Nonlinear Functional Analysis and Applications Vol. 30, No. 3 (2025), pp. 847-863

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2025.30.03.12 http://nfaa.kyungnam.ac.kr/journal-nfaa

WOVEN b-FRAMES IN HILBERT SPACES

El Houcine Ouahidi¹ and Mohamed Rossafi²

¹Laboratory Analysis, Geometry and Applications, University of Ibn Tofail, Kenitra, Morocco e-mail: elhoucine.ouahidi@uit.ac.ma

²Laboratory Analysis, Geometry and Applications, Higher School of Education and Training, University of Ibn Tofail, Kenitra, Morocco e-mail: mohamed.rossafil@uit.ac.ma

Abstract. This paper aims to study woven b-frames, which are a generalization of woven frames in Hilbert spaces, where the frames in Hilbert spaces generated by the bilinear mapping are considered. The b-frame operator is defined, and the conditions for the existence of a b-frame in Hilbert spaces are obtained. We will define woven, weaving b-frames and woven, weaving K-b-frames and present initial results. We will also study and explore the stability and preservation of both woven and weaving K-b-frames.

1. Introduction

The theory of frames in Hilbert spaces is a powerful tool for analyzing and representing signals. They were introduced by Duffin and Schaeffer in 1952 [9]. Frames have applications not only in signal processing but also in various other fields, such as physics, image processing, and engineering; (see [1, 2, 4, 5, 6, 7, 11, 13, 14, 17, 18, 19, 20]).

In 2016, Bemrose, Casazza, Gröchenig, Lammers and Lynch introduced woven frames in separable Hilbert spaces in [3, 4, 5]. Their motivation was a question in distributed signal processing, where frames play an important role.

⁰Received January 20, 2025. Revised May 16, 2025. Accepted May 21, 2025.

⁰2020 Mathematics Subject Classification: 46B15, 46A35, 42C15, 47B02, 47A07.

 $^{^{0}}$ Keywords: Hilbert space, Banach space, b-frames, K-b-frames, woven b-frames, woven K-b-frames.

⁰Corresponding author: E. Ouahidi(elhoucine.ouahidi@uit.ac.ma).

Another recent development is the concept of b-frames. The idea is to take a sequence from a Banach space and see how it can be a frame for a Hilbert space, first introduced by Ismailov et al. in [12]. In 2024, Mezzat and Kabbaj generalized this concept, provided examples, and studied the stability and preservation of b-frames in [15]. b-frames allow for the construction of frames in Hilbert spaces using a bilinear mapping, offering greater flexibility compared to classical frames.

In this paper, based on the weaving frames and K-frames, we propose the notion of weaving b-frames. First, we recall several definitions about b-frames, and we will explore woven b-frames. The motivation behind this exploration is to answer the same question answered in [16]. Except that in our study the frames considered to measure a signal z don't belong to the same space. This paper is structured as follows. Section 2 provides preliminaries and notations used in our research. Section 3 formally defines woven and weaving b-frames and woven and weaving K-b-frames and gives alternatives to b-synthesis, b-analysis, and b-frame operators and establishes their connection to existing frame theory. The last section we discuss transitivity of weaving b-frames and studies the stability and preservation of woven b-frames, K-b-frames, weaving b-frames, and K-b-frames.

2. Preliminaries and notations

We begin by giving the following notations. Let \mathcal{Z} and \mathcal{H} be two Hilbert spaces. The set of bounded linear operators from \mathcal{H} to \mathcal{Z} is denoted by $\mathcal{L}(\mathcal{H}, \mathcal{Z})$. If K belongs to $\mathcal{L}(\mathcal{H}, \mathcal{Z})$, then the adjoint operator of K, denoted K^* , belongs to $\mathcal{L}(\mathcal{Z}, \mathcal{H})$ and satisfies the relation $\langle Kh, z \rangle_{\mathcal{Z}} = \langle h, K^*z \rangle_{\mathcal{H}}$ for all h in \mathcal{H} and z in \mathcal{Z} . The identity operator on \mathcal{H} is denoted by $Id_{\mathcal{H}}$, the range of an operator K is denoted as $\mathcal{R}(K)$, and the kernel of an operator K is denoted by K

Lemma 2.1. Let \mathcal{H} be a Hilbert space and let $K \in \mathcal{L}(\mathcal{H})$, such that $\mathcal{R}(K)$ is closed. K^{\dagger} will denote the pseudo-inverse (or the moore-penrose inverse) of K verifying:

- $(1) \ (KK^\dagger)^* = KK^\dagger; \ (K^\dagger K)^* = K^\dagger K; \quad Ker(K^\dagger) = (\mathcal{R}(K))^\perp,$
- (2) $(KerK)^{\perp} = \mathcal{R}(K^{\dagger}).$

Theorem 2.2. ([8]) Let F, F_1, F_2 be Hilbert spaces, and let $P \in \mathcal{L}(F_1, F)$, and $Q \in \mathcal{L}(F_2, F)$. Then the following statements are equivalent:

- (1) $\mathcal{R}(P) \subset \mathcal{R}(Q)$.
- (2) $PP^* \leq \lambda^2 QQ^*$ for some $\lambda > 0$.
- (3) there exists $X \in \mathcal{L}(\digamma_1, \digamma_2)$ such that P = QX.

Theorem 2.3. ([12]) Let $K \in \mathcal{L}(\mathcal{H}, \mathcal{Z})$, where \mathcal{H} and \mathcal{Z} are two Hilbert spaces. Then:

- (1) $K^* \in \mathcal{L}(\mathcal{Z}, \mathcal{H})$, and $||K^*|| = ||K||$.
- (2) $\mathcal{R}(K)$ is closed if and only if $\mathcal{R}(K^*)$ is closed.
- (3) K is surjective if and only if there exists a $\delta > 0$ such that

$$||K^*z||_{\mathcal{Z}} \ge \delta ||z||_{\mathcal{Z}}, \ \forall z \in \mathcal{Z}.$$

Let \mathcal{Z}, \mathcal{H} be two Hilbert spaces and let $\langle ., . \rangle_{\mathcal{Z}}, \langle ., . \rangle_{\mathcal{H}}$ be their corresponding scalar products respectively. We denote by $\|.\|_{\mathcal{Z}}$ (resp. $\|.\|_{\mathcal{H}}$) the norm of \mathcal{Z} (resp. \mathcal{H}).

Let \mathcal{B} be a Banach space with norm $\|.\|$ and the bilinear mapping : $b: \mathcal{H} \times \mathcal{B} \longrightarrow \mathcal{Z}$, satisfying the condition :

$$\exists A > 0: \|b(h, x)\|_{\mathcal{Z}} \leqslant A\|h\|_{\mathcal{H}}\|x\|, \ \forall h \in \mathcal{H}, \ x \in \mathcal{B}.$$
 (2.1)

Note that the inequality (2.1) means that b is bounded and continuous. Fix $x \in \mathcal{B}$ and $z \in \mathcal{Z}$, and consider the linear functional $\zeta_x^z : \mathcal{H} \longrightarrow \mathbb{C}$, defined by

$$\zeta_x^z(h) = \langle b(h, x), z \rangle_{\mathcal{Z}}.$$

Then note that ζ_x^z is linear, also by :(2.1) we have, for all $h \in \mathcal{H}$

$$|\zeta_x^z(h)| = |\langle b(h, x), z \rangle_{\mathcal{Z}}| \le ||b(h, x)||_{\mathcal{Z}}||z||_{\mathcal{Z}}$$

$$\le A||h||_{\mathcal{H}}||x|||z||_{\mathcal{Z}}.$$

Hence, $\|\zeta_x^z\| \leq A\|x\|\|z\|_{\mathcal{Z}}$. Then there exists a unique element $v \in \mathcal{H}$ such that $\zeta_x^z(h) = \langle h, v \rangle_{\mathcal{H}}$ (Riesz representation theorem), and this element called b-dual product of z and x and denoted $\langle z/x \rangle$ (see [15]).

Let $\{y_k\}_{k\in\mathbb{N}}\subset\mathcal{B}$ be a *b*-orthonormal basis in \mathcal{Z} and $\{e_k\}_{k\in\mathbb{N}}$ the orthonormal basis of a separable Hilbert space \mathcal{H} and the bilinear mapping b has a dense range such that :

$$\sum_{k\in\mathbb{N}}\|y_k\|<\infty.$$

Let $\mathcal{Y} \subset \mathcal{B}$ such that:

$$\mathcal{Y} = \overline{span\{y_k/k \in \mathbb{N}\}}.$$

Proposition 2.4. ([15]) Let $S \in \mathcal{L}(\mathcal{Y}, \mathcal{Y})$, $\{h_k\}_{k \in \mathbb{N}} \subset \mathcal{H} \text{ and } T : \mathcal{Z} \to \mathcal{Z} \text{ be an operator such that: for each } z = \sum_{k \in \mathbb{N}} b(h_k, y_k) \in \mathcal{Z},$

$$T^*(z) = \sum_{k \in \mathbb{N}} b(h_k, Uy_k).$$

Then T^* is bounded linear operator.

Theorem 2.5. ([15]) Let $\{y_k\}_{k\in\mathbb{N}}\subset\mathcal{B}$ be a b-orthonormal basis in \mathcal{Z} . Let $S\in\mathcal{L}(\mathcal{Y},\mathcal{Y})$. Then there exists only one $T\in\mathcal{L}(\mathcal{Z})$ such that, for all $z\in\mathcal{Z}$,

$$\langle Tz/y_k \rangle = \langle z/Sy_k \rangle, \ \forall k \in \mathbb{N}.$$
 (2.2)

Corollary 2.6. ([15]) Let $\{y_k\}_{k\in\mathbb{N}}\subset\mathcal{B}$ be a b-orthonormal basis in \mathcal{Z} . Let $S\in\mathcal{L}(\mathcal{Y},\mathcal{Y})$. Then there exists only one $T\in\mathcal{L}(\mathcal{Z})$ such that

$$\langle Tz/y \rangle = \langle z/Sy \rangle, \ \forall y \in \mathcal{Y}, \ \forall z \in \mathcal{Z}.$$
 (2.3)

In which case T called the b-adjoint of S denoted by S^b .

Let $K \in \mathcal{L}(\mathcal{Z})$ and let K^* be its adjoint, we define a *b*-frame and K-b-frame as follows:

Definition 2.7. ([15]) A sequence $\{\eta_k\}_{k\in\mathbb{I}}\subset B$ is called a *b*-frame for Z, if there exist constants $0<\mathcal{A}_{\eta}\leq\mathcal{B}_{\eta}<\infty$ such that

$$\mathcal{A}_{\eta} \|z\|^2 \leq \sum_{k \in \mathbb{I}} \|\langle z/\eta_k \rangle\|_H^2 \leq \mathcal{B}_{\eta} \|z\|^2, \quad \forall z \in \mathcal{Z}.$$

Definition 2.8. ([15]) A sequence $\{\eta_k\}_{k\in\mathbb{I}}\subset B$ is called a K-b-frame for Z, if there exist constants $0<\mathcal{A}_{\eta}\leq\mathcal{B}_{\eta}<\infty$ such that

$$\mathcal{A}_{\eta} \|K^*z\|^2 \le \sum_{k \in \mathbb{T}} \|\langle z/\eta_k \rangle\|_H^2 \le \mathcal{B}_{\eta} \|z\|^2, \quad \forall z \in \mathcal{Z}.$$

- 3. Woven b-frames and woven K-b-frames
- 3.1. Woven *b*-frames, woven *K*-*b*-frames and some examples. For a fixed $n \in \mathbb{N}$, we define: $[n] = \{1, 2, ..., n\}$. We present several novel construction of weaving frame, we will explore woven *b*-frames and we begin by giving the following definitions, and some examples:

Definition 3.1. Let $\Lambda = \{\{\eta_{kl}\}_{k\in\mathbb{I}}: l\in[n]\}$ be a family of *b*-frames for \mathcal{Z} . If there exist universal constants \mathcal{A}_{η} and \mathcal{B}_{η} such that for every partition $\{\sigma_l\}_{l\in[n]}$, the family $\Lambda_l = \{\eta_{kl}\}_{k\in\sigma_l}$ is a *b*-frames for \mathcal{Z} with bounds \mathcal{A}_{η} and \mathcal{B}_{η} , then Λ is said woven *b*-frames and for every $l\in[n]$ the *b*-frames Λ_l are called weaving *b*-frames. The constants \mathcal{A}_{η} and \mathcal{B}_{η} are called the lower and upper woven *b*-frames bounds. If $\mathcal{A}_{\eta} = \mathcal{B}_{\eta}$, then $\Lambda = \{\{\eta_{kl}\}_{k\in\mathbb{I}}: l\in[n]\}$ is called a tight woven *b*-frames. If for every $l\in[n]$ the *b*-frames Λ_l is weaving *b*-Besselian sequence, then the family $\Lambda = \{\{\eta_{kl}\}_{k\in\mathbb{I}}: l\in[n]\}$ is said to be woven *b*-Besselian sequence.

Let $K \in \mathcal{L}(\mathcal{Z})$ and let K^* be its adjoint, we define a weaving K-b-frames and woven K-b-frames as follows:

Definition 3.2. Let $\Lambda = \{\{\eta_{kl}\}_{k \in \mathbb{I}} : l \in [n]\}$ be a family of K-b-frames for \mathcal{Z} . If there exist universal constants A_{Λ} and B_{Λ} such that for every partition $\{\sigma_l\}_{l \in [n]}$, the family $\Lambda_l = \{\eta_{kl}\}_{k \in \sigma_l}$ is a K-b-frame for \mathcal{Z} with bounds A_{Λ} and B_{Λ} , then Λ is said woven K-b-frames and for every $l \in [n]$ the K-b-frames Λ_l are called weaving K-b-frames. The constants A_{Λ} and B_{Λ} are called the lower and upper woven K-b-frames bounds. If $A_{\Lambda} = B_{\Lambda}$, then $\Lambda = \{\{\eta_{kl}\}_{k \in \mathbb{I}} : l \in [n]\}$ is called a tight woven K-b-frames and if for every $l \in [n]$ the K-b-frames Λ_l is weaving K-b-Besselian sequences. Then the family $\Lambda = \{\{\eta_{kl}\}_{k \in \mathbb{I}} : l \in [n]\}$ is said to be woven K-b-Besselian sequences.

Example 3.3. Let $\mathcal{H} = \mathbb{R}^3$ with canonical base (e_1, e_2, e_3) , and $\mathcal{B} = \mathbb{R}^2$ with canonical base (α_1, α_2) and $\mathcal{Z} = \mathbb{R}^4$ such that $\{\rho_i\}_{1 \leq i \leq 4}$ are their canonical base, and let the bilinear mapping $b : \mathcal{H} \times \mathcal{B} \longrightarrow \mathcal{Z}$ defined by:

$$b(e_1, \alpha_1) = \rho_1,$$
 $b(e_2, \alpha_1) = \rho_3,$ $b(e_3, \alpha_1) = \rho_1,$
 $b(e_1, \alpha_2) = \rho_2,$ $b(e_2, \alpha_2) = \rho_4,$ $b(e_3, \alpha_2) = \rho_2.$

Then, for $h = \sum_{k=1}^{3} h_k e_k$ and $x = \sum_{k=1}^{2} x_k \alpha_k$, we have

$$b(h,x) = (h_1 + h_3)x_1\rho_1 + (h_1 + h_3)x_2\rho_2 + h_2x_1\rho_3 + h_2x_2\rho_4$$

and

$$\parallel b(h,x)\parallel_Z^2 = (h_1^2+h_2^2+h_3^2)(x_1^2+x_2^2) + 2h_1h_3(x_1^2+x_2^2) \leq 2 \parallel h \parallel^2 \parallel x \parallel^2.$$

Furthermore, we have

$$\langle z/x \rangle = (x_1z_1 + x_2z_2)e_1 + (x_1z_3 + x_2z_4)e_2 + (x_1z_1 + x_2z_2)e_3$$

and

$$\|\langle z/x \rangle\|_{H}^{2} = 2(x_{1}z_{1} + x_{2}z_{2})^{2} + (x_{1}z_{3} + x_{2}z_{4})^{2}.$$

Let

$$H = \{h_k\}_{k=1}^3 = \{\alpha_1 + \alpha_2; \alpha_1 - \alpha_2; \alpha_1\}$$

and

$$G = \{g_k\}_{k=1}^3 = \{2\alpha_2 + \alpha_1; 3\alpha_1 + \alpha_2; \alpha_2\}.$$

Then H is a b-frame with lower and upper bounds 2 and 6, respectively. Similarly, G is a b-frame with bounds 1 and 30. The frames H and G constitute a woven b-frame. For example, if we assume that $\sigma_1 = \{1, 2\}$, we have

$$\parallel z \parallel^2 \leq \sum_{k \in \sigma_1} \parallel < z/h_k > \parallel_H^2 + \sum_{k \in \sigma_1^c} \parallel < z/g_k > \parallel_H^2 \leq 6 \parallel z \parallel^2, \quad \forall \, z \in \mathcal{Z}.$$

So $\{h_k\}_{k\in\sigma_1}\cup\{g_k\}_{k\in\sigma_1^c}$ is b-frames with bounds $\mathbb{A}_1=2$ and $\mathbb{B}_1=6$. Now, if we take

$$\mathbb{A} = \min\{\mathbb{A}_k; 1 \le k \le 8\} \quad \text{and} \quad \mathbb{B} = \max\{\mathbb{B}_k; 1 \le k \le 8\}.$$

Then H and G constitute a woven b-frames for \mathcal{Z} with universal bounds \mathbb{A} and \mathbb{B} .

According to the following, there is an automatic universal upper b-frame bound for every weaving.

Theorem 3.4. If $\{\eta_{kl}\}_{k\in\mathbb{I}}$ is woven b-Besselian sequence for \mathcal{Z} with bound B_l for all $l\in[n]$, then $\{\eta_{kl}\}_{k\in\sigma_l,\ l\in[n]}$ is weaving b-besselian sequence with bound $\sum_{l=1}^{n} B_l$.

Proof. Let σ_l , $l \in [n]$ any partition of \mathbb{I} we have:

$$\sum_{l=1}^{n} \sum_{k \in \sigma_{l}} \|\langle z/\eta_{kl} \rangle\|_{H}^{2} \leq \sum_{l=1}^{n} \sum_{k \in \mathbb{T}} \|\langle z/\eta_{kl} \rangle\|_{H}^{2} \leq \sum_{l=1}^{n} B_{l} \|z\|, \quad z \in \mathcal{Z}.$$

yielding the desired bound.

3.2. Operators for weaving and woven b-frames. Now we introduce b-analysis, b-synthesis and b-frames operators of weaving and woven b-frames and it will be shown that if each family of subspaces $\{l^2(H)_l\}_{l\in[n]}$ of $l^2(H)$ we have the following space:

$$l^2(H)_l = \Big\{\{\theta_{kl}\}_{k \in \sigma_l}/\theta_{kl} \in H, \ \sigma_l \subset \mathbb{I}, \ \sum_{k \in \sigma_l} \parallel \theta_k \parallel_H^2 < \infty \Big\}, \ \forall \, l \in [n].$$

We define the space

$$\Theta = \left(\sum_{l \in [n]} \bigoplus (l^2(H))_l\right)_{l^2} = \left\{ \{\theta_{kl}\}_{k \in \mathbb{I}, l \in [n]} / \{\theta_{kl}\}_{k \in \mathbb{I}} \in (l^2(H))_l, \ \forall l \in [n] \right\}$$

is a Hilbert space for the inner product see [10]:

$$\left\langle \{\theta_{kl}\}_{k\in\mathbb{I},l\in[n]}, \{\theta'_{kl}\}_{k\in\mathbb{I},l\in[m]} \right\rangle = \sum_{k\in\mathbb{I},l\in[n]} \left\langle \theta_{kl}, \theta'_{kl} \right\rangle_H.$$

Theorem 3.5. Let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]} \subset B$. The family Λ is a woven b-Besselian sequence if and only if the operator

$$T_{\Lambda}:\Theta\longrightarrow\mathcal{Z}$$

defined by

$$T_{\Lambda}\left(\left\{ \theta_{kl}\right\} _{k\in\mathbb{U},l\in\left[n\right]}
ight) =\sum_{k\in\mathbb{I},l\in\left[n\right]}b\left(\theta_{kl},\eta_{kl}
ight)$$

is well-defined, linear and bounded.

Proof. Suppose $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven b-Besselian. So a fixed $l\in[n]$ and $\sigma_l\subset\mathbb{I}$ the family $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is a b-Bessel sequence with b-Bessel bound B_l . If we denoted the b-synthesis operator of $\{\eta_{kl}\}_{k\in\sigma_l}$ by T_{σ_l} , therefore for every $\{\theta_{kl}\}_{k\in\mathbb{I},l\in[n]}\in\Theta$, we have

$$N = \parallel T_{\Lambda}(\{\theta_{kl}\}) \parallel^2 = \parallel \sum_{k \in \mathbb{I}, l \in [n]} b(\theta_{kl}, \eta_{kl}) \parallel^2.$$

The serie $\sum_{k\in\mathbb{I}} b(\theta_{kl}, \eta_{kl})$ converge for every $\theta_{kl} \in \Theta$, $l \in [n]$. Hence

$$N = \parallel T_{\Lambda}(\{\theta_{kl}\}) \parallel^{2}$$

$$= \parallel \sum_{k \in \mathbb{I}, l \in [n]} b(\theta_{kl}, \eta_{kl}) \parallel^{2}$$

$$= \parallel \sum_{k \in \mathbb{I}} b(\theta_{k1}, \eta_{k1}) + \sum_{k \in \mathbb{I}} b(\theta_{k2}, \eta_{k2}) + \dots + \sum_{k \in \mathbb{I}} b(\theta_{kn}, \eta_{kn}) \parallel^{2}$$

$$\leq 2(\parallel \sum_{k \in \mathbb{I}} b(\theta_{k1}, \eta_{k1}) \parallel^{2} + \parallel \sum_{k \in \mathbb{I}} b(\theta_{k2}, \eta_{k2}) \parallel^{2} + \dots + \parallel \sum_{k \in \mathbb{I}} b(\theta_{kn}, \eta_{kn}) \parallel^{2})$$

$$\leq 2(\parallel T_{\sigma_{1}}(\{\theta_{k1}\}_{k \in \sigma_{1}}) \parallel^{2} + \parallel T_{\sigma_{2}}(\{\theta_{k2}\}_{k \in \sigma_{2}}) \parallel^{2} + \dots + \parallel T_{\sigma_{n}}(\{\theta_{kn}\}_{k \in \sigma_{n}}) \parallel^{2})$$

$$\leq 2(B_{1} \parallel (\{\theta_{k1}\}_{k \in \sigma_{1}}) \parallel^{2} + B_{2} \parallel (\{\theta_{k2}\}_{k \in \sigma_{2}}) \parallel^{2} + \dots + B_{n} \parallel (\{\theta_{kn}\}_{k \in \sigma_{n}}) \parallel^{2})$$

$$\leq 2(\sum_{l=1}^{l=n} B_{l} \parallel (\{\theta_{kl}\}_{k \in \sigma_{l}}) \parallel^{2})$$

$$\leq 2(nB \parallel (\{\theta_{kl}\}_{k \in \mathbb{I}, l \in [n]}) \parallel^{2})$$

with

$$B = \max\{B_l, \ 1 \le l \le n\}.$$

Hence T_{Λ} is bounded and well-defined and linear.

Conversely, suppose T_{Λ} well-defined, linear and bounded with bound B. We have for every $z \in \mathcal{Z}$,

$$\left\langle T_{\Lambda}(\{\theta_{kl}\}_{k\in\mathbb{I},\ l\in[n]}), z \right\rangle_{\mathcal{Z}} = \left\langle \sum_{k\in\mathbb{I},l\in[n]} b(\theta_{kl},\eta_{kl}), z \right\rangle_{\mathcal{Z}}$$

$$= \sum_{k\in\mathbb{I},l\in[n]} \langle b(\theta_{kl},\eta_{kl}), z \rangle_{\mathcal{Z}}$$

$$= \left\langle \{\theta_{kl}\}_{k\in\mathbb{I},l\in[n]}, \{\langle z/\eta_{kl} \rangle\}_{k\in\mathbb{I},\ l\in[n]} \right\rangle_{\Theta}.$$

Therefore, we have

$$T_{\Lambda}^*(z) = \{\langle z/\eta_{kl} \rangle\}_{k \in \mathbb{I}, \ l \in [n]}.$$

And

$$\sum_{k \in \mathbb{I}, l \in [n]} \| \langle z/\eta_{kl} \rangle \|_H^2 = \| T_{\Lambda}^*(z) \|_{\Theta}^2 \le \| T_{\Lambda}^* \|^2 \| z \|_{\mathcal{Z}}^2 \le \| T_{\Lambda} \|^2 \| z \|_{\mathcal{Z}}^2 \le B \| z \|_{\mathcal{Z}}^2.$$

Hence, the family $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ is woven b-besselian sequences.

Corollary 3.6. Let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a family in \mathbb{Z} and for all $\{\theta_{kl}\}_{k \in \mathbb{I}, l \in [n]} \in \Theta$, the series $\sum_{k \in \mathbb{I}, l \in [n]} b(\theta_{kl}, \eta_{kl})$ is convergent. Then the sequence Λ is woven b-Besselian.

The woven b-Besselian condition:

$$\sum_{k \in \mathbb{I}, l \in [n]} \|\langle z/\eta_{kl} \rangle\|_H^2 \le B \| z \|_{\mathcal{Z}}^2, \qquad \forall z \in \mathcal{Z}.$$

Like b-frames and their extensions (see [12]), woven b-frames can be characterized in terms of their associated woven b-frame operator.

Definition 3.7. Let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a woven *b*-Besselian sequence. So for every partition $\{\sigma_l\}_{l \in [n]}$ of I, the family $\Lambda_l = \{\eta_{kl}\}_{k \in \sigma_l}$ for $l \in [n]$ is a *b*-Besselian sequence. Thus, we can define:

(1) The *b*-analysis operator of Λ_l by

$$W_{\sigma_l}: \mathcal{Z} \to l^2(\mathcal{H})_l$$
 with $W_{\sigma_l}(z) = \{\langle z/\eta_{kl} \rangle\}_{k \in \sigma_l}, \ \forall l \in [n], \ z \in \mathcal{Z} \text{ and } \mathcal{R}(W_{\sigma_l}) \subseteq l^2(\mathcal{H})_l \subseteq l^2(\mathcal{H}).$

(2) The adjoint of W_{σ_l} is called the *b*-synthesis operator and we denote by $W_{\sigma_l}^*$ also for every $l \in [n]$, we have $W_{\sigma_l}^* : l^2(\mathcal{H})_l \to \mathcal{Z}$ defined by

$$W_{\sigma_l}^*(\{\theta_{kl}\}_k) = \sum_{k \in \sigma_l} b(\theta_{kl}, \eta_{kl}), \quad \forall \{\theta_{kl}\}_{k \in \sigma_l} \in l^2(\mathcal{H})_l.$$

(3) The b-frames operator of a weaving b-Besselian sequence: For every $z \in \mathcal{Z}$ and $l \in [n]$,

$$\begin{split} S_{\sigma_l}(z) &= W_{\sigma_l}^* W_{\sigma_l}(z) \\ &= W_{\sigma_l}^* (\{\langle z/\eta_{kl} \rangle\}_{k \in \sigma_l}) \\ &= \sum_{k \in \sigma_l} b(\langle z/\eta_{kl} \rangle, \eta_{kl}), \quad \forall \, z \in \mathcal{Z}. \end{split}$$

Similarly, we define the woven b-analysis and the woven b-synthesis operators and the woven b-frames operator for the woven b-Besselian sequence $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$:

(4) $W_{\Lambda}: \mathcal{Z} \to \Theta$ defined by:

$$W_{\Lambda}(z) = \{\langle z/\eta_{kl} \rangle\}_{k \in \mathbb{I}, l \in [n]}, \quad \forall l \in [n], \ z \in \mathcal{Z}$$

is called the woven b-analysis operator of Λ .

(5) $W_{\Lambda}^*: \Theta \to \mathcal{Z}$ defined by:

$$W_{\Lambda}^*(\{\theta_{kl}\}_{k\in\mathbb{I},l\in[n]}) = \sum_{k\in\mathbb{I},l\in[n]} b(\theta_{kl},\eta_{kl})$$

is called the woven b-synthesis operator of Λ .

(6) $S_{\Lambda}: \mathcal{Z} \to \mathcal{Z}$ defined by:

$$S_{\Lambda}(z) = W_{\Lambda}^*W(z)$$

$$= W_{\Lambda}^*(\{\langle z/\eta_{kl} \rangle\}_{k \in \mathbb{I}, l \in [n]})$$

$$= \sum_{k \in \mathbb{I}, l \in [n]} b(\langle z/\eta_{kl} \rangle, \eta_{kl}), \quad \forall z \in \mathcal{Z}$$

is called the woven b-frames operator of Λ .

Note that the Operator S_{Λ} is positive and self-adjoint. Indeed, let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a woven b-Besselian. Then, we have

$$< S_{\Lambda}(z), z>_{\mathcal{Z}} = \left\langle \sum_{k \in \mathbb{I}, l \in [n]} b(< z/\eta_{kl} >, \eta_{kl}), z \right\rangle = \sum_{k \in \mathbb{I}, l \in [n]} \|< z/\eta_{kl} > \|_{\mathcal{H}}^{2},$$

which means that S_{Λ} is positive. Moreover, we have

$$S_{\Lambda} = W_{\Lambda}^* W_{\Lambda}$$
 and $S_{\Lambda}^* = (W_{\Lambda}^* W_{\Lambda})^* = S_{\Lambda}$,

which shows that S_{Λ} is self-adjoint.

Theorem 3.8. Let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a finite family of b-Besselian sequences in Z. Then the following statements are equivalent:

- (1) Λ is woven b-frames with universal woven b-frame bounds A_{Λ} and B_{Λ} .
- (2) S_{Λ} verifie $A_{\Lambda}I_{\mathcal{Z}} \leq S_{\Lambda} \leq B_{\Lambda}I_{\mathcal{Z}}$.

Proof. (1) \Rightarrow (2): We have for every $z \in \mathcal{Z}$,

$$\langle S_{\Lambda}(z), z \rangle_{\mathcal{Z}} = \left\langle \sum_{k \in \mathbb{I}, l \in [n]} b(\langle z/\eta_{kl} \rangle, \eta_{kl}), z \right\rangle = \sum_{k \in \mathbb{I}, l \in [n]} \|\langle z/\eta_{kl} \rangle\|_{\mathcal{H}}^{2}.$$

Then

$$A_{\Lambda} \parallel z \parallel_{\mathcal{Z}}^2 \le < S_{\Lambda}(z), z >_{\mathcal{Z}} \le B_{\Lambda} \parallel z \parallel_{\mathcal{Z}}^2, \ \forall z \in \mathcal{Z}.$$

So, we have

$$A_{\Lambda}I_{\mathcal{Z}} \leq S_{\Lambda} \leq B_{\Lambda}I_{\mathcal{Z}}.$$

 $(2) \Rightarrow (1)$: We have

$$\parallel S_{\Lambda} \parallel = \parallel W_{\Lambda}^* W_{\Lambda} \parallel = \parallel W_{\Lambda} \parallel^2$$
.

Now, for all $z \in \mathcal{Z}$, we have

$$\sum_{k \in \mathbb{I}, l \in [n]} \| \langle z/\eta_{kl} \rangle \|_{\mathcal{H}}^2 = \| W_{\Lambda}(z) \|^2 \leq \| S_{\Lambda} \| \| z \|^2 \leq B_{\Lambda} \| z \|_{\mathcal{Z}}^2.$$

For the lower bound, for all $z \in \mathcal{Z}$, we have

$$\sum_{k \in \mathbb{I}, l \in [n]} \| \langle z/\eta_{kl} \rangle \|_{\mathcal{H}}^2 = \langle S_{\Lambda}(z), z \rangle_{\mathcal{Z}}$$

$$\geq A_{\Lambda} \| z \|^2.$$

4. Perturbation of weaving b-frame sequences

In this section we study the stability and preservation of woven b-frames. Suppose the b-adjoint operator exists for every operator in the later results.

Theorem 4.1. Let $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven b-frames for \mathcal{Z} with universal bounds C_{η} and D_{η} and let E be a continuous bounded linear operator of \mathcal{Z} . Then $\{E\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is woven E^{b^*} -b frames for \mathcal{Z} with universal bounds $C'_{\eta} = C_{\eta}$ and $D'_{\eta} = D_{\eta} \parallel E^b \parallel^2$, where E^{b^*} designs the adjoint operator of E^b in Z, and E^b the b-adjoint of E.

Proof. Let $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven b-frames for \mathcal{Z} with universal bounds C_{η} and D_{η} . Then

$$C_{\eta} \parallel z \parallel_{\mathcal{Z}}^{2} \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/\eta_{kl} \rangle \parallel_{H}^{2} \leq D_{\eta} \parallel z \parallel_{Z}^{2}, \quad \forall z \in \mathcal{Z}.$$

We have

$$\sum_{k \in \mathbb{I}, l \in [n]} \| \langle z/E \eta_{kl} \rangle \|_{\mathcal{H}}^2 = \sum_{k \in \mathbb{I}, l \in [n]} \| \langle E^b z/\eta_{kl} \rangle \|_{H}^2, \quad \forall z \in \mathcal{Z}.$$

Hence

$$C_{\eta} \parallel (E^{b^*})^* z \parallel_{\mathcal{Z}}^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/E \eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D_{\eta} \parallel E^b z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

So, we obtain

$$C \parallel (E^{b^*})^* z \parallel_{\mathcal{Z}}^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/E \eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D \parallel E^b \parallel^2 \parallel z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

Hence, the family $\{E\eta_{kl}\}_{k\in I, l\in [n]}$ is woven $E^{b^*}-b$ frames for \mathcal{Z} with universal bounds $C'_{\eta}=C_{\eta}$ and $D'_{\eta}=D_{\eta}\parallel E^b\parallel^2$.

Corollary 4.2. Let $\Lambda = \{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a woven b-frame with universal bounds A_{Λ} and B_{Λ} for \mathcal{Z} and S_{Λ} the woven b-frames operator of Λ . Then for every partition $\{\sigma_l\}_{l \in [n]}$ of I, we have the sequence $\{S_{\sigma_l}\eta_{kl}\}_{k \in \sigma_l}$ for every $l \in [n]$ is a weaving b-frames, that is, $\{S_{\Lambda}\eta_{kl}\}_{k \in \sigma_l, l \in [n]}$ is woven b-frames for \mathcal{Z} .

Proof. Let's put
$$E = S_{\sigma_l}$$
 and $E = S_{\Lambda}$ in Theorem 4.1 follow.

Theorem 4.3. (Transitivity of weaving b-frames) Let $\Phi = \{\varphi_k\}_{k\in\mathbb{I}}$, $\Psi = \{\psi_k\}_{k\in\mathbb{I}}$ and $\Gamma = \{\gamma_k\}_{k\in\mathbb{I}}$ be b-frames for \mathcal{Z} . If Φ and Ψ are woven b-frames with a universal lower bound $A_{\Phi\Psi}$, and Ψ is woven with Γ by a universal lower bound $A_{\Psi\Gamma}$ such that $A_{\Phi\Psi} + A_{\Psi\Gamma} - B_{\Psi} > 0$ and B_{Ψ} the upper bound of the b-frames Ψ . Then the families Φ and Γ are woven for \mathcal{Z} .

Proof. Suppose that the families Φ and Ψ are woven b-frames with a universal bounds $A_{\Phi\Psi}$ and $B_{\Phi\Psi}$, the families Ψ and Γ are woven b-frames with a universal bounds $A_{\Psi\Gamma}$ and $B_{\Psi\Gamma}$ and B_{Ψ} the upper bound of the b-frames Ψ . Then for every $\sigma \subset I$ and $z \in \mathcal{Z}$, we have

$$\begin{split} (A_{\Phi\Psi} + A_{\Psi\Gamma}) \|z\|^2 &\leq \sum_{k \in \sigma} \| < z/\varphi_k > \|^2 + \sum_{k \in \sigma^c} \| < z/\psi_k > \|^2 \\ &+ \sum_{k \in \sigma} \| < z/\psi_k > \|^2 + \sum_{k \in \sigma^c} \| < z/\gamma_k > \|^2 \\ &\leq (B_{\Phi\Psi} + B_{\Psi\Gamma}) \|z\|^2. \end{split}$$

That is

$$(A_{\Phi\Psi} + A_{\Psi\Gamma}) \|z\|^2 \le \sum_{k \in \sigma} \|\langle z/\varphi_k \rangle\|^2 + \sum_{k \in \sigma^c} \|\langle z/\gamma_k \rangle\|^2$$
$$+ \sum_{k \in \mathbb{I}} \|\langle z/\psi_k \rangle\|^2$$
$$< (B_{\Phi\Psi} + B_{\Psi\Gamma}) \|z\|^2.$$

As Ψ is b-frames, $\sum_{k \in \mathbb{I}} \| \langle z/\psi_k \rangle \|^2 \leq B_{\Psi} \|z\|^2$, so we obtain

$$(A_{\Phi\Psi} + A_{\Psi\Gamma} - B_{\Psi}) \|z\|^2 \le (\sum_{k \in \sigma} \|\langle z/\varphi_k \rangle\|^2 + \sum_{k \in \sigma^c} \|\langle z/\gamma_k \rangle\|^2)$$

$$\le (B_{\Phi\Psi} + B_{\Psi\Gamma}) \|z\|^2.$$

Hence, $\{\varphi_k\}_{k\in\mathbb{I}}$ and $\{\gamma_k\}_{i\in\mathbb{I}}$ are woven b-frames.

Note that T_{ϕ} be the *b*-synthesis operator for the *b*-frames $\phi = \{\varphi_k\}_{k \in \mathbb{I}} \subset \mathcal{B}$ and T_{ψ} be the *b*-synthesis operator for the *b*-frames $\psi = \{\psi_k\}_{k \in \mathbb{I}} \subset \mathcal{B}$ such

that for every $\{\theta_k\}_{k\in\mathbb{I}}\in l^2(H)$, we have

$$\begin{split} T_{\phi}(\theta_k) &= \sum_{k \in \mathbb{I}} b(\theta_k, \varphi_k), \\ T_{\psi}(\theta_k) &= \sum_{k \in \mathbb{I}} b(\theta_k, \psi_k), \\ T_{\phi}^{\sigma}(\theta_k) &= \sum_{k \in \sigma} b(\theta_k, \varphi_k), \\ T_{\psi}^{\sigma}(\theta_k) &= \sum_{k \in \sigma} b(\theta_k, \psi_k). \end{split}$$

Theorem 4.4. Let $\phi = \{\varphi_k\}_{k \in \mathbb{I}} \subset B$ and $\psi = \{\psi_k\}_{k \in \mathbb{I}} \subset B$ be b-frames for \mathcal{Z} with b-frames bounds A_{ϕ} , B_{ϕ} , A_{ψ} and B_{ψ} such that

$$\sqrt{B_{\phi}} + \sqrt{B_{\psi}} \le \frac{A_{\phi}}{2\alpha}$$

with $0 < \alpha < 1$ and

$$||T_{\phi}^{\sigma} - T_{\psi}^{\sigma}|| \le ||T_{\phi} - T_{\psi}|| \le \alpha,$$
 (4.1)

where T_{ϕ} (respectively T_{ψ}) is the b-synthesis operator for the b-frames $\{\varphi_k\}_{k\in I}$ (respectively $\{\psi_k\}_{k\in I}$). Then for every $\sigma\subset I$, the family $\{\varphi_k\}_{k\in \sigma}\cup \{\psi_k\}_{k\in \sigma^c}$ is a b-frames for $\mathcal Z$ with b-frames bounds $B_{\phi}+B_{\psi}$ and $\frac{A_{\phi}}{2}$. Thus, ϕ and ψ are woven b-frames.

Proof. Let T_{ϕ} (respectively, T_{ψ}) be the *b*-synthesis operator for the *b*-frames $\{\varphi_k\}_{k\in I}$ (respectively, $\{\psi_k\}_{k\in I}$) and $\sigma\subset I$. For each $\sigma\subset I$, we put

$$M = \| \sum_{k \in \sigma} b(\langle z/\varphi_k \rangle, \varphi_k) - \sum_{k \in \sigma} b(\langle z/\psi_k \rangle, \psi_k) \|_{\mathcal{Z}}.$$

Then, we have

$$\begin{split} M &= \| \sum_{k \in \sigma} b(< z/\varphi_k >, \varphi_k) - \sum_{k \in \sigma} b(< z/\psi_k >, \psi_k) \|_{\mathcal{Z}} \\ &= \| T_{\phi}^{\sigma} (T_{\phi}^{\sigma})^* z - T_{\psi}^{\sigma} (T_{\psi}^{\sigma})^* z \| \\ &\leq \| (T_{\phi}^{\sigma} T_{\phi}^{\sigma*} - T_{\phi}^{\sigma} T_{\psi}^{\sigma*}) z \| + \| (T_{\phi}^{\sigma} T_{\psi}^{\sigma*} - T_{\psi}^{\sigma} T_{\psi}^{\sigma*}) z \| \\ &\leq \| T_{\phi}^{\sigma} \| \| T_{\phi}^{\sigma*} - T_{\psi}^{\sigma*} \| \| z \| + \| T_{\phi}^{\sigma} - T_{\psi}^{\sigma} \| \| T_{\psi}^{\sigma*} \| \| z \| \\ &\leq \alpha (\| T_{\phi} \| + \| T_{\psi} \|) \| z \| \\ &\leq \alpha (\sqrt{B_{\phi}} + \sqrt{B_{\psi}}) \| z \| \\ &\leq \frac{A_{\phi}}{2} \| z \|. \end{split}$$

Therefore, for every $z \in \mathcal{Z}$, we put

$$R = \| \sum_{k \in \sigma} b(\langle z/\varphi_k \rangle, \varphi_k) + \sum_{k \in \sigma^c} b(\langle z/\psi_k \rangle, \psi_k) \|.$$

Then.

$$\begin{split} R &= \| \sum_{k \in \mathbb{I}} b(< z/\psi_k >, \psi_k) + \sum_{k \in \sigma} b(< z/\varphi_k >, \varphi_k) - \sum_{k \in \sigma} b(< z/\psi_k >, \psi_k) \| \\ &\geq \| \sum_{k \in \mathbb{I}} b(< z/\psi_k >, \psi_k) \| - \| \sum_{k \in \sigma} b(< z/\varphi_k >, \varphi_k) - \sum_{k \in \sigma} b(< z/\psi_k >, \psi_k) \|_{\mathcal{Z}} \\ &\geq A_{\phi} \|z\| - \frac{A_{\phi}}{2} \|z\| \\ &= \frac{A_{\phi}}{2} \|z\|. \end{split}$$

So, the lower b-frames bounds is $\frac{A_{\phi}}{2}$ and the upper bounds is $B_{\phi} + B_{\psi}$. Thus ϕ and ψ are woven b-frames.

Theorem 4.5. Let $\Lambda = \{\eta_k\}_{k \in \mathbb{I}}$ be a b-frames for \mathcal{Z} with b-frames bounds A_{Λ} , B_{Λ} and let E be a bounded operator such that

$$||I_z - E^b||^2 \le \frac{A_\Lambda}{B_\Lambda}.$$

Then $\{\eta_k\}_{k\in\mathbb{I}}$ and $\{E\eta_k\}_{k\in\mathbb{I}}$ are woven b-frames with universal lower bound $(\sqrt{A_{\Lambda}} - \sqrt{B_{\Lambda}} \parallel I_z - E^b \parallel)^2$.

Proof. For every $\sigma \subset I$ and for every $z \in \mathcal{Z}$, we have

$$\begin{split} L &= (\sum_{k \in \sigma} \| \langle z/\eta_k \rangle \|^2 + \sum_{k \in \sigma^c} \| \langle z/E\eta_k \rangle \|^2)^{\frac{1}{2}} \\ L &= (\sum_{k \in \sigma} \| \langle z/\eta_k \rangle \|^2 + \sum_{k \in \sigma^c} \| \langle z/\eta_k \rangle - \langle z/\eta_k \rangle + \langle z/E\eta_k \rangle \|^2)^{\frac{1}{2}} \\ &= (\sum_{k \in \sigma} \| \langle z/\eta_k \rangle \|^2 + \sum_{k \in \sigma^c} \| \langle z/\eta_k \rangle - \langle z-E^b z/\eta_k \rangle)^{\frac{1}{2}} \\ &= (\sum_{k \in \sigma} \| \langle z/\eta_k \rangle \|^2 + \sum_{k \in \sigma^c} \| \langle z/\eta_k \rangle - \langle (I_{\mathcal{Z}} - E^b)z/\eta_k \rangle \|^2)^{\frac{1}{2}} \\ &\geq (\sum_{k \in \mathbb{I}} \| \langle z/\eta_k \rangle \|^2)^{\frac{1}{2}} - (\sum_{k \in \sigma^c} \| \langle (I_{\mathcal{Z}} - E^b)z/\eta_k \rangle \|^2)^{\frac{1}{2}} \\ &\geq \sqrt{A_{\Lambda}} \| z \| - \sqrt{B_{\Lambda}} \| (I_{\mathcal{Z}} - E^b) \| \| z \| \\ &\geq (\sqrt{A_{\Lambda}} - \sqrt{B_{\Lambda}} \| (I_{\mathcal{Z}} - E^b) \|) \| z \| . \end{split}$$

Since $(\sqrt{A_{\Lambda}} - \sqrt{B_{\Lambda}} \parallel (I_{\mathcal{Z}} - E^b) \parallel \geq 0$, so $\{\eta_k\}_{k \in \sigma} \cup \{E\eta_k\}_{k \in \sigma^c}$ is a *b*-frames. Hence, $\{\eta_k\}_{k \in \mathbb{I}}$ and $\{E\eta_k\}_{k \in \mathbb{I}}$ are woven *b*-frames with the universal lower bound $(\sqrt{A_{\Lambda}} - \sqrt{B_{\Lambda}} \parallel I_{\mathcal{Z}} - E^b \parallel)^2$.

Theorem 4.6. Let $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven K-b-frames for \mathcal{Z} with universal bounds C and D and let $P\in\mathcal{L}(\mathcal{Z})$ such that $\mathcal{R}(P)\subseteq\mathcal{R}(K)$. Then $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is a woven P-b-frames for \mathcal{Z} .

Proof. Let $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven K-b-frames for \mathcal{Z} with universal bounds C and D, then

$$C \parallel K^*z \parallel_{\mathcal{Z}}^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/\eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D \parallel z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

Let $P \in \mathcal{L}(\mathcal{Z})$ such that $\mathcal{R}(P) \subseteq \mathcal{R}(K)$. Then by Theorem 2.2, there exists $\lambda > 0$ such that $PP^* \leq \lambda^2 KK^*$, so we have

$$< PP^*z, z>_{\mathcal{Z}} \le \lambda^2 < KK^*z, z>_{\mathcal{Z}}, \ \forall z \in \mathcal{Z},$$

which implies

$$< P^*z, P^*z >_{\mathcal{Z}} \le \lambda^2 < K^*z, K^*z >_{\mathcal{Z}},$$

hence

$$||P^*z||_{\mathcal{Z}}^2 \le \lambda^2 ||K^*z||_{\mathcal{Z}}^2$$
.

Therefore,

$$\frac{C}{\lambda^2} \parallel P^*z \parallel_{\mathcal{Z}}^2 \le C \parallel K^*z \parallel_{\mathcal{Z}}^2 \le \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/\eta_{kl} \rangle \parallel_H^2 \le D \parallel z \parallel_{\mathcal{Z}}^2.$$

Thus, $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is a woven P-b-frames for \mathcal{Z} with universal bounds $C'=\frac{C}{\lambda^2}$ and D'=D.

Theorem 4.7. Let $K \in \mathcal{L}(\mathcal{Z})$ and $\{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a woven K-b-frames for \mathcal{Z} with universal bounds C and D and let U be a continous bounded linear operator. Then $\{U\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ is woven $(U^{b^*}K)$ -b frames for \mathcal{Z} with universal bounds C' = C and $D' = D \parallel U^b \parallel^2$, where U^{b^*} designs the adjoint operator of U^b in \mathcal{Z} , and U^b the b-adjoint of U.

Proof. Let $K \in \mathcal{L}(\mathcal{Z})$ and $\{\eta_{kl}\}_{k \in \mathbb{I}, l \in [n]}$ be a woven K-b-frames for \mathcal{Z} with universal bounds C and D. Then

$$C \parallel K^*z \parallel_Z^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/\eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D \parallel z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

Since.

$$\sum_{k \in \mathbb{I}, l \in [n]} \| \langle z/U \eta_{kl} \rangle \|_{\mathcal{H}}^2 = \sum_{k \in \mathbb{I}, l \in [n]} \| \langle U^b z/\eta_{kl} \rangle \|_{\mathcal{H}}^2, \quad \forall z \in \mathcal{Z},$$

we have

$$C \parallel K^* U^b z \parallel_{\mathcal{Z}}^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/U \eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D \parallel U^b z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

So, we obtain

$$C \parallel (U^{b^*}K)^*z \parallel_{\mathcal{Z}}^2 \leq \sum_{k \in \mathbb{I}, l \in [n]} \parallel \langle z/U\eta_{kl} \rangle \parallel_{\mathcal{H}}^2 \leq D \parallel U^b \parallel^2 \parallel z \parallel_{\mathcal{Z}}^2, \quad \forall z \in \mathcal{Z}.$$

Hence, the family $\{U\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is woven $(U^{b^*}K)$ -b-frames for \mathcal{Z} with universal bounds C'=C and $D'=D\parallel U^b\parallel^2$.

Theorem 4.8. Let $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ be a woven K-b-frames for \mathcal{Z} with universal bounds C and D and let U be a bounded linear operator such that U^b exist and it has a closed range with $U^bK = KU^b$. If $\mathcal{R}(K^*) \subset \mathcal{R}(U^b)$, then the family $\{U\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is woven K-b-frames for \mathcal{Z} with universal bounds $C \parallel U^{b^{\dagger}} \parallel^{-2}$ and $D \parallel U^b \parallel^2$.

Proof. Let $\{\sigma_l\}_{l\in[n]}$ be any partition of I. Then, for every $z\in\mathcal{Z}$, we obtain

$$\sum_{l \in [n]} \sum_{k \in \sigma_l} \|\langle z/U \eta_{kl} \rangle\|_{\mathcal{H}}^2 = \sum_{l \in [n]} \sum_{k \in \sigma_l} \|\langle U^b z/\eta_{kl} \rangle\|_{\mathcal{H}}^2$$

$$\leq D \| U^b \|^2 \| z \|_Z^2, \quad \forall z \in \mathcal{Z}.$$

Since $U^bK=KU^b,\ K^*U^{b^*}=U^{b^*}K^*.$ By Lemma 2.1 and Theorem 2.1, we obtain

$$\begin{split} \parallel K^*z \parallel_{\mathcal{Z}}^2 &= \parallel U^b U^{b^\dagger} K^*z \parallel_{\mathcal{Z}}^2 \\ &= \parallel U^{b^{\dagger^*}} U^{b^*} K^*z \parallel_{\mathcal{Z}}^2 \\ &= \parallel U^{b^{\dagger^*}} K^* U^{b^*}z \parallel_{\mathcal{Z}}^2 \\ &\leq \parallel U^{b^\dagger} \parallel^2 \parallel K^* U^{b^*}z \parallel_{\mathcal{Z}}^2, \quad \forall \, z \in \mathcal{Z} \end{split}$$

and

$$\sum_{l \in [n]} \sum_{k \in \sigma_l} \| \langle z/U \eta_{kl} \rangle \|_{\mathcal{H}}^2 = \sum_{l \in [n]} \sum_{k \in \sigma_l} \| \langle U^b z/\eta_{kl} \rangle \|_{\mathcal{H}}^2$$

$$\geq C \| K^* U^{b^*} z \|_{\mathcal{Z}}^2$$

$$\geq C \| U^{b^{\dagger}} \|^{-2} \| K^* z \|_{\mathcal{Z}}^2.$$

Hence, we have

$$C \parallel U^{b^{\dagger}} \parallel^{-2} \parallel K^* z \parallel_{\mathcal{Z}}^2 \leq \sum_{l \in [n]} \sum_{k \in \sigma_l} \|\langle z/U \eta_{kl} \rangle\|_{\mathcal{H}}^2 \leq D \parallel U^b \parallel^2 \parallel z \parallel_{\mathcal{Z}}^2, \ \forall z \in \mathcal{Z}.$$

Then, the family $\{U\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is woven K-b-frames for \mathcal{Z} with universal bounds $C\parallel U^{b^{\dagger}}\parallel^{-2}$ and $D\parallel U^{b}\parallel^{2}$.

Theorem 4.9. Suppose $K \in \mathcal{L}(\mathcal{Z})$ such that K^b exist and has closed range, if $\{\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is a woven K-b-frames for \mathcal{Z} with universal bounds C and D, then the family $\{K\eta_{kl}\}_{k\in\mathbb{I},l\in[n]}$ is woven K^{b^*} -b-frames for \mathcal{Z} with universal bounds $C \parallel K^{b^{\dagger}} \parallel^{-2}$ and $D \parallel K^b \parallel^2$.

Proof. Suppose that K^b has closed range and for each $z \in \mathcal{R}(K^b)$. Then, we have

$$z = K^b K^{b\dagger} z = (K^b K^{b\dagger})^* z = K^{b\dagger} K^{b*} z.$$

So, we have

$$\parallel z\parallel^2=\parallel K^{b^{\dagger^*}}K^{b^*}z\parallel^2\leq \parallel K^{b^{\dagger}}\parallel^2 \parallel K^{b^*}z\parallel^2.$$

Let $\{\sigma_l\}_{l\in[n]}$ be any partition of I. Then, for every $z\in\mathcal{Z}$, we have

$$C \parallel K^*z \parallel^2 \leq \sum_{l \in [n]} \sum_{k \in \sigma_l} \parallel \langle z/\eta_{kl} \rangle \parallel^2_{\mathcal{H}} \leq D \parallel z \parallel^2_Z, \quad \forall z \in \mathcal{Z}.$$

Hence, for each $z \in \mathcal{Z}$, we have

$$C \parallel K^{b^{\dagger}} \parallel^{-2} \parallel K^{b}z \parallel_{\mathcal{Z}}^{2} \leq C \parallel K^{b^{*}}K^{b}z \parallel^{2}$$

$$\leq \sum_{l \in [n]} \sum_{k \in \sigma_{l}} \parallel \langle K^{b}z/\eta_{kl} \rangle \parallel_{\mathcal{H}}^{2}$$

$$\leq D \parallel K^{b} \parallel^{2} \parallel z \parallel_{\mathcal{Z}}^{2}.$$

Acknowledgments: It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

- N. Assila, H. Labrigui, A. Touri and M. Rossafi, Integral Operator Frames on Hilbert C*-Modules, Ann. Univ. Ferrara, 70 (2024), 1271–1284, doi.org/10.1007/s11565-024-00501-z.
- [2] R. Balan, Stability Theorems for Fourier Frames and Wavelet Riesz Bases, J. Fourier Anal. Appl., 3 (1997), 499–504.
- [3] T. Bemrose, P.G. Casazza, K. Gröchenig, M.C. Lammers and R.G. Lynch, Weaving frames Operator, Matrices, 10(4) (2016), 1093–1116.

- [4] P.G. Casazza and O. Christensen, Approximation of the Inverse Frame Operator and Applications to Gabor Frames, J. Approx. Theory, 103 (2000), 338–356.
- [5] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., (2016), 1-689.
- [6] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, Pa, USA, 1992.
- [7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27(5) (1986), 1271-1283.
- [8] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(2) (1966), 413-415.
- [9] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
- [10] N. El Idrissi, S. Kabbaj and B. Moalige, Some characterizations of frames in $\ell^2(I; H)$ and topological applications, Proyecciones J. Math., **41** (2022), 1141–1152.
- [11] M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui and A. Touri, Controlled Continuous *-g-Frames in Hilbert C*-Modules, J. Pseudo-Differ. Oper. Appl., 15(2) (2024), doi.org/10.1007/s11868-023-00571-1.
- [12] M. Ismailov, F. Guliyeva and Y. Nasibov, On a Generalization of the Hilbert Frame Generated by the Bilinear Mapping, J. Funct. Spaces, (2016), doi.org/10.1155/2016/9516839.
- [13] A. Karara, M. Rossafi and A. Touri, K-Biframes in Hilbert Spaces, J. Anal., 33 (2025), 235-251, doi.org/10.1007/s41478-024-00831-3.
- [14] H. Massit, M. Rossafi and C. Park, Some Relations between Continuous Generalized Frames, Afr. Math. 35(12) (2024), doi.org/10.1007/s13370-023-01157-2.
- [15] C. Mezzat and S. Kabbaj, K-b-frames for Hilbert spaces and the b-adjoint operator, Sahand Commun. Math. Anal., 21(4) (2024), 1–26.
- [16] E.A. Moghaddam and A.A. Arefijamaal, On Excesses and Duality in Woven Frames, Bull. Malays. Math. Sci. Soc., 44 (2021), 3361-3375.
- [17] E. Ouahidi and M. Rossafi, Woven Continuous Generalized Frames in Hilbert C^* -Modules, Int. J. Anal. Appl., **23**:84 (2025), doi.org/10.28924/2291-8639-23-2025-84.
- [18] M. Rossafi and S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform., 17 (2022), 1-9, doi.org/10.52547/ijmsi.17.1.1.
- [19] M. Rossafi, F.D. Nhari, C. Park and S. Kabbaj, Continuous g-Frames with C*-Valued Bounds and Their Properties, Complex Anal. Oper. Theory, 16: 44 (2022), doi.org/10.1007/s11785-022-01229-4.
- [20] M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri and S. Kabbaj, Continuous Frame in Hilbert C^* -Modules, J. Anal., **31** (2023), 2531-2561, /doi.org/10.1007/s41478-023-00581-8.