Nonlinear Functional Analysis and Applications Vol. 30, No. 3 (2025), pp. 915-925

 $ISSN:\ 1229\text{-}1595 (print),\ 2466\text{-}0973 (online)$

 $\begin{array}{l} \rm https://doi.org/10.22771/nfaa.2025.30.03.16 \\ \rm http://nfaa.kyungnam.ac.kr/journal-nfaa \end{array}$

G-CYCLICITY FOR CERTAIN CLASSES OF OPERATORS IN BANACH SPACES

Nareen Bamerni¹ and Odisho Narsi²

¹Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq e-mail: nareen_bamerni@yahoo.com

²Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq e-mail: odisho@yahoo.com

Abstract. In this paper, we present new theoretical results concerning \mathcal{G} -cyclicity for certain classical linear operators. Specifically, we characterize all bilateral weighted shift operators that exhibit \mathcal{G} -cyclic behavior and establish a framework that differentiates \mathcal{G} -cyclicity from other forms such as supercyclicity, hypercyclicity, and diskcyclicity. Moreover, we demonstrate that some classical operators, including the composition and multiplication operators on the Hardy space, fail to be \mathcal{G} -cyclic under general conditions. These findings not only generalize existing criteria but also enrich the understanding of operator dynamics within function spaces.

1. Introduction

A bounded linear operator T on a separable Banach space \mathcal{X} is hypercyclic if there exists a vector $x \in \mathcal{X}$ such that the orbit $Orb(T,x) = \{T^nx : n \geq 0\}$ is dense in \mathcal{X} . Such a vector x is called hypercyclic for T. The first example was constructed by Rolewicz in 1969 [10], showing that if B is the backward shift on $\ell^p(\mathbb{N})$, then λB is hypercyclic if and only if $|\lambda| > 1$.

Following this, Hilden and Wallen [6] introduced supercyclicity, where an operator T is supercyclic if there exists a vector x such that the projective

⁰Received March 23, 2025. Revised June 8, 2025. Accepted June 12, 2025.

⁰2020 Mathematics Subject Classification: 47A16, 47B37.

 $^{^{0}}$ Keywords: Hypercyclic operators, \mathcal{G} -cyclcic operators, weighted shift operators.

⁰Corresponding author: Nareen Bamerni(nareen_bamerni@yahoo.com).

orbit $\mathbb{C}Orb(T,x)=\{\alpha T^nx:\alpha\in\mathbb{C},n\geq 0\}$ is dense in \mathcal{X} . Also, an operator T is diskcyclic if the disk orbit $\mathbb{D}Orb(T,x)=\{\alpha T^nx:\alpha\in D,n\in\mathbb{N}\}$ is dense in \mathcal{X} [2]. Further generalizing this, Zeana [12] introduced \mathcal{G} -cyclicity. Let \mathcal{G} be a multiplicative semigroup with identity in \mathbb{C} ; then T is \mathcal{G} -cyclic if there exists $x\in\mathcal{X}$ such that $\mathcal{G}Orb(T,x)=\{\alpha T^nx:\alpha\in\mathcal{G},n\in\mathbb{N}\}$ is dense in \mathcal{X} . For more information about these operators, the reader may refer to [1, 3, 7, 11].

We recall the following facts from [9].

Definition 1.1. ([9]) Let $T \in \mathcal{B}(\mathcal{X})$. Then T is called \mathcal{G} -transitive if for each pair of nonempty open sets U_1 , U_2 of \mathcal{X} , there exists an $n \in \mathbb{N}$ and $\alpha \in \mathcal{G} \setminus \{0\}$ such that $T^{-n} \frac{1}{\alpha} U_1 \cap U_2 \neq \phi$ or equivalently, $T^n \alpha U_2 \cap U_1 \neq \phi$.

Proposition 1.2. ([9]) An operator is \mathcal{G} -transitive if and only if it is \mathcal{G} -cyclic.

Proposition 1.3. ([9]) Let $T \in \mathcal{B}(\mathcal{X})$. Then the following statements are equivalent:

- (1) T is \mathcal{G} -transitive.
- (2) For all $x, y \in \mathcal{X}$, there exist sequences $\{x_k\}_{k \in \mathbb{N}} \subset \mathcal{X}$, $\{\alpha_k\}_{k \in \mathbb{N}} \subset \mathcal{G}\setminus\{0\}$ and an increasing sequence of positive integers $\{n_k\}_{k \in \mathbb{N}}$ such that $x_k \to x$ and $T^{n_k}\alpha_k x_k \to y$ as $k \to \infty$.
- (3) For all $x, y \in \mathcal{X}$ and each neighborhood W for zero in \mathcal{X} , there exist $z \in \mathcal{X}$, $n \in \mathbb{N}$ and a non-zero $\alpha \in \mathcal{G}$ such that $x z \in W$ and $T^n \alpha z y \in W$.

The motivation for studying \mathcal{G} -cyclicity stems from its ability to unify and generalize classical cyclic phenomena of operators. While hypercyclicity and supercyclicity have been extensively studied, \mathcal{G} -cyclicity introduces a more flexible framework by incorporating arbitrary multiplicative semigroups. This allows for a richer and more nuanced classification of operator behavior, particularly in functional spaces where classical cyclicity may not hold. The results presented here contribute to this understanding by characterizing \mathcal{G} -cyclicity for classes of operators that are central in analysis and operator theory.

The following diagram shows the relation among hypercyclic, diskcyclic, supercyclic and \mathcal{G} -cyclic operators.

$$\begin{array}{ccc} \text{Hypercyclicty} & \Rightarrow & \text{Diskcyclicity} \\ & & & & \Downarrow \\ \mathcal{G}\text{-cyclicty} & \Rightarrow & \text{Supercyclicty} \end{array}$$

Some of the reverse directions of the above diagram are not exist in the literature. Therefore, we give necessary and sufficient conditions for weighted shift operators to be \mathcal{G} -cyclic. We use these characterizations, to show that there exists supercyclic operator which is not \mathcal{G} -cyclic, and a \mathcal{G} -cyclic operator

which is not hypercyclic. Also, we show that neither diskcyclicity implies \mathcal{G} -cyclicity nor \mathcal{G} -cyclicity implies diskcyclicity.

Moreover, we prove that the composition operator C_{ϕ} on the Hardy space cannot be \mathcal{G} -cyclic when the map ϕ has a fixed point within the unit disk \mathcal{G} . Furthermore, we show that the multiplication operator M_{ϕ} on the Hardy space is never \mathcal{G} -cyclic, regardless of the choice of ϕ . Finally, we prove that the derivative operator, when acting on the space of entire functions is \mathcal{G} -cyclic. These results play a deep understanding of operator behavior within functional spaces and provide new insights into the dynamics of these operators.

2. Main results

Throughout this paper, we assume that G is a multiplicative semigroup with identity in \mathbb{C} . Unless otherwise stated, all scalars in \mathcal{G} are assumed to be nonzero. We begin with a general criterion for G-cyclicity which can be immediately followed by [8, Theorem 2.2].

Proposition 2.1. (\mathcal{G} -cyclic criterion) Let T be an operator on a separable Banach space. Then T is said to satisfy the G-cyclic criterion if there exist two dense subsets D_1, D_2 in \mathcal{X} , an increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of positive integers, a sequence $\{\alpha_k\}_{k\in\mathbb{N}}\in G\setminus\{0\}$ and a sequence of maps $S_{n_k}:D_2\to\mathcal{X}$

- (1) $\alpha_k T^{n_k} x \to 0$ for all $x \in D_1$, (2) $\frac{1}{\alpha_k} S_{n_k} y \to 0$ for all $y \in D_2$, (3) $T^{n_k} S_{n_k} y \to y$ for each $y \in D_2$.

If T satisfies the \mathcal{G} -cyclic criterion, then T is \mathcal{G} -transitive.

Let $\{e_n : n \in \mathbb{Z}\}$ be the Schauder basis for \mathbb{Z} . We derive necessary and sufficient conditions for bilateral forward and backward weighted shift operators to be \mathcal{G} -cyclic, using variations of the above criterion.

Theorem 2.2. Let T be a bilateral forward weighted shift in the Hilbert space $\ell^2(\mathbb{Z})$ with a positive weight sequence $\{w_n\}_{n\in\mathbb{Z}}$. Then T is \mathcal{G} -cyclic if and only if for a given $q\in\mathbb{N}$, there exist a sequence $\{\alpha_n\}\subset\mathcal{G}$ such that for all $|j|\leq q$,

$$\lim_{n \to \infty} \prod_{k=j}^{j+n-1} |\alpha_n| w_k = 0 \text{ and } \lim_{n \to \infty} \prod_{k=1-j}^{n-j} \frac{1}{|\alpha_n| w_{-k}} = 0.$$

Proof. Let T be an G-cyclic operator, $q \in \mathbb{N}$ and $y = z = \sum_{|j| < q} e_j$. By Proposition 1.3, for every large number n > 2q, there exists a vector $x^{(n)} \in$ $\ell^2(\mathbb{Z}), \, \alpha_n \in \mathcal{G}$ and a small positive number ε_n such that

$$\left\| x^{(n)} - \sum_{|j| \le q} e_j \right\| < \varepsilon_n \tag{2.1}$$

and

$$\left\| \alpha_n T^n x^{(n)} - \sum_{|j| \le q} e_j \right\| < \varepsilon_n. \tag{2.2}$$

Inequality (2.1) implies that $|x_j^{(n)}| > 1 - \varepsilon_n$ if $|j| \le q$ and $|x_j^{(n)}| < \varepsilon_n$ otherwise. Since n > 2q, inequality (2.2) implies that for $|j| \le q$

$$|x_j^{(n)}| \|\alpha_n T^n e_j\| = |x_j^{(n)}| \left(|\alpha_n| \prod_{k=0}^{n-1} w_{k+j} \right) < \varepsilon_n.$$

It follows that

$$\left(\prod_{k=0}^{n-1} |\alpha_n| w_{k+j}\right) < \frac{\varepsilon_n}{|x_j^{(n)}|} < \frac{\varepsilon_n}{1 - \varepsilon_n} = \delta.$$

Then

$$\lim_{n \to \infty} \left(\prod_{k=0}^{n-1} |\alpha_n| w_{k+j} \right) = 0$$

and so

$$\lim_{n \to \infty} \prod_{k=j}^{j+n-1} |\alpha_n| w_k = 0.$$
 (2.3)

Also inequality (2.2) implies that $\|x_{j-n}^{(n)}(\alpha_n T^n e_{j-n}) - e_j\| < \varepsilon_n \text{ for } |j| \le q.$ Thus,

$$\left| x_{j-n}^{(n)} \right| \left| \alpha_n \prod_{k=0}^{n-1} w_{j-n+k} - 1 \right| = \left| x_{j-n}^{(n)} \right| \left| \alpha_n \prod_{k=1}^n w_{j-k} - 1 \right| < \varepsilon_n.$$

Therefore,

$$\left(|\alpha_n| \prod_{k=1}^n w_{j-k} \right) > \frac{1 - \varepsilon_n}{\left| x_{j-n}^{(n)} \right|} > \frac{1 - \varepsilon_n}{\varepsilon_n}.$$

It follows that

$$\left(\prod_{k=1}^{n} \frac{1}{|\alpha_n| w_{j-k}}\right) < \frac{\varepsilon_n}{1 - \varepsilon_n}$$

and so

$$\lim_{n \to \infty} \prod_{k=1-j}^{n-j} \frac{1}{|\alpha_n| w_{-k}} = 0.$$
 (2.4)

The proof follows by equation (2.3) and (2.4).

Conversely, let $q \in \mathbb{N}$, then there exist a sequence $\{\alpha_n\} \subset \mathcal{G}$ such that for all $|j| \leq q$,

$$\lim_{n \to \infty} \prod_{k=j}^{j+n-1} |\alpha_n| w_k = 0 \text{ and } \lim_{n \to \infty} \prod_{k=1-j}^{n-j} \frac{1}{|\alpha_n| w_{-k}} = 0.$$

Let $D = span\{e_j : |j| \le q\}$, and let $x = \sum_{|j| \le q} x_j e_j$ and $y = \sum_{|j| \le q} y_j e_j$ be two vectors in D. Then,

$$\|\alpha_n T^n x\| \le \left\{ \prod_{k=j}^{j+n-1} |\alpha_n| w_k : |j| \le q \right\} \|x\|$$

and

$$\left\|\frac{1}{\alpha_n}S^ny\right\| \leq \left\{\prod_{k=1-j}^{n-j}\frac{1}{|\alpha_n|w_{-k}}:|j| \leq q\right\}\|y\|\,.$$

Therefore, $\lim_{n\to\infty} \|\alpha_n T^n x\| = \lim_{n\to\infty} \left\| \frac{1}{\alpha_n} S^n y \right\| = 0$. Also, it is clear that $T^n S^n y = y$ for all $y \in D$. It follows that T satisfies \mathcal{G} -cyclic criterion and so T is \mathcal{G} -cyclic.

Theorem 2.3. Let T be an invertible bilateral forward weighted shift in the Hilbert space $\ell^2(\mathbb{Z})$ with a positive weight sequence $\{w_n\}_{n\in\mathbb{Z}}$. Then T is \mathcal{G} -cyclic if and only if there exist an increasing sequence of positive integers $n_k \to \infty$ and a sequence $\{\alpha_k\} \subset \mathcal{G}$ such that

$$\lim_{k \to \infty} |\alpha_k| \prod_{j=1}^{n_k} w_j = 0 \quad and \quad \lim_{k \to \infty} \frac{1}{|\alpha_k|} \prod_{j=1}^{n_k} \frac{1}{w_{-j}} = 0.$$
 (2.5)

Proof. To prove the "if" part, we will verify the \mathcal{G} -cyclic criterion with $D=D_1=D_2$ is a dense subset of $\ell^2(\mathbb{Z})$ consisting of sequences that only have a finite number of non-zero entries. Let $x\in D$. Then it is enough to show that $x=e_i,\ i\in\mathbb{Z}$. In addition, by [4, Lemma 3.3.] it suffices to show that $\alpha_k T^{n_k} e_1 \to 0$ and $\frac{1}{\alpha_k} S^{n_k} e_0 \to 0$. However, that is clear because

$$\|\alpha_k T^{n_k} e_1\| = |\alpha_k| \prod_{j=1}^{n_k} w_j \to 0 \text{ and } \left\| \frac{1}{\alpha_k} S^{n_k} e_0 \right\| = \frac{1}{|\alpha_k|} \prod_{j=1}^{n_k} \frac{1}{w_j} \to 0$$

as $k \to \infty$. Moreover it is clear that $T^{n_k}S^{n_k}x = x$. Therefore, the conditions of \mathcal{G} -cyclic criterion are satisfied. The proof of the "only if" part follows from Theorem 2.2.

It is well known that a weighted shift operator T is invertible if and only if there exists b>0 such that $|w_n|\geq b$ for all $n\in\mathbb{Z}$. The next theorem shows that the above theorem still holds by assuming that there exists b>0 such that $w_n\geq b$ for all n<0.

Theorem 2.4. Let T be a bilateral forward weighted shift in the Hilbert space $\ell^2(\mathbb{Z})$ with a positive weight sequence $\{w_n\}_{n\in\mathbb{Z}}$, $w_n \geq b > 0$ for all n < 0. Then T is \mathcal{G} -cyclic if and only if there exist an increasing sequence of positive integers $n_k \to \infty$ and a sequence $\{\alpha_k\} \subset \mathcal{G}$ such that

$$\lim_{k \to \infty} |\alpha_k| \prod_{j=1}^{n_k} w_j = 0 \quad and \quad \lim_{k \to \infty} \frac{1}{|\alpha_k|} \prod_{j=1}^{n_k} \frac{1}{w_{-j}} = 0.$$
 (2.6)

Proof. For "if" part, we will verify Theorem 2.2. Let $\varepsilon > 0$, $q \in \mathbb{N}$ and let $\delta > 0$, by hypothesis there exists an arbitrary large $n_0 \in \{n_k\}$ and $\alpha_0 \in \mathcal{G}$ such that

$$\prod_{j=1}^{n_0} |\alpha_0| w_j < \delta \text{ and } \prod_{j=1}^{n_0} \frac{1}{|\alpha_0| w_{-j}} < \delta.$$

Let $n = n_0 + q + 1$ (which ensure that $j + n - 1 \ge n_0$ for all $j; |j| \le q$). Now let $j \in \mathbb{Z}, |j| \le q$. Then

$$\begin{split} |\alpha_n| \prod_{i=j}^{n+j-1} w_i &= |\alpha_n| \left(\prod_{i=1}^{j-1} \frac{1}{w_i} \right) \left(\prod_{i=1}^{j-1} w_i \right) \left(\prod_{i=j}^{n_0} w_i \right) \left(\prod_{i=n_0+1}^{n+j-1} w_i \right) \\ &= \left(\prod_{i=1}^{j-1} \frac{1}{w_i} \right) \left(|\alpha_0| \prod_{i=1}^{n_0} w_i \right) \left(\frac{|\alpha_n|}{|\alpha_0|} \prod_{i=n_0+1}^{n+j-1} w_i \right) \\ &\leq C \left(\prod_{i=1}^{n_0} |\alpha_0| w_j \right) d \| T^{2q} \| \\ &\leq C \delta d \| T^{2q} \| \,, \end{split}$$

where $C = \prod_{i=1}^{j-1} \frac{1}{w_i}$ is a constant depending only on q, $\frac{|\alpha_n|}{|\alpha_0|} = d$ is constant and $\prod_{i=n_0+1}^{n+j-1} w_i \leq \|T^{2q}\|$. So, if $\delta < \frac{\varepsilon}{Cd\|T^{2q}\|}$, then

$$\prod_{i=j}^{n+j-1} |\alpha_n| w_i \le \varepsilon$$

for all $|j| \leq q$.

Also, with the same choice of n (which ensure that $n - j > n_0 + 1$) and $|j| \le q$, we have

$$\prod_{i=1-j}^{n-j} \frac{1}{|\alpha_{n}| w_{-i}} = \left(\frac{|\alpha_{0}|}{|\alpha_{n}|} \prod_{i=1}^{-j} w_{-i}\right) \left(\frac{1}{|\alpha_{0}|} \prod_{i=1}^{-j} \frac{1}{w_{-i}}\right) \left(\prod_{i=1-j}^{n_{0}} \frac{1}{w_{-i}}\right) \left(\prod_{i=n_{0}+1}^{n-j} \frac{1}{w_{-i}}\right) \\
= \left(\prod_{i=1}^{-j} w_{-i}\right) \left(\prod_{i=1}^{n_{0}} \frac{1}{|\alpha_{0}| w_{-i}}\right) \left(\frac{|\alpha_{0}|}{|\alpha_{n}|} \prod_{i=n_{0}+1}^{n-j} \frac{1}{w_{-i}}\right) \\
\leq L\delta h \left(\frac{1}{b}\right)^{2q},$$

where b is a lower bound for the negative weights, $L = \prod_{i=1}^{-j} w_{-i}$ is a constant depending only on q and $\frac{|\alpha_0|}{|\alpha_n|} = h$ is constant. Hence, if $\delta < \frac{b^{2q} \varepsilon}{Ld}$, then

$$\prod_{i=1-j}^{n-j} \frac{1}{|\alpha_n| w_{-i}} \le \varepsilon$$

for all $|j| \leq q$. The converse side follows immediately from Theorem 2.2. \square

By the same way we can characterize the \mathcal{G} -cyclic backward weighted shifts.

Proposition 2.5. Let T be an invertible bilateral backward weighted shift in the Hilbert space $\ell^2(\mathbb{Z})$ with a positive weight sequence $\{w_n\}_{n\in\mathbb{Z}}$. Then T is \mathcal{G} -cyclic if and only if there exist an increasing sequence of positive integers $n_k \to \infty$ and a sequence $\{\alpha_k\} \subset \mathcal{G}$ such that

$$\lim_{k \to \infty} \frac{1}{|\alpha_k|} \prod_{j=1}^{n_k} w_j = 0 \quad and \quad \lim_{k \to \infty} |\alpha_k| \prod_{j=1}^{n_k} \frac{1}{w_{-j}} = 0.$$
 (2.7)

Proposition 2.6. Let T be a bilateral backward weighted shift in the Hilbert space $\ell^2(\mathbb{Z})$ with a positive weight sequence $\{w_n\}_{n\in\mathbb{Z}}$, $w_n \geq b > 0$ for all n < 0. Then T is \mathcal{G} -cyclic if and only if there exist an increasing sequence of positive integers $n_k \to \infty$ and a sequence $\{\alpha_k\} \subset \mathcal{G}$ such that

$$\lim_{k \to \infty} \frac{1}{|\alpha_k|} \prod_{j=1}^{n_k} w_j = 0 \quad and \quad \lim_{k \to \infty} |\alpha_k| \prod_{j=1}^{n_k} \frac{1}{w_{-j}} = 0.$$
 (2.8)

Now, we use these characterizations to show that not every supercyclic operator is \mathcal{G} -cyclic.

Example 2.7. Let F be a bilateral forward weighted shift operator on $\ell^2(\mathbb{Z})$ with

$$w_n = \left\{ \begin{array}{cc} \frac{1}{n+1} & \text{for } n \ge 0\\ \frac{1}{3} & \text{for } n < 0 \end{array} \right\}.$$

Then F is supercyclic but not \mathcal{G} -cyclic. In fact, by [4, Theorem 4.1], an invertible bilateral forward weighted shift operator F is supercyclic if and only if there exists an increasing sequence $\{n_i\}$ of positive integers such that

$$\lim_{i \to \infty} \prod_{k=1}^{n_i} w_k \prod_{k=1}^{n_i} \frac{1}{w_{-k}} = 0.$$

If we take $n_i = n$ the whole natural numbers, then we get

$$\lim_{n \to \infty} \prod_{k=1}^{n} w_k \prod_{k=1}^{n} \frac{1}{w_{-k}} = \lim_{n \to \infty} \frac{1}{n!} 3^n = 0.$$

Therefore, F is supercyclic.

On the other hand, let z_0 be fixed point in the unit circle \mathbb{T} and $\mathcal{G} = \{z_0^n : n \geq 0\}$ be a multiplication semigroup with identity in \mathbb{C} . Then, for any sequence $\{\alpha_i\} \subset \mathcal{G}$ and any increasing sequence of positive integers n_i if

$$\lim_{i \to \infty} |\alpha_i| \prod_{k=1}^{n_i} w_k = \lim_{i \to \infty} \frac{|\alpha_i|}{(n_i + 1)!} = 0,$$

then

$$\lim_{i \to \infty} \frac{1}{|\alpha_i|} \prod_{k=1}^{n_i} \frac{1}{w_{-k}} = \lim_{i \to \infty} \frac{3^{n_i}}{\alpha_i} \neq 0,$$

since $\{\alpha_i\} \subset \mathcal{G}$ is a bounded sequence. Hence, F is not \mathcal{G} -cyclic.

The following example shows that not every \mathcal{G} -cyclic operator is hypercyclic.

Example 2.8. Let $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ be a bilateral forward weighted shift with the weight sequence

$$w_n = \begin{cases} \frac{1}{4} & \text{if } n \ge 0, \\ \frac{1}{2} & \text{if } n < 0. \end{cases}$$

Then T is \mathcal{G} -cyclic but not hypercyclic. In fact, first, we apply [4, Theorem 4.1] to show that T is not hypercyclic. For all increasing sequence n_r of positive integers, we have

$$\lim_{r \to \infty} \prod_{k=1}^{n_r} \frac{1}{w_{-k}} = \lim_{r \to \infty} \prod_{k=1}^{n_r} 2 = \lim_{r \to \infty} 2^{n_r} = \infty.$$
 (2.9)

Hence, T is not hypercyclic.

On the other hand, let $\mathcal{G} = \mathbb{N}$ be the semigroup of all natural numbers, and let $\{3^n\}$ be a sequence in \mathcal{G} . By taking $n_k = n$ in Theorem 2.4, we have

$$\lim_{n \to \infty} |\alpha_n| \prod_{j=1}^n w_j = \lim_{n \to \infty} 3^n \prod_{j=1}^n \frac{1}{4} = \lim_{n \to \infty} \prod_{j=1}^n \frac{3^n}{4^n} = 0$$

and

$$\lim_{n \to \infty} \frac{1}{|\alpha_n|} \prod_{j=1}^n \frac{1}{w_{-j}} = \lim_{n \to \infty} \frac{1}{3^n} \prod_{j=1}^n 2 = \lim_{n \to \infty} \frac{2^n}{3^n} = 0.$$

Then T is \mathcal{G} -cyclic.

Note that the above example also shows that \mathcal{G} -cyclicity doesn't always imply diskcyclicity by applying Equation 2.9 and [2, Corollary 2.15].

The following example shows that there exists a diskcyclic operator which is not \mathcal{G} -cyclic for some semigroup \mathcal{G} .

Example 2.9. Let $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ be the bilateral forward weighted shift with the weight sequence

$$w_n = \begin{cases} 2 & \text{if } n \ge 0, \\ 3 & \text{if } n < 0. \end{cases}$$

Then T is diskcyclic but not G-cyclic. In fact, by [2, Example 2.20], T is diskcyclic. on the other hand, let $\mathcal{G} = \mathbb{N}$ be the semigroup of all natural numbers, then for any increasing sequence of natural numbers n_i and any sequence $\{\alpha_i\} \in \mathcal{G}$

$$\lim_{i \to \infty} |\alpha_i| \prod_{k=1}^{n_i} w_k = \lim_{i \to \infty} |\alpha_i| \prod_{k=1}^{n_i} 2 = \lim_{i \to \infty} |\alpha_i| 2^{n_i} \neq 0.$$

Thus by Theorem 2.4, T is not \mathcal{G} -cyclic.

Now, let U be the open unit disk in \mathbb{C} and $H^2(U)$ be the Hardy space, consisting of holomorphic functions $f: U \to \mathbb{C}$ with $||f||_{H^2} < \infty$. The composition operator C_{ϕ} acting on $H^2(U)$ is defined as:

$$C_{\phi}(f) = f \circ \phi$$
 for all $f \in H^2(U)$,

where ϕ is a holomorphic self-map of U.

Theorem 2.10. Let ϕ be a holomorphic self-map of U with a fixed point in U. Then C_{ϕ} is not \mathcal{G} -cyclic on $H^{2}(U)$ for any bounded semigroup \mathcal{G} .

Proof. Let ϕ be a holomorphic self-map of U with a fixed point $x_0 \in U$, that is, $\phi(x_0) = x_0$. For all $x \in U$, we have

$$C_{\phi}^{n}(f)(x) = f(\phi^{n}(x)).$$
 (2.10)

Since ϕ is contraction, then $d(\phi(x), \phi(y)) \leq d(x, y)$ for all $x, y \in U$, where d is the hyperbolic metric on U. So

$$d(\phi^{n}(x), x_{0}) = d(\phi^{n}(x), \phi^{n}(x_{0}))$$

$$\leq d(\phi^{n-1}(x), \phi^{n-1}(x_{0}))$$

$$\vdots$$

$$\leq d(x, x_{0}).$$

It follows that $\{d(\phi^n(x), x_0)\}$ is non-increasing sequence and bounded below by 0 and so $d(\phi^n(x), x_0) \to 0$. Since the hyperbolic metric and the usual metric define the same topology on U then $|\phi^n(x) - x_0| \to 0$ and so $\phi^n(x) \to x_0$ then by Eq. (2.10), we get

$$C_{\phi}^{n}(f)(x) \to f(x_0)$$
 for all $x \in U$.

Moreover, since $\mathcal G$ is bounded, then $\mathcal GOrb(C_\phi,f)=\left\{\alpha C_\phi^n(f):n\geq 0,\alpha\in\mathcal G\right\}$ is bounded and hence cannot be dense in $H^2(U)$.

Let consider the space $H^{\infty}(U)$ of all bounded analytic functions on U, and let $\phi \in H^{\infty}(U)$. The multiplication operator M_{ϕ} on $H^{2}(U)$ is defined as:

$$M_{\phi}(f) = \phi f$$
 for all $f \in H^2(U)$.

Theorem 2.11. The multiplication operator M_{ϕ} is not \mathcal{G} -cyclic on the Hardy space $H^2(U)$.

Proof. Let $f \in H^2(U)$, then the orbit of f under M_{ϕ} is defined as follows:

$$\mathcal{G}Orb(M_{\phi}, f) = \left\{ \alpha M_{\phi}^{n}(f) : n \geq 0, \alpha \in \mathcal{G} \right\}$$
$$= \left\{ \alpha \phi^{n} f : n \geq 0, \alpha \in \mathcal{G} \right\},$$

which is subset of the closed subspace spanned by $\{f, \phi f, \phi^2 f, \phi^3 f, \ldots\}$ in $H^2(U)$ and so cannot be dense in $H^2(U)$.

Now, consider the space $H(\mathbb{C})$ of all entire functions on \mathbb{C} endowed with the topology of uniform convergence on compact sets. The derivative operator T on $H(\mathbb{C})$ is defined as

$$T(f) = f'$$
.

Theorem 2.12. The derivative operator T on $H(\mathbb{C})$ is \mathcal{G} -cyclic.

Proof. We will apply \mathcal{G} -cyclic criterion with respect to the sequence $\{n\} \subset \mathbb{N}$, a bounded sequence $\alpha_n \in \mathcal{G}$ and the same dense sets $D = D_1 = D_2$ of all complex polynomials. Define a map S on $H(\mathbb{C})$ by $S(f)(z) = \int_0^z f(x) dx$. Let $p \in D$. Then $\alpha_n T^n p = 0$ eventually and hence condition (1) of Proposition 2.1 is satisfied. For condition (2), let $k \in \mathbb{N}$ be fixed such that $z^k \in D$ and $p \in D$. Since $\frac{1}{\alpha_n} S^n(z^k) = \frac{k!}{\alpha_n(k+n)!} z^{k+n}$ which converges to 0 as $n \to \infty$ and so by linearity $\frac{1}{\alpha_n} S^n(p) \to 0$. Moreover, $T^n S^n p = p$ for all $p \in D$ and hence condition (3) is satisfied.

These results extend and refine earlier findings on operator cyclicity. For instance, while Zeana [12] and Naoum and Zeana [9] introduced \mathcal{G} -cyclicity, our work provides explicit characterizations for bilateral shifts and shows new separations between classes (e.g., supercyclic but not \mathcal{G} -cyclic). Moreover, our treatment of the composition and multiplication operators complements the analysis in [4] and [5], where related classes were investigated under hypercyclic or supercyclic frameworks. Thus, the present paper offers new perspectives and sharper distinctions within the landscape of linear dynamics.

References

- N. Bamerni and A. Klman, Operators with diskcyclic vectors subspaces, J. Taibah Univ. Sci., 9(3) (2015), 414-419.
- [2] N. Bamerni, A. Klman and M.S.M. Noorani, A review of some works in the theory of diskcyclic operators, Bull. Malays. Math. Sci. Soc., 39 (2016), 723–739.
- [3] O. Benchiheb, N. Karim and M. Amouch, On Compositional dynamics on Hardy space, Bol. Soc. Paran. Mat., 41 (2023), 1–9.
- [4] N. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted shifts, Proc. Amer. Math. Soc., 131(2) (2003), 479–485.
- [5] K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Springer, 2011.
- [6] H.M. Hilden and L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J., 23(7) (1974), 557–565.
- [7] T. Mengestie, Convex-cyclic weighted composition operators and their adjoints, Mediterr. J. Math., 18(4) (2021), 172.
- [8] A. Montes-Rodrguez and H.N. Salas, Supercyclic subspaces: spectral theory and weighted shifts, Adv. Math., 163(1) (2001), 74–134.
- [9] A.G. Naoum and Z.Z. Jamil, g-cyclicity, Al-Nahrain J. Sci., 8(2) (2005), 103–108.
- [10] S. Rolewicz, On orbits of elements, Studia Math., 32(1) (1969), 17–22.
- [11] K.E. Xasanova Qizi and O.N. Khakimov Ugli, On linear dynamics of the backward shift operators, Sci. Innov., **3**(Special Issue 50) (2024), 90–92.
- [12] J. Zeana, Cyclic phenomena of operators on Hilbert space, Ph.D. thesis, University of Baghdad, 2002.