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Abstract. This article is related to examine some appropriate conditions for the existence
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1. Introduction

The development of fractional theory has sparked the interest of researchers.
Fractional differential equations having wide range of applications in artificial
neural network [18], biological science [1, 15, 16], ecological science like prey-
predator system [6], COVID-19 [10]. For more applications of mentioned area,
we refer to [4, 8, 9, 13, 14, 17, 21]. When it comes to studying a wide range
of nonlinear analysis problems, topological degree methods have become the
most essential technique.

Undoubtedly, the application of topological techniques is in close compari-
son to assessing whether or not fractional differential equation solutions have
been found in recent decades.

The works of Agarwal demonstrate the increasing interest of researchers in
fractional differential equations in Banach spaces [2, 3]. The nonlocal nature
of the fractional order operators is the primary driver behind the increasing
acceptance of the fractional calculus, which explains the inherent properties of
different materials and processes. In most cases, fractional derivatives can ex-
plain many real world problems more comprehensively as compared to integer
order derivative.

Researchers [12, 20] have deduced sufficient conditions for the existence of
solutions to nonlocal impulsive fractional differential equations. The most
vital measure for examining a wide range of nonlinear analysis issues is topo-
logical degree methods. For instance, Isia established the prerequisites for the
existence of solutions to a few nonlinear integral equations using the afore-
mentioned degree tools [7].

Wang and his colleagues [23] employed the priori estimate method known
as topological degree theory to determine the terms needed to for the exis-
tence theory of solution to nonlinear differential equation of fractional order.
It has gained more attention and assumed a central role in the thoughts of
mathematicians and experts due to its importance in several domains. Zho
and his co-authors [24] have produced a detailed work on topological degree
theory.

Using Monch’s fixed point theorem and the method of measures of non-
compactness, Benchohra and Seba examined the existence of solutions to im-
pulsive fractional differential equations in a Banach space [5]. Using approxi-
mating sequences, Karthik Raja et al. [19]. investigated the existence results
on random nonlocal fractional differential equations.

Motivated by the above work, a class of fractional impulsive differential
equations with the fractional Caputo derivative and a non-local condition is
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investigated in Banach space for the existence theory of solution. The consid-
ered problem is described by

c[D]τu(p, q) = g(p, q, u(p, q)),

(p, q) ∈ (J /{p0, p1, p2, . . . , pm},J /{q0, q1, q2, . . . , qm}),J = [0, T ],

∆u(pi, qi) = Ii(u(pi, qi))

u(0, 0) = u0,

(1.1)
where g : J × J × B → B, u0 ∈ B is a continuous map; Ii : B × B → B is a
continuous map and pi, qi satisfies 0 = p0 < p1 < p2 < · · · < pm < pm+1 =
a ≤ T ; 0 = q0 < q1 < q2 < · · · < qm < qm+1 = b ≤ T .

We have organized this paper as follows: Introduction is given in section 1.
Preliminaries are described in section 2. Main results are given in section 3.
Example to justify results are provided in section 4. Last section is related to
a brief conclusion.

2. Preliminaries

We define the Banach space PC(J × J ,B) = {u : J × J → B : u ∈
C((Ii, Ii+1],B), i = 0, 1, 2, . . . ,m + 1 and there exist u(I−i ) and u(I+i ), i =

1, 2, . . . ,m with u(I−i ) = u(pi, qi)} . The Banach space PC(J × J ,B) has
the norm ‖u‖PC = sup{‖u(p, q)‖ : (p, q) ∈ J × J }.
Definition 2.1. ([11]) The τ th order fractional integral of a continuous func-
tion g in the closed interval [a, b] is defined as

[I]τg(p, q, u(p, q)) =
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1

×(q− t)τ2−1g(s, t, u(s, t))dsdt. (2.1)

Definition 2.2. ([11]) The τ th R-L fractional order derivative for continuous
function g in the closed interval [a, b], is defined by

[D]τa+g(p, q, u(p, q)) =
1

(n− τ1)!(n− τ2)!

( d
dt

)n ∫ p

a

∫ q

a
(p− s)n−τ1−1

×(q− t)n−τ2−1g(s, t, u(s, t))dsdt, (2.2)

where n = [τ ] + 1, [τ ] is the figures part of τ .

Definition 2.3. ([11]) For a given uninterpreted functiong in the closed in-
terval [a, b], the fractional Caputo order derivative is given by

c[D]τa+g(p, q, u(p, q)) =
1

Γ(n− τ1)Γ(n− τ2)

∫ p

a

∫ q

a
(p− s)n−τ1−1

×(q− t)n−τ2−1gn(s, t, u(s, t))dsdt, (2.3)
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where n = [τ ] + 1.

Lemma 2.4. ([23]) Assuming n− 1 < τ ≤ n,
Iτ [cDτu](p, q) = u(p, q)+µ0 +µ1(p+q)+µ2(p

2 +q2)+ · · ·+ cn−1(p
n−1+qn−1)

for some µi ∈ B, i = 0, 1, 2, . . . , n− 1, n = [τ ] + 1.

Theorem 2.5. ([24]) If g : X → X is a contraction mapping with a constant
κ < 1 and X is a complete metric space, then g has a unique fixed point.

Theorem 2.6. ([24]) If B is a bounded, closed, convex and nonempty subset
of a Banach space B, then itha at least one fixed point for g in B if it is a
complete continuous operator such that g(B) ⊂ B.

Definition 2.7. ([5]) Let B be the bounded set of B, where B be a Banach
space, then the Kuratowski measure of noncompactness with τ : B → [0,∞)
is defined by

τ(B) = inf

{
ε > 0 : B ⊆

m⋃
i=1

Bi and diam (Bi) ≤ ε
}
.

Definition 2.8. ([24]) Let g : Ψ → X be a continuous bounded map and
Ψ ⊂ X . If there exists k ≥ 0 such that g is a τ− Lipschitz, then

τ(g(B)) ≤ k τ(B)

for all bounded subset B ⊂ Ψ. We can refer to g as a strict τ -contraction if
k < 1. If g is τ -condensing, we can say that, for all bounde subset B ⊂ Ψ with
τ(B) > 0.

τ(g(B)) < τ(B).

The contraction map τ is represented SCτ (Ψ), and all τ -condensing is rep-
resented Cτ (Ψ).

Definition 2.9. ([24]) Ψ ⊂ B, g : Ψ → B is said to be k-Lipschitz, if there
exists k > 0 such that

‖gp− gq‖ ≤ k‖p− q‖, ∀ p, q ⊂ Ψ,

g is a contraction, if k < 1.

Proposition 2.10. ([24]) If B ⊂ C(J ,B) equicontinuous and bounded, then
(p, q) 7−→ τ(B(p, q)) is continuous on J × J , and

τ(B) = max τ(B(p, q)), τ
(∫ p

0

∫ q

0
B(s, t)dsdt

)
≤ q

∫ p

0

∫ q

0
τ(B(s, t))dsdt, ∀ x, q ∈ J .
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Theorem 2.11. ([22]) Let S = {u ∈ B : there exists η ∈ [0, 1] 3: u = ηM(u)}
be the τ−condensing of M : B → B. For ζ > 0 and S ⊂ Bζ(0), if S is a
bounded set in B, then

D(I − ηM,Bζ(0), 0) = 1, ∀ $ ∈ [0, 1],

where is one degree function and F : T→ τ .

The expression T = {(I − M,Ψ, p) : Ψ ⊂ B open and bounded, M ∈
Cτ (Ψ), u ∈ B (I − M)(∂Ψ)}. As a result, M has at least one point, and
Bζ(0) contains the set of fixed points of M.

Proposition 2.12. ([24]) If f, h : Ψ → B are τ−Lipschitz maps with the

constant κ,κ
′

discretely, then gth : Ψ→ B is τ−Lipschitz with constant κ+κ
′
.

Proposition 2.13. ([24]) g is τ−Lipschitz with zero constant if g : Ψ→ B is
compact.

Proposition 2.14. ([24]) f is τ−Lipschitz with the same constant κ if g :
Ψ→ B is Lipschitz with a constant κ.

3. Existence and uniqueness solution

The general solution of impulsive fractional differential equations is first
defined as follows:

Definition 3.1. If the function u ∈ PC(J ,B) satisfies the equation
c[D]τg(p, q, u(p, q)) = u(p, q),

then it is considered the solution of problem (1.1). ∆u(pi, qi) = Iiu(pi, qi),
i = 1, 2, . . . ,m, and u(0, 0) = u0 are the conditions for (a.e) on J .

Lemma 3.2. The fractional integral equation

u(p, q) = u0 −
1

(τ1 − 1)!(τ2 − 1)!

∑
0<p1<p
0<q1<q

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1

× (qi − t)τ2−1g(s, t, u(s, t))dsdt

+
1

(τ1 − 1)!((τ2 − 1)!)

∫ p

0

∫ q

0
(p− s)τ1−1

× (q− t)τ2−1g(s, t, u(s, t))dsdt

+
∑

0<p1<p
0<q1<q

Iiu(pi, qi), i = 1, 2, . . . ,m (3.1)
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has a solution u ∈ PC(J ,J ,B) for p ∈ (pi, pi+1), q ∈ (qi, qi+1), i = 1, 2, . . . ,m
if and only if u is a solution to the fractional differential equations with im-
pulsive condition (1.1).

Proof. Assume that u is a solution of impulsive fractional differential equation
solution (1.1). If (p, q) ∈ [0, (p1)× [0, q1)], then

c[D]τu(p, q) = g(p, q, u(p, q)) with u(0, 0) = u0.

If p1 ≤ p < p2, q1 ≤ q < q2, then

c[D]τu(p, q) = g(p, q, u(p, q)), p ∈ [p1, p2), q ∈ [q1, q2) with

∆u(p1, q1) = u(p+1 , q
+
1 )− u(p−2 , q

−
2 ) = I1(u(p1, q1)). (3.2)

By integrating the formula (3.2) from (p1, q1) to (p, q), we conclude that

u(p, q) = u(p+1 , q
+
1 ) +

1

(τ1 − 1)!(τ2 − 1)!

∫ p

p1

∫ q

q1

(p− s)τ1−1

×(q− t)τ2−1g(s, t, u(s, t))dsdt.

Consequently, it follows that

u(p, q) = u(p1, q1) + I1(u(p1, q1)) +
1

(τ1 − 1)!(τ2 − 1)!

∫ p

p1

∫ q

q1

(p− s)τ1−1

× (q− t)τ2−1g(s, t, u(s, t))dsdt

= u(0, 0) + I1(u(p1, q1))−
1

(τ1 − 1)!(τ2 − 1)!

∫ p1

0

∫ q1

0
(p1 − s)τ1−1

× (q1 − t)τ2−1g(s, t, u(s, t))dsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1g(s, t, u(s, t))dsdt.

If p2 ≤ p < p3, q2 ≤ y < q3, then

c[D]τu(p, q) = g(p, q, u(p, q)), p ∈ [p2, p3)q ∈ [q2, q3) with

u(p+2 , q
+
2 ) = u(p−2 , q

−
2 ) + I2(u(p2, q2)). (3.3)

Integrate (3.3) from (p2, q2) to (p, q), we reach

u(p, q) = u(p+2 , q
+
2 ) +

1

(τ1 − 1)!(τ2 − 1)!

∫ p

p2

∫ q

q2

(p− s)τ1−1

×(q− t)τ2−1g(s, t, u(s, t))dsdt.
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Thus, it follows that

u(p, q) = u(p−2 , q
−
2 ) + I2(u(p2, q2)) +

1

(τ1 − 1)!(τ2 − 1)!

∫ p

p2

∫ q

q2

(p− s)τ1−1

× (q− t)τ2−1g(s, t, u(s, t))dsdt

= u(0, 0) + I1(u(p1, q1)) + I2(u(p2, q2))

− 1

(τ1 − 1)!(τ2 − 1)!

∫ p1

0

∫ q1

0
(p1 − s)τ1−1(q1 − t)τ2−1g(s, t, u(s, t))dsdt

− 1

(τ1 − 1)!(τ2 − 1)!

∫ p2

p1

∫ q2

q1

(p2 − s)τ1−1(q2 − t)τ2−1g(s, t, u(s, t))dsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1g(s, t, u(s, t))dsdt.

Thus, if p ∈ (pi, pi+1], q ∈ (qi, qi+1], we obtain

u(p, q) = u(0, 0) +
∑

0<pi<p
0<qi<q

Ii(u(pi, qi))

− 1

(τ1 − 1)!(τ2 − 1)!

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1

× (qi − t)τ2−1g(s, t, u(s, t))dsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1

× (q− t)τ2−1g(s, t, u(s, t))dsdt

for i = 1, 2, . . . ,m.
By the condition u(0, 0) = u0, we get that

u(p, q) = u0 +
∑

0<pi<p
0<qi<q

Ii(u(pi, qi))

− 1

(τ1 − 1)!(τ2 − 1)!

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1

× (qi − t)τ2−1g(s, t, u(s, t))dsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1

× (q− t)τ2−1g(s, t, u(s, t))dsdt

for i = 1, 2, . . . ,m.
On the other hand, suppose that u satisfies (3.1). u(0, 0) = u0 if p ∈

(0, p1], q ∈ (0, q1). Given that for i = 1, 2, . . . ,m, p ∈ (pi, pi+1], q ∈ (qi, qi+1]
by the knowledge that c[D]τ is the left inverse of cIτ , and we obtain by applying
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the principle that the Caputo derivative of constant equals zero. For every
p, q in the interval [pi, pi+1], [qi, qi+1],

c [D]τ = g(p, q, u(p, q)), and u(p+i , q
+
i ) =

u(p−i , q
−
i ) + Iiu(pi, qi). The proof is now complete. �

Now, let us define the functions as follows:

W1 : P (J ,J ,B)→ P (J ,J ,B) given by

W1(u(p, q)) = u0 +
∑

0<pi<p
0<qi<q

Ii(u(pi, qi))

for p ∈ (pi, pi+1], q ∈ (qi, qi+1], i = 1, 2, . . . ,m.

W2 : P (J ,J ,B)→ P (J ,J ,B) given by

W2(u(p, q)) =
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1

× (q− t)τ2−1g(p, q, u(p, q))dsdt

for p ∈ [0, p1), q ∈ [0, q1).

W3 : P (J ,J ,B)→ P (J ,J ,B) is given by

W3(u(p, q)) = − 1

(τ1 − 1)!(τ2 − 1)!

∑
0<pi<p
0<qi<q

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1

× (qi − t)τ2−1g(p, q, u(p, q))dsdt

for p ∈ (pi, T ], q ∈ (qi, T ], i = 1, 2, . . . ,m.

Expression (3.1) M : PC(J ,J ,B) → PC(J ,J ,B) indicates the operator,
and Mu is equivalent to W1u+W2u+W3u. It is clear that M is mentioned
completely. Next, the operator below can be used to express the fractional
integral that was obtained from (3.1).

u =Mu =W1u+W2u+W3u. (3.4)

Thus, the presence of operator H in (3.4) to investigate the existence of so-
lution the fractional IFDEs (1.1). The successive iterations are necessary in
order to address the existence problem for an IFDE solution (1.1).

H1. g : J × J × B is continuous in combination.

H2. There exists a constant λf > 0 such that

‖g(p, q, u)− g(p, q, v)‖PC ≤ λf‖u− v‖PC, ∀ u, v ∈ B, p, q ∈ J .

H3. For λ1, λ2 > 0, β ∈ [0, 1),

‖g(p, q, u)‖PC ≤ λ1‖u‖βPC + λ2, ∀ (p, q, u) ∈ J × J × B.
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H4. Constants ΦI ∈ [0, 1
m) exist and λσ so that

‖Ii(u)− Ii(v)‖ ≤ ΦI‖u− v‖, ∀ u, v ∈ B, i = 1, 2, . . . ,m.

H5. There exist Φ1,Φ2, λ3, λ4 > 0, β1, β2 ∈ [0, 1) such that

‖Ii(u)‖ ≤ Φ1‖u‖β1 + Φ2, ∀ u ∈ B, i = 1, 2, . . . ,m.

Lemma 3.3. W1 : PC(J ,J ,B) → PC(J ,J ,B) is a Lipschitz operator with
constant mΦI . W1 is therefore τ−Lipschitz with the same constant mΦI .
Furthermore, W1 meets the requirements for growth listed below:

‖W1u‖PC ≤ ‖u0‖+mΦ1‖u‖β1 +mΦ2. (3.5)

Proof. For p ∈ (pi, pi+1], q ∈ (pi, pi+1], by applying the assumptions (H4), we
get

‖W1u−W1v‖PC =

∥∥∥∥∥ ∑
0<pi<p
0<qi<q

Ii(u(pi, qi))−
∑

0<pi<p
0<qi<q

Ii(v(pi, qi))

∥∥∥∥∥
≤
∑

0<pi<p
0<qi<q

‖Ii(u(pi, qi))− Ii(vpi, qi))‖

≤ mΦI‖u− v‖PC.

Thus, for p ∈ (pi, pi+1], q ∈ (qi, qi+1], W1 is Lipschitz with constant mΦI ∈
[0, 1). Proposition 2.14 indicates that W1 is τ−Lipschitz with the same con-
stant mΦI for p ∈ (pi, pi+1], q ∈ (qi, qi+1]. Relation (3.5) is an easy derivation
from (H5) as follows:

‖W1(u(p, q))‖PC ≤ ‖u0‖+
∥∥∥ ∑

0<pi<p
0<qi<q

Ii(u(pi, qi))
∥∥∥

≤ ‖u0‖+m[Φ1‖u‖β1 + Φ2]

≤ ‖u0‖+mΦ1‖u‖β1 +mΦ2.

�

Lemma 3.4. W2,W3 : PC(J ,J ,B)→ PC(J ,J ,B) are continuous operators
and henceW2+W3 is continuous. Additionally,W2+W3 fulfills the subsequent
requirement:

‖W2u‖PC + ‖W3u‖PC ≤
(1 +m)T τ1+τ2(λ1‖u‖βPC + λ2)

(τ1)!(τ2)!
(3.6)

for all u ∈ PC(J × J ,B).
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Proof. A bounded set Bk(k > 0) ⊆ PC(J ,B)× PC(J ,B) has sequences {un}
such that un → u in Bk. As n approaches ∞, we must now demonstrate that

‖W2un −W2u‖PC → 0.

The continuity of g makes it simple to see that

g(s, t, un(s, t))→ g(s, t, u(s, t)) as n→∞.

Applying (H3) gives us for each s, t ∈ J ,

‖g(s, t, un(s, t))− g(s, t, u(s, t))‖PC ≤ ‖g(s, t, un(s, t))‖PC + ‖g(s, t, u(s, t))‖PC
≤ 2(λ1‖u‖βPC + λ2).

Then,

(p− s)τ1−1(q− t)τ2−1‖g(s, t, un(s, t))− g(s, t, u(s, t))‖PC
≤ 2(p− s)τ1−1(q− t)τ2−1(λ1‖u‖βPC + λ2).

Using the Lebesgue dominated convergence theorem and the function

(s), (t)→ 2(p− s)τ1−1(q− t)τ2−1(λ1‖u‖βPC + λ2)

is integrative for s ∈ [0, x], t ∈ [0, y], p, q ∈ J leads to∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1‖g(s, t, un(s, t))− g(s, t, u(s, t))‖PCdsdt→ 0

as n→∞. Thus, for all x, q ∈ J ,

‖W2(un(p, q))−W2(u(p, q))‖PC ≤
1

(τ1−1)!(τ2−1)!

∫ p

0

∫ q

0
(p−s)τ1−1(q−t)τ2−1

× ‖g(s, t, un(s, t))− g(s, t, u(s, t))‖PCdsdt
→ 0.

Hence, W2 is continuous, since W2un → W2u as n → ∞. We can obtain the
continuity of operatorW3 on PC(([0, p1], [0, q1],B)), PC((pi, pi+1], (qi, qi+1],B)
and PC((pm, T ], (qm, T ],B). It is clear thatW2+W3 is continuous. As a result,
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(H3) has the following simple consequences for relation (3.6):

‖W2u(p, q) +W3u(p, q)‖PC
≤ ‖W2(p, q)‖PC + ‖W3(p, q)‖PC

≤ 1

(τ1−1)!(τ2−1)!

∫ p

0

∫ q

0
(p−s)τ1−1(q−t)τ2−1‖g(s, t, u(s, t))‖PCdsdt

+
1

(τ1−1)!(τ2−1)!

∑
0<pi<p
0<qi<q

∫ pi

pi−1

∫ qi

qi−1

(p−s)τ1−1(q−t)τ2−1‖g(s, t, u(s, t))‖PCdsdt

≤ 1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1(λ1‖u‖βPC + λ2)dsdt

+
1

(τ1−1)!(τ2−1)!

∑
0<pi<p
0<qi<q

∫ pi

pi−1

∫ qi

qi−1

(p−s)τ1−1(q−t)τ2−1(λ1‖u‖βPC + λ2)dsdt.

Then,

‖W2u‖PC+‖W3u‖PC ≤
(1 +m)T τ1+τ2(λ1‖u‖βPC + λ2)

(τ1)!(τ2)!
, ∀ u ∈ PC(J × J ,B).

We need to make the following assumption in order to talk about the com-
pactness of W2,W3.

H6. For any ρ > 0, there exists a constant $ρ > 0 such that

ϑ(g(s, t,B)) ≤ $ρϑ(B)

for all s, t ∈ J , B ⊂ Bρ = {u ∈ PC(J ,J ,B) : ‖u‖PC ≤ ρ} and

4$ρT
τ1+τ2

(τ1)!(τ2)!
< 1.

�

Lemma 3.5. W2,W3 : PC(J ,J ,B) → PC(J ,J ,B) are compact operators.
Accordingly, W2 and W3 have zero constant and are τ−Lipschitz. Further-
more, the constant of W2 +W3 is zero and τ−Lipschitz.

Proof. A bounded subset B ⊂ PC(J ,J ,B) is considered. To show that
W2,W3 is compact, we must show that W2(B) and W3(B) are relatively com-
pact in PC(J ,J ,B). Let {un} be a sequence on B ⊂ Bρ for each un ∈ B. As
per relation (3.6), we possess

‖W2u‖PC + ‖W3u‖PC ≤
(1 +m)T τ1+τ2(λ1‖u‖βPC + λ2)

(τ1)!(τ2)!
,
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W2(B) and W3(B) are bounded in Bρ for each un ∈ B. We now obtain, for
0 ≤ p1 < p2 < T, 0 ≤ q1 < q2 < T ,

‖W2u(p2, q2)−W2u(p1, q1)‖PC

=
∥∥∥ 1

(τ1 − 1)!(τ2 − 1)!

∫ p2

0

∫ q2

0
(p2 − s)τ1−1(q2 − t)τ2−1g(s, t, u(s, t))dsdt

− 1

(τ1 − 1)!(τ2 − 1)!

∫ p1

0

∫ q1

0
(p1 − s)τ1−1(q1 − t)τ2−1g(s, t, u(s, t))dsdt

∥∥∥
PC

≤ 1

(τ1 − 1)!(τ2 − 1)!

∫ p1

0

∫ q1

0
[(p2 − s)τ1−1 − (p1 − s)τ1−1]

× [(q2 − t)τ2−1 − (q1 − t)τ2−1]‖g(s, t, u(s, t))‖PCdsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p2

p1

∫ q2

q1

(p2 − s)τ1−1(q2 − t)τ2−1‖g(s, t, u(s, t))‖dsdt

≤
(λ1‖u‖βPC + λ2)

(τ1 − 1)!(τ2 − 1)!

(
[pτ12 + (p2 − p1)

τ1 − pτ11 + (p2 − p1)
τ1 ]

τ1

× [qτ22 + (q2 − q1)
τ2 − qτ21 + (q2 − q1)

τ2 ]

τ2

)
.

Hence, we have

‖W2u(p2, q2)−W2u(p1, q1)‖PC ≤
4(λ1‖u‖βPC + λ2)

(τ1)!(τ2)!
(p2 − p1)

τ1(q2 − q1)
τ2 .

The inequality above tends to zero on the right hand side as p2 → p1, q2 → q1.
Hence, {W2un} is equicontinuous as a result.

Let B(p, q) be a bounded set {un(p, q) : un(p, q) = 1
(τ1−1)!(τ2−1)!

∫ p
0

∫ q
0 (p −

s)τ1−1(q−t)τ1−1g(s, t, un(s, t))dsdt} ⊂ Bρ. Proposition 2.12 states that (p, q)→
ϑ(B(p, q)) is continuous on J , since B(p, q) ⊂ PC(J ,J ,B) is bounded and
equicontinuous. For s ∈ [0, p], t ∈ [0, q], p, q ∈ J , we can use (H6) to obtain

ϑ(B(p, q))

≤ ϑ
( 1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1g(s, t, un(s, t))dsdt

)
≤ 4

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1ϑ(g(s, t, un(s, t)))dsdt

≤ 4$ρ

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1ϑ(B)dsdt

≤ 4$ρT
τ1+τ2

(τ1)!(τ2)!
ϑ(B) < ϑ(B).
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Given that
4$ρT τ1+τ2

(τ1)!(τ2)!
< 1, we can infer that ϑ(B) = 0. Since W2(B) ⊂

PC(J ,J ,B) is a relatively compact set, W2 is τ−Lipschitz with zero con-
stant according to Proposition 2.13. By repeating the operation of the oper-
ator W2 on C([0, p1], [0, q1,B]), we can ascertain the compactness of W3 on
C((pi, pi+1], (qi, qi+1],B) andWm

3 on C((pm, T ], (qm, T ],B). W3 is τ−Lipschitz
with zero constant, according to Proposition 2.13. �

Theorem 3.6. Assume that (H1) − (H6). Then at least one solution u ∈
PC(J ,J ,B) exists to the class of IFDEs (1.1) and the set of solutions is
bounded.

Proof. Let the operatorsW1,W2,W3,M : PC(J ,J ,B)→ PC(J ,J ,B). They
have boundaries and are uninterrupted. Furthermore,W2 and W3 is τ−Lipsc-
hitz with zero constant, whereas WI is τ−Lipschitz with constant mΦ1. M
is τ−Lipschitz mΦI ∈ [0, 1), as demonstrated by Proposition 2.12. It is also a
strict τ−contraction with constant mΦI . Consider

Q = {u ∈ PC(J ,J ,B) : there exist η ∈ [0, 1] such thatu = ηMu}.
Next, we need to show that Q ∈ PC(J ,J ,B) is bounded. Now u is in Q

and η is in [0, 1] so that u = ηMu. This is inferred from (3.5) and (3.6)

‖u‖PC ≤ ‖ηMu‖PC ≤ η(‖W1u‖PC + ‖W2u‖PC + ‖W3u‖PC)

≤ ‖u0‖+mΦ1‖u‖β1 +mΦ2 +
(1 +m)T τ1+τ2(λ1‖u‖βPC + λ2)

(τ1)!(τ2)!
.

The previous inequality indicates that Q is bounded in PC(J ,J ,B), along
with β < 1, β1 < 1 and β2 < 1. From Theorem 2.11, we can therefore deduce
that the set M of fixed points are bounded in PC(J ,J ,B) and that H has a
minimum of one fixed point. �

Remark 3.7. Now

(a): The results of Theorem 3.6 are still true if an expansion condition

(H3) is constructed for β = 1. This is because (1+m)T τ1+τ2λ1
(τ1)!(τ2)!

< 1.

(b): The results of Theorem 3.6 are still true if the expansion condition
(H4) is written for β1 = β2 = 1. This is because mΦ1 < 1.

(c): The results of Theorem 3.6 are still true and (H3) and (H4) created

for β = β1 = β2 = 1. This is because mΦ1 + (1+m)T τ1+τ2λ1
(τ1)!(τ2)!

< 1.

Theorem 3.8. Let us assume that (H1)− (H6) hold. If

mΦ1 +
(1 +m)λfT

τ1+τ2

(τ1)!(τ2)!
< 1, (3.7)

then there is only one solution for the IFDEs (1.1), where u ∈ PC(J ,J ,B).
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Proof. Let u, v ∈ PC(J ,J ,B), (H2) and (H4), which make it simple to demon-
strate that M is a contraction operator on PC(J ,J ,B).

‖Mu(p, q)−Mv(p, q)‖PC
≤
∑

0<pi<p
0<qi<q

‖Ii(u(pi, qi))− Ii(vpi, qi))‖

+
1

(τ1 − 1)!(τ2 − 1)!

∑
0<pi<p
0<qi<q

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1(qi − t)τ2−1

× ‖g(s, t, u)− g(s, t, v)‖PCdsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1

× ‖g(s, t, u)− g(s, t, v)‖PCdsdt

≤
∑

0<pi<p
0<qi<q

Φ1‖u− v‖

+
1

(τ1 − 1)!(τ2 − 1)!

∑
0<pi<p
0<qi<q

∫ pi

pi−1

∫ qi

qi−1

(pi − s)τ1−1(qi − t)τ2−1λf‖u− v‖PCdsdt

+
1

(τ1 − 1)!(τ2 − 1)!

∫ p

0

∫ q

0
(p− s)τ1−1(q− t)τ2−1λf‖u− v‖PCdsdt,

i = 1, 2, . . . ,m. Hence, we have

‖Mu(p, q)−Mv(p, q)‖PC ≤
[
mΦ1 +

(1 +m)λfT
τ1+τ2

(τ1)!(τ2)!

]
‖u− v‖PC.

Therefore, M is a contraction operator on PC(J ,J ,B) along with a contrac-

tion constant mΦ1 +
(1+m)λfT

τ1+τ2

(τ1)!(τ2)!
as demonstrated by the condition mΦ1 +

(1+m)λfT
τ1+τ2

(τ1)!(τ2)!
< 1. So equation (1.1) has a unique solution in view of fixed

point theorem. �

4. Example

To demonstrate the results established in section 3, we give an example.

Example 4.1. Consider the problem described by
c[D]

1
4u(p, q) = p+q√

7
sin(15u(p, q)), p, q ∈ (0, 2)/1,

∆u(1, 1) = 2
5
√
7
,

u(0, 0) = 0.

(4.1)
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Let g(p, q, u) = 3√
7

sin
(

1
15u(p, q)

)
. Also for p, q ∈ (0, 2)/1, we now define

Ii(u(pi, qi)) = 2
15
√
37
, i = 1. Then the satisfaction of all the assumptions in

Theorem 3.3 can be easily observed.

‖g(p, q, u)− g(p, q, v)‖ ≤ 3√
7
‖ sin

(1

5
u(p, q)

)
− sin

(1

5
v(p, q)

)
‖

≤ 3

5
√

7
‖u− v‖

and

|I(u)− I(v)| = 2

5
√

7
.

We will now verify that condition (3.7) is met with T = 1
2 , m = 1, p = q = 1

4
and

mΦ1 +
(1 +m)λfT

p+q

(p)!(q)!
=

2

5
√

7
+

2( 3
5
√
7
)(12)

1
4
+ 1

4

Γ(14 + 1)Γ(14 + 1)
= 0.5415567214 < 1.

Therefore, the fractional impulsive problem can be resolved using our results.

5. Conclusion

By using topological sequences, we have established some sufficient condi-
tions for the existence theory of solution to fractional impulsive differential
equations involving nonlocal conditions. We have presented a formula for
solving an impulsive fractional problem in a Banach space that involved a
generalization of the classical Caputo derivative with a nonlocal condition.
Using fixed point techniques, certain prerequisites for the existence of solu-
tions have been established. We deduced some results based on topological
degree techniques to determine the existence and uniqueness of solution to
impulsive fractional order problem under our consideration. For justification,
an example has been given to demonstrate our findings.

Acknowledgment: Authors would like to thank Prince Sultan University for
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