence such
that for λ > 0

Π(ξp, ξq, λ) ≥ Π(ξp−1, ξq−1, λ),
f(ξp, ξq, λ) ≤ f(ξp−1, ξq−1, λ),
Θ(ξp, ξq, λ) ≤ Θ(ξp−1, ξq−1, λ)

(3.1)

and

lim
n→+∞

Π(ξn, ξn+1, λ) = 1, lim
n→+∞

f(ξn, ξn+1, λ) = 0,

and lim
n→+∞

Θ(ξn, ξn+1, λ) = 0. (3.2)

If {ξn} is not Cauchy, then there exist an ε > 0 and λ > 0 along with two
subsequences {ξnk

} and {ξmk
} derived from {ξn} such that

lim
k→+∞

Π(ξn, ξm, λ) = 1− ε,

lim
k→+∞

f(ξn, ξm, λ) = ε,

lim
k→+∞

Θ(ξn, ξm, λ) = ε.

Proof. If (ξn) is not Cauchy, then

lim
n,m→+∞

Π(ξn, ξm, λ) 6= 1, or lim
n,m→+∞

f(ξn, ξm, λ) 6= 0,

or lim
n,m→+∞

Θ(ξn, ξm, λ) 6= 0.

Case 1: If lim
n,m→+∞

Π(ξn, ξm, λ) 6= 1, then there are λ > 0 and ε > 0 along with

two subsequences {ξnk
} and {ξmk

} derived from {ξn}, where (mk) is selected
as the smallest index satisfying the condition.

Π(ξnk
, ξmk

, λ) ≤ 1− ε, mk > nk > k. (3.3)
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This implies that
Π(ξnk

, ξmk−1, λ) > 1− ε. (3.4)

Chose δ > 0. Then

Π(ξnk
, ξmk

, λ+ δ) ≥ Π(ξnk
, ξmk−1, λ)⊗Π(ξmk−1, ξmk

, δ)

> (1− ε)⊗Π(ξmk−1, ξmk
, δ).

Using Eq. (3.2), we get

lim inf
k→+∞

Π(ξnk
, ξmk

, λ+ δ) ≥ (1− ε).

Also,

(1− ε) ≤ lim
δ→0+

lim inf
k→+∞

Π(ξnk
, ξmk

, λ+ δ)

= lim inf
k→+∞

Π(ξnk
, ξmk

, λ).

Also, from (3.3), it follows

lim sup
k→+∞

Π(ξnk
, ξmk

, λ) ≤ (1− ε).

So, we get
lim

k→+∞
Π(ξnk

, ξmk
, λ) = (1− ε).

Again, we have

Π(ξnk−1, ξmk−1, λ+ δ) ≥ Π(ξnk−1, ξnk
, δ)⊗Π(ξnk

, ξmk−1, λ)

> Π(ξnk−1, ξnk
, δ)⊗ (1− ε).

Using Eq. (3.2), we get

lim inf
k→+∞

Π(ξnk−1, ξmk−1, λ+ δ) ≥ (1− ε).

Also,

(1− ε) ≤ lim
δ→0+

lim inf
k→+∞

Π(ξnk−1, ξmk−1, λ+ δ)

= lim inf
k→+∞

Π(ξnk−1, ξmk−1, λ).

From Eq.(3.3), we get

Π(ξnk−1, ξmk−1, λ) ≤ Π(ξnk
, ξmk

, λ) ≤ (1− ε).
So,

lim sup
k→+∞

Π(ξnk−1, ξmk−1, λ) ≤ (1− ε).

Hence,
lim

k→+∞
Π(ξnk−1, ξmk−1, λ) = (1− ε).
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The demonstration for the remaining cases is Similar to that of Case (1). �

To facilitate our main result we need the following class of function which
defined by Geraghty in [20].

Definition 3.4. ([20]) Let S be the class of all functions α : R+ → [0, 1) that
satisfy the following implication:

α(tn)→ 1 =⇒ tn → 0.

We will now provide the definition of a Geraghty-neutrosophic contraction.

Definition 3.5. Let V = (F,N,⊗,⊕) be a NMS, α ∈ S. A pair of mappings
(f, g) on F are called Geraghty-neutrosophic contraction if for each ξ, ω ∈ F
and each λ > 0, we have

1

Π(fξ, gω, λ)
− 1 ≤ α

(
1

Π(ξ, ω, λ)
− 1

)(
1

Π(ξ, ω, λ)
− 1

)
,

f(fξ, gω, λ) ≤ α(f(ξ, ω, λ))(f(ξ, ω, λ))

and

Θ(fξ, gω, λ) ≤ α(Θ(ξ, ω, λ))(Θ(ξ, ω, λ)).

Theorem 3.6. Let V = (F,N,⊗,⊕) be a complete NMS. Suppose that there is
α ∈ S such that the pair (f, g) are Geraghty-Neutrosophic contraction. Then,
the functions f and g possesses a unique common fixed point.

Proof. Let ξ0 ∈ F represent an arbitrary point. We examine the sequence
{ξn} characterized by the relation ξ2n+1 = fξ2n, ξ2n+2 = gξ2n+1, n ≥ 0.

Let n ∈ N. If n is even, then n = 2s, s ∈ N. By Definition 3.5, and part
(4) of Definition 2.3, we have

1

Π(ξn, ξn+1, λ)
− 1 =

1

Π(ξ2s, ξ2s+1, λ)
− 1

=
1

Π(gξ2s−1, fξ2s, λ)
− 1

≤ α
(

1

Π(ξ2s−1, ξ2s, λ)
− 1

)(
1

Π(ξ2s−1ξ2s, λ)
− 1

)
= α

(
1

Π(ξn−1, ξn, λ)
− 1

)(
1

Π(ξn−1, ξn, λ)
− 1

)
.

By the same way, we get

f(ξn, ξn+1, λ) ≤ α(f(ξn−1, ξn, λ))(f(ξn−1, ξn, λ))
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and
Θ(ξn, ξn+1, λ) ≤ α(Θ(ξn−1, ξn, λ))(Θ(ξn−1, ξn, λ)).

If n is odd, then n = 2l+ 1, l ∈ N∪{0}. By Definition 3.5, and Definition 2.3
(4), we have

1

Π(ξn, ξn+1, λ)
− 1 =

1

Π(ξ2l+1, ξ2l+2, λ)
− 1

=
1

Π(gξ2l, fξ2l+1, λ)
− 1

≤ α
(

1

Π(ξ2l, ξ2l+1, λ)
− 1

)(
1

Π(ξ2l, ξ2l+1, λ)
− 1

)
= α

(
1

Π(ξn−1, ξn, λ)
− 1

)(
1

Π(ξn−1, ξn, λ)
− 1

)
.

By the same way, we get

f(ξn, ξn+1, λ) ≤ α(f(ξn−1, ξn, λ))(f(ξn−1, ξn, λ))

and
Θ(ξn, ξn+1, λ) ≤ α(Θ(ξn−1, ξn, λ))(Θ(ξn−1, ξn, λ)).

Thus, for all n ∈ N, we conclude
1

Π(ξn,ξn+1,λ) − 1(
1

Π(ξn−1,ξn,λ) − 1
) ≤ α(

1

Π(ξn−1, ξn, λ)
− 1

)
, (3.5)

f(ξn, ξn+1, λ)

(f(ξn−1, ξn, λ))
≤ α(f(ξn−1, ξn, λ)), (3.6)

Θ(ξn, ξn+1, λ)

(Θ(ξn−1, ξn, λ))
≤ α(Θ(ξn−1, ξn, λ)). (3.7)

And also, we get

1

Π(ξn, ξn+1, λ)
− 1 <

1

Π(ξn−1, ξn, λ)
− 1,

f(ξn, ξn+1, λ) < (f(ξn−1, ξn, λ))

and
Θ(ξn, ξn+1, λ) < (Θ(ξn−1, ξn, λ)).

So, we have

(1) the sequence {Π(ξn, ξn+1, λ) : n ∈ N} is nondecreasing in [0,1], and so,
there is rΠ ≤ 1 such that rΠ is the limit of this sequence.
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(2) the sequence {f(ξn, ξn+1, λ) : n ∈ N} is nonincreasing in [0,1], and so,
there is rf ≥ 0 such that rf is the limit of this sequence.

(3) the sequence {Θ(ξn, ξn+1, λ) : n ∈ N} is nonincreasing in [0,1], and so,
there is rΘ ≥ 0 such that rΘ is the limit of this sequence.

Case 1: If rΠ > 0, by taking the limit in Eq.(3.5), we get

lim
n→+∞

α

(
1

Π(ξn−1, ξn, λ)
− 1

)
= 1,

which implies that

lim
n→+∞

1

Π(ξn, ξn+1, λ)
− 1 = 0,

which is a contradiction. So rΠ = 0. By the same way we conclude that rf = 0
and rΘ = 0.

Now, we claim that {ξn} is Cauchy by proving that {ξ2n} is so. If not then
by Lemma 3.3, there exist an ε > 0 and λ > 0 along with two subsequences
{ξ2nk

} and {ξ2mk
} derived from {ξ2n} such that one of the following holds

lim
k→+∞

Π(ξ2nk
, ξ2mk

, λ) = 1− ε,

lim
k→+∞

f(ξ2nk
, ξ2mk

, λ) = ε,

lim
k→+∞

Θ(ξ2nk
, ξ2mk

, λ) = ε.

Using Definition 3.5, we deduce that one of the following holds

1

Π(ξ2nk
, ξ2mk

, λ)
−≤ α

(
1

Π(ξ2nk−1, ξ2mk−1, λ)
−1

)(
1

Π(ξ2nk−1, ξ2mk−1, λ)
−1

)
,

f(ξ2nk
, ξ2mk

, λ) ≤ α(f(ξ2nk−1, ξ2mk−1, λ))(f(ξ2nk−1, ξ2mk−1, λ)),

or

Θ(ξ2nk
, ξ2mk

, λ) ≤ α(Θ(ξ2nk−1, ξ2mk−1, λ))(Θ(ξ2nk−1, ξ2mk−1, λ)).

So,
1

Π(ξ2nk
,ξ2mk

,λ) − 1(
1

Π(ξ2nk−1,ξ2mk−1,λ) − 1
) ≤ α(

1

Π(ξ2nk−1, ξ2mk−1, λ)
− 1

)
,

f(ξ2nk
, ξ2mk

, λ)

(f(ξ2nk−1, ξ2mk−1, λ))
≤ α(f(ξ2nk−1, ξ2mk−1, λ)),
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or

Θ(ξ2nk
, ξ2mk

, λ)

(Θ(ξ2nk−1, ξ2mk−1, λ))
≤ α(Θ(ξ2nk−1, ξ2mk−1, λ)).

Hence, by taking the limit on k → +∞, we get

lim
k→+∞

α

(
1

Π(ξ2nk−1, ξ2mk−1, λ)
− 1

)
= 1,

lim
k→+∞

α (f(ξ2nk−1, ξ2mk−1, λ)) = 1,

or

lim
k→+∞

α (Θ(ξ2nk−1, ξ2mk−1, λ)) = 1,

which implies that

lim
k→+∞

(
1

Π(ξ2nk−1, ξ2mk−1, λ)
− 1

)
= 0,

lim
k→+∞

(f(ξ2nk−1, ξ2mk−1, λ)) = 0,

or

lim
k→+∞

(Θ(ξ2nk−1, ξ2mk−1, λ)) = 0,

which leads to a contradiction in each single case. Hence {ξ2n} is a Cauchy
sequence, and hence {ξn} is so, thus, there is u ∈ F such that ξn → u.

Definition 3.5 gives that

1

Π(gu, fξn, λ)
− 1 ≤ α

(
1

Π(u, ξn, λ)
− 1

)(
1

Π(u, ξn, λ)
− 1

)
→ 0 as n→ +∞,

f(fu, ξn+1, λ) ≤ α(f(u, ξn, λ))(f(u, ξn, λ))→ 0 as n→ +∞

and

Θ(fu, ξn+1, λ) ≤ α(Θ(u, ξn, λ))(Θ(u, ξn, λ))→ 0 as n→ +∞,

which implies that {ξn+1} converges to gu, hence u = gu. By the same steps
above, we get u = fu. Hence, u is a common fixed point for f and g.
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Let v ∈ F with v = fv and v = gv. If u 6= v, then from Definition 3.5, it
follows that

1

Π(u, v, λ)
− 1 =

1

Π(fu, gv, λ)
− 1

≤ α
(

1

Π(u, v, λ)
− 1

)(
1

Π(u, v, λ)
− 1

)
<

1

Π(u, v, λ)
− 1,

f(u, v, λ) = f(fu, gv, λ) ≤ α(f(u, v, λ))(f(u, v, λ)) < f(u, v, λ)

and

Θ(u, v, λ) = Θ(fu, gv, λ) ≤ α(Θ(u, v, λ))(Θ(u, v, λ)) < Θ(u, v, λ),

which are contradiction. So u = v. �

Using Theorem 3.6, if we establish the function α(s) = q, where q is con-
strained within the interval [0, 1), we arrive at the subsequent conclusion:

Corollary 3.7. Let V = (F,N,⊗,⊕) be a complete NMS. Suppose that f, g :
F → F satisfy the following, for each ξ, ω ∈ F and each λ > 0, we have

1

Π(fξ, gω, λ)
− 1 ≤ q

(
1

Π(ξ, ω, λ)
− 1

)
,

f(fξ, gω, λ) ≤ qf(ξ, ω, λ)

and

Θ(fξ, gω, λ) ≤ qΘ(ξ, ω, λ).

Then, the function f and g possesses a unique common fixed point.

If we take g = f in Theorem 3.6, we get that

Corollary 3.8. Let V = (F,N,⊗,⊕) be a complete NMS. Suppose that f :
F → F satisfies the following, for each ξ, ω ∈ F and each λ > 0, we have

1

Π(fξ, fω, λ)
− 1 ≤ α

(
1

Π(ξ, ω, λ)
− 1

)(
1

Π(ξ, ω, λ)
− 1

)
,

f(fξ, fω, λ) ≤ α(f(ξ, ω, λ))(f(ξ, ω, λ))

and

Θ(fξ, fω, λ) ≤ α(Θ(ξ, ω, λ))(Θ(ξ, ω, λ)).

Then, the function f possesses a unique fixed point.
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In Corollary 3.8, if we take the function α(s) = q, where q is constrained
within the interval [0, 1), we arrive at the subsequent conclusion:

Corollary 3.9. Let V = (F,N,⊗,⊕) be a complete NMS. Suppose that f :
F → F satisfies the following, for each ξ, ω ∈ F and each λ > 0, we have

1

Π(fξ, fω, λ)
− 1 ≤ q

(
1

Π(ξ, ω, λ)
− 1

)
,

f(fξ, fω, λ) ≤ qf(ξ, ω, λ)

and

Θ(fξ, fω, λ) ≤ qΘ(ξ, ω, λ).

Then, the function f possesses a unique fixed point.

4. Conclusion

Fixed point theorems represent essential principles in mathematics, espe-
cially within the domains of analysis, topology, and applied mathematics.
These theorems define the criteria under which a function possesses a fixed
point, which is a point that remains unchanged when the function is applied.
Conversely, neutrosophic metric spaces are a sophisticated extension of metric
spaces. This framework is particularly beneficial for addressing uncertainty
and imprecision across various mathematical and practical scenarios. In this
research, we present fixed point theorems associated with i contractions of
Geraghty type, situated within the advanced framework of neutrosophic met-
ric spaces. Furthermore, we have derived several fixed point results pertinent
to this specific context.

Future directions include generalization to bipolar neutrosophic spaces, ap-
plications to nonlinear dynamical systems with uncertain parameters, and the
development of computational algorithms for real-world decision-making un-
der uncertainty, potentially enhancing predictive modeling in fields like medi-
cal diagnostics and security analysis.

Acknowledgments: The author gratefully acknowledges the anonymous re-
viewers for their insightful comments. Thanks are also extended to Jadara
University for their support.
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