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Abstract. This paper develops an explicit two step iteration scheme for a coupled pair of

nonlinear mappings in CAT (0) spaces. The framework treats a single-valued asymptotically

nonexpansive mapping t and a multivalued asymptotically nonexpansive mapping T that

are coupled through a nonexpansive mapping. Under standard bounded control parameters

and a summable asymptotic modulus, we prove ∆-convergence of the generated sequence to

a common fixed point of t and T . The analysis exploits the intrinsic nonpositive curvature of

CAT (0) spaces via quasi-Fejér estimates and a demiclosedness principle for (asymptotically)

nonexpansive mappings, while the metric selection provides a stable interface between the

single and multivalued components. The resulting theory yields a geometry-aware and com-

putationally transparent algorithmic template for hybrid fixed point problems, with model

examples illustrating scope and applicability.

1. Introduction

CAT (0) spaces are uniquely geodesic metric spaces, meaning that any two
points are connected by a single geodesic segment. A key concept in defining
this property is the notion of a geodesic triangle, which consists of three ver-
tices and certain geodesic segments that form its edges. The primary interest
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lies in comparing the shape of this geodesic triangle to that of a Euclidean
triangle of the same size.

If the distance between any two points on a given geodesic triangle is less
than or equal to the corresponding distance in the Euclidean comparison tri-
angle, then the space is classified as a CAT (0) space. This means that every
geodesic triangle in such a space is at least as thin as its Euclidean counterpart.

This intrinsic property is known as the CAT (0) inequality, which charac-
terizes non-positive curvature. Consequently, the geometry of CAT (0) spaces
is not linear but follows a curved structure. It is well known that all pre-
Hilbert spaces, including hyperbolic spaces and R-trees, are notable examples
of CAT (0) spaces.

The original study of non-positively curved spaces dates back to Alexandrov
in the 1950s. However, the modern framework of CAT (0) spaces, as widely
used today, was developed later by Ballmann, Gromov and Schroeder [1]. Ini-
tially, CAT (0) spaces played a significant role in geometric group theory, as
highlighted by Bridson and Haefliger [2]. More recently, they have been ex-
plored in the context of optimization problems, nonlinear analysis, and fixed
point theory. These studies have incorporated methods and techniques origi-
nally developed for Banach spaces (specifically, uniformly convex spaces) into
the broader class of CAT (0) spaces.

For instance, one key application is the uniqueness of the circumcenter under
specific conditions. Additionally, CAT (0) spaces possess a property known as
∆-convergence, introduced by Dhompongsa and Panyanak [5], which shares
characteristics with weak convergence in normed spaces. A complete CAT (0)
space is often referred to as a Hadamard space.

Beyond specific conditions, it is also necessary to consider metrics, curva-
ture, and fixed point problems related to various classes of operators. The
Banach contraction principle has been used to establish the existence, unique-
ness, and numerical approximation of fixed points via Picard iteration for
contractive mappings.

However, in dealing with nonlinear equations, variational inequalities, and
equilibrium problems, nonexpansive mappings are often preferred over con-
tractive mappings. As a result, fixed point approximations have been ex-
tended to more general classes of operators such as: nonexpansive mappings
[13], quasi-nonexpansive mappings [6], asymptotically nonexpansive mappings
[10], Suzuki-type mappings under condition (C) [14].

This evolution of mapping techniques has led to the development of itera-
tive methods for numerically computing fixed points, particularly for pairs of
nonlinear hybrid mappings in CAT (0) spaces.
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This work lies at the interface of fixed point theory in CAT (0) spaces and
iterative methods for hybrid (single and multivalued) operators. In geodesic
settings, ∆-convergence (Kirk and Panyanak [9]) is the appropriate surro-
gate of weak convergence, and demiclosedness principles for asymptotically
nonexpansive mappings in CAT (0) spaces (see, e.g., [12]) underpin many
convergence arguments for single-valued maps. For multivalued nonexpan-
sive mappings, existence and structural results are known in metric/Banach
frameworks (e.g., [3]). However, results that explicitly couple a single-valued
asymptotically nonexpansive mapping with a multivalued one within a unified
iteration on CAT (0) spaces remain limited.

We establish ∆-convergence of an explicit two step iteration scheme to a
common fixed point of a pair (t, T ), where t is single-valued asymptotically
nonexpansive and T is multivalued asymptotically nonexpansive on a CAT (0)
space.

Our analysis requires only the mild summability
∞∑
n=1

(kn − 1) < ∞ for the

asymptotic nonexpansivity moduli together with bounded step parameters,
and it relies on a nonexpansive mapping that couples the two components.
As far as we are aware, this appears to be the first result that proves ∆-
convergence of such an explicit mixed scheme to a common fixed point under
these assumptions.

2. Preliminaries

In this paper, R+ and N symbolize the set of all non-negative real numbers
and the set of positive integers, respectively.

Definition 2.1. Let (X, d) be a CAT (0) space and let G be a nonempty
subset of the CAT (0) space. A mapping t : G→ G is called:

(1) a nonexpansive mapping if d(tv, tw) ≤ d(v, w) for all v, w ∈ G,
(2) a quasi-nonexpansive mapping if Fix(t) = {w ∈ G : tw = w} 6= ∅ and

d(tw, p) ≤ d(w, p) for all w ∈ G and p ∈ Fix(t),
(3) an asymptotically nonexpansive mapping if there exists a sequence
{kn} ⊂ [1,∞) such that kn → 1 as n → ∞ for all n ≥ 1, and
d(tnv, tnw) ≤ knd(v, w) for all v, w ∈ G.

Let (X, d) be a geodesic space and let 2G denote the family of all nonempty
subsets of G. Let FB(G) be the set of all nonempty bounded closed subsets
of G, and let KC(G) be the set of all nonempty compact convex subsets of G.
A subset of X is said to be proximal if, for every w ∈ X, there exists k ∈ G
such that

d(v, k) = dist(v,G) = inf{d(v, w) : w ∈ G}.
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Let PB(G) be the set of all nonempty bounded proximal subsets of G. Let
H be the Hausdorff metric induced by d, defined as

H(A,B) = max{sup
v∈A

dist(v,B), sup
w∈B

dist(w,A)}, A,B ∈ FB(X),

where dist(v,B) = inf{d(v, w) : w ∈ B} represents the distance from the point
v to the subset B.

A multivalued mapping T : G→ FB(G) is called nonexpansive, if

H(Tv, Tw) ≤ d(v, w) for all v, w ∈ G.
A multivalued mapping T : G → FB(G) is said to satisfy Condition (E), if
there exists µ ≥ 1 such that for all v, w ∈ G,

dist(v, Tv) ≤ µdist(v, Tw) + d(v, w).

Let T : G → PB(G) be a multivalued mapping, and define the selection
mapping PT for each w by

PT (v) := {w ∈ Tv : d(v, w) = dist(v, Tv)}.

The following lemma presents fundamental properties of CAT(0) spaces,
which will be used in the proofs of the main theorems in this study.

Lemma 2.2. ([5]) Let (X, d) be a CAT(0) space. Then the following properties
hold:

(1) For all v, w ∈ X and for every α ∈ [0, 1], there exists a unique point
z ∈ [v, w] such that

d(v, z) = αd(v, w) and d(w, z) = (1− α)d(v, w).

This unique point is denoted by (1− α)v ⊕ αw.
(2) For all v, w, z ∈ X and α ∈ [0, 1], the following convex inequality holds:

d((1− α)v ⊕ αw, z) ≤ (1− α)d(v, z) + αd(w, z).

(3) For all v, w, z ∈ X and α ∈ [0, 1], we have

d((1− α)v ⊕ αw, z)2 ≤ (1− α)d(v, z)2 + αd(w, z)2 − α(1− α)d(v, w)2.

(4) For any bounded sequence {wn} in a CAT(0) space, the unique asymp-
totic center A({wn}) is given by

A({wn}) = {w ∈ X : r(w, {wn}) = r({wn})},
where

r(w, {wn}) = lim sup
n→∞

d(w,wn), r({wn}) = inf{r(w, {wn}) : w ∈ X}.

(5) If G is a closed convex subset of a CAT(0) space and {wn} is a bounded
sequence in G, then the asymptotic center of {wn} is contained in G.
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The uniqueness result for the asymptotic center presented in Lemma 2.2
(4) suggests a new form of convergence that resembles weak convergence in
normed spaces. A sequence {wn} in a CAT (0) space is said to be ∆-convergent
to w ∈ X if w is the unique asymptotic center of every subsequence {zn} of
{wn}.

Lemma 2.3. ([9]) Let (X, d) be a CAT(0) space. Then the following properties
hold:

(1) Every bounded sequence in a CAT(0) space has a ∆-convergent subse-
quence.

(2) Every CAT(0) space satisfies the Opial property, which states that for
any sequence {wn} ⊂ X that ∆-converges to w and for any z 6= w,

lim sup
n→∞

d(v, wn) < lim sup
n→∞

d(wn, z).

Lemma 2.4. ([8, 9]) Let {vn} be a sequence in a complete CAT(0) space X
that ∆-converges to v ∈ X, and let {wn} be a sequence in X.

(1) If limn→∞ d(vn, wn) = 0, then {vn} is ∆-convergent to v.
(2) If d(v, w) ≤ lim supn→∞ d(vn, w) for all w ∈ X, then v = w.

Lemma 2.5. ([3]) Let {xn} be a sequence in a complete CAT(0) space X
with a unique asymptotic center, and let T : X → FB(X) be a multival-
ued nonexpansive mapping. If the sequence {zn} with zn ∈ T (xn) satisfies
∆- limn→∞ zn = z, then z ∈ T (z), that is, z is a fixed point of T .

Lemma 2.6. ([3]) If G is a closed convex subset of a complete CAT(0) space
and if {wn} is a bounded sequence in G, then the asymptotic center of {wn}
is in G.

Lemma 2.7. ([11]) Let (X, d) be a complete CAT(0) space, and let x∗ ∈ X.
Suppose {αn} is a sequence in [a, b] for some a, b ∈ (0, 1), and {wn}, {zn} are
sequences in X. If

lim sup
n→∞

d(wn, x
∗) ≤ r, lim sup

n→∞
d(zn, x

∗) ≤ r

and

lim sup
n→∞

d((1− αn)wn ⊕ αnzn, x∗) ≤ r

for some r ≥ 0, then

lim
n→∞

d(wn, zn) = 0.
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Lemma 2.8. ([15]) Let {an} and {bn} be sequences of nonnegative numbers
such that

an+1 ≤ (1− bn)an

for all n ≥ 1. If
∞∑
n=1

bn converges, then lim
n→∞

an exists. Furthermore, if a

subsequence of {an} converges to 0, then lim
n→∞

an = 0.

Theorem 2.9. ([12]) Let G be a nonempty, bounded, closed and convex subset
of a complete CAT (0) space and let t : G → G be an asymptotically nonex-
pansive mapping. Then t has a fixed point.

Corollary 2.10. ([4]) Let G be a nonempty, bounded, closed and convex sub-
set of a complete CAT (0) space, and let t : G → G be an asymptotically
nonexpansive mapping. Suppose that {wn} is a bounded sequence in G such
that

lim
n→∞

d(twn, wn) = 0

and ∆- lim
n→∞

wn = w. Then tw = w.

3. Main results

Definition 3.1. Let G be a nonempty, bounded, closed and convex subset of
a complete CAT (0) space X. Let t : G→ G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptot-
ically nonexpansive mapping. Assume PT : G → G is a nonexpansive and
Fix(t) ∩ Fix(T ) 6= ∅. For a given w1 ∈ G, the sequence {wn} in the iteration
scheme is defined by {

vn = (1− βn)wn ⊕ βnzn,
wn+1 = (1− αn)zn ⊕ αntnvn,

(3.1)

for n ∈ N, where zn ∈ PT (tnwn) and 0 < a ≤ αn, βn ≤ b < 1.

Lemma 3.2. Let G be a nonempty, bounded, closed, and convex subset of a
complete CAT(0) space X, and let T : G → FB(G) be a multivalued asymp-
totically nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a

nonexpansive mapping. If
∞∑
n=1

(kn− 1) <∞, then the following statements are

equivalent:

(1) w ∈ Fix(T ), that is, w ∈ Tv.
(2) PT (v) = {v}, that is, v = w for all w ∈ PT (v).
(3) v ∈ Fix(PT ), that is, v ∈ PT (v).
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Moreover, Fix(T ) = Fix(PT ).

Proof. We will prove the equivalence of the three statements by showing the
logical sequence: (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2): Assume v ∈ Fix(T ), which means v ∈ Tv. By the definition
of the distance from a point to a set, dist(v, Tv) = inf{d(v, w) : w ∈ Tv}.
Since v ∈ Tv, the minimum distance is achieved when w = v, so dist(v, Tv) =
d(v, v) = 0. By the definition of the selection mapping PT (v) = {w ∈ Tv :
d(v, w) = dist(v, Tv)}, any w ∈ PT (v) must satisfy d(v, w) = dist(v, Tv) = 0.
This implies d(v, w) = 0, which holds if and only if w = v. Therefore, PT (v) =
{v}.

(2) ⇒ (3): Assume PT (v) = {v}. By definition, the set PT (v) is a single
element, which is v. This means v ∈ PT (v). By the definition of a fixed point,
v ∈ Fix(PT ).

(3) ⇒ (1): Assume v ∈ Fix(PT ), which means v ∈ PT (v). From the defini-
tion of PT we know that PT (v) is a subset of Tv. Therefore, if v ∈ PT (v), it
must also be true that v ∈ Tv. This implies that v ∈ Fix(T ).

Since we have shown that (1) ⇒ (2) ⇒ (3) ⇒ (1), the three statements are
equivalent.

To prove that Fix(T ) = Fix(PT ), we can use the equivalences we just proved.

(i) From (1)⇒ (3), if v ∈ Fix(T ), then v ∈ Fix(PT ). This means Fix(T ) ⊆
Fix(PT ).

(ii) From (3) ⇒ (1), if v ∈ Fix(PT ), then v ∈ Fix(T ). This means
Fix(PT ) ⊆ Fix(T ).

Since both set inclusions hold, we conclude that Fix(T ) = Fix(PT ). This
completes the proof. �

Lemma 3.3. Let G be a nonempty, bounded, closed and convex subset of a
complete CAT (0) space X. Let t : G → G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptoti-
cally nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a nonex-

pansive mapping. If
∞∑
n=1

(kn−1) <∞, then for w1 ∈ G, the sequence {wn} gen-

erated by the iteration scheme (3.1) satisfies lim
n→∞

d(wn, x
∗) exists, where x∗ ∈

Fix(t) ∩ Fix(T ).

Proof. Let x∗ ∈ Fix(t) ∩ Fix(T ). By Lemma 3.2, we know that x∗ is also a
fixed point of PT , that is, x∗ ∈ Fix(PT ).
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Consider the distance from wn+1 to x∗,

d(wn+1, x
∗) = d((1− αn)zn ⊕ αntnvn, x∗)
≤ (1− αn)d(zn, x

∗) + αnd(tnvn, x
∗).

Since zn ∈ PT (tnwn), we have

d(zn, x
∗) = dist(zn, {x∗}) ≤ H(PT (tnwn), PT (x∗)).

Because PT is nonexpansive, this implies

H(PT (tnwn), PT (x∗)) ≤ d(tnwn, x
∗).

As t is asymptotically nonexpansive, d(tnwn, x
∗) = d(tnwn, t

nx∗) ≤ knd(wn, x
∗).

Thus, we have
d(zn, x

∗) ≤ knd(wn, x
∗).

Similarly, for the term d(tnvn, x
∗), we get

d(tnvn, x
∗) = d(tnvn, t

nx∗) ≤ knd(vn, x
∗).

And we know that

d(vn, x
∗) = d((1− βn)wn ⊕ βnzn, x∗)
≤ (1− βn)d(wn, x

∗) + βnd(zn, x
∗)

≤ (1− βn)d(wn, x
∗) + βnknd(wn, x

∗)

= (1− βn + βnkn)d(wn, x
∗).

By substituting this back, we have

d(tnvn, x
∗) ≤ knd(vn, x

∗)

≤ kn(1− βn + βnkn)d(wn, x
∗)

= (kn − βnkn + βnk
2
n)d(wn, x

∗).

Substituting the bounds for d(zn, x
∗) and d(tnvn, x

∗) into the first inequality:

d(wn+1, x
∗) ≤ (1− αn)d(zn, x

∗) + αnd(tnvn, x
∗)

≤ (1− αn)knd(wn, x
∗) + αn(kn − βnkn + βnk

2
n)d(wn, x

∗)

= [kn − αnkn + αnkn − αnβnkn + αnβnk
2
n]d(wn, x

∗)

= [kn + αnβnkn(kn − 1)]d(wn, x
∗).

Let an = d(wn, x
∗). Then

an+1 ≤ (kn + αnβnkn(kn − 1))an.

Since
∑∞

n=1(kn − 1) <∞, we know that kn → 1 as n→∞. This implies that
the sequence {kn} is bounded, so there exists M > 0 such that kn ≤M for all
n. Also, 0 < a ≤ αn, βn ≤ b < 1. The term bn = kn + αnβnkn(kn − 1) can be
written as bn = 1+(kn−1)+αnβnkn(kn−1) = 1+(kn−1)(1+αnβnkn). The
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sum
∑∞

n=1(kn − 1)(1 + αnβnkn) converges because (1 + αnβnkn) is bounded
and

∑∞
n=1(kn − 1) converges. By Lemma 2.8, since an+1 ≤ (1 + bn)an and∑

bn converges, the limit of {an} exists. Therefore, lim
n→∞

d(wn, x
∗) exists. �

Lemma 3.4. Let G be a nonempty, bounded, closed and convex subset of a
complete CAT (0) space X. Let t : G → G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptoti-
cally nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a nonex-

pansive mapping. If
∞∑
n=1

(kn − 1) < ∞, then the sequence {wn} generated by

the iteration scheme (3.1) satisfies

lim
n→∞

d(tnvn, wn) = 0 and lim
n→∞

d(wn, zn) = 0.

Proof. Let w1 ∈ G and x∗ ∈ Fix(t) ∩ Fix(T ). By Lemma 3.2, we have x∗ ∈
PT (x∗) = {x∗} and by Lemma 3.3, the limit lim

n→∞
d(wn, x

∗) exists. Let’s denote

this limit by c. We consider the distance d(tnvn, x
∗) as follows:

d(tnvn, x
∗) = d(tnvn, t

nx∗)

≤ knd(vn, x
∗)

= knd((1− βn)wn ⊕ βnzn, x∗)
≤ (1− βn)knd(wn, x

∗) + βnknd(zn, x
∗).

Since zn ∈ PT (tnwn) and x∗ ∈ PT (x∗), we know that

d(zn, x
∗) = dist(zn, {x∗}) ≤ H(PT (tnwn), PT (x∗)).

Since PT is a nonexpansive mapping, we have

H(PT (tnwn), PT (x∗)) ≤ d(tnwn, x
∗).

Furthermore, as t is an asymptotically nonexpansive mapping, d(tnwn, x
∗) =

d(tnwn, t
nx∗) ≤ knd(wn, x

∗). Thus,

d(tnvn, x
∗) ≤ (1− βn)knd(wn, x

∗) + βnknH(PT (tnwn), PT (x∗))

≤ (1− βn)knd(wn, x
∗) + βnknd(tnwn, x

∗)

= (1− βn)knd(wn, x
∗) + βnknd(tnwn, t

nx∗)

≤ (1− βn)knd(wn, x
∗) + βnk

2
nd(wn, x

∗)

≤ (kn − βnkn + βnk
2
n)d(wn, x

∗)

= (kn − 1 + 1 + βnk
2
n − βnkn)d(wn, x

∗)

= (1 + (1 + βnkn)(kn − 1))d(wn, x
∗).
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Taking the limit superior of the last inequality, we get

lim sup
n→∞

d(tnvn, x
∗) ≤ lim sup

n→∞
(1 + (1 + βnkn)(kn − 1))d(wn, x

∗).

Since
∑∞

n=1(kn − 1) < ∞, we know that kn → 1 as n → ∞ and βn ∈ (0, 1),
which implies the term (1 + βnkn)(kn − 1) converges to 0. Thus,

lim sup
n→∞

d(tnvn, x
∗) ≤ lim sup

n→∞
d(wn, x

∗) = c. (3.2)

Similarly, we obtain

lim sup
n→∞

d(zn, x
∗) ≤ lim sup

n→∞
knd(wn, x

∗) = lim sup
n→∞

d(wn, x
∗) = c. (3.3)

Furthermore, from Lemma 3.3 and the definition of the sequence {wn}, we
have

c = lim
n→∞

d(wn+1, x
∗) = lim

n→∞
d((1− αn)zn ⊕ αntnvn, x∗). (3.4)

By (3.2), (3.3), (3.4) and Lemma 2.7, we conclude that

lim
n→∞

d(tnvn, wn) = 0 and lim
n→∞

d(wn, zn) = 0.

This completes the proof. �

Lemma 3.5. Let G be a nonempty, bounded, closed and convex subset of a
complete CAT (0) space X. Let t : G → G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptoti-
cally nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a nonex-

pansive mapping. If
∞∑
n=1

(kn − 1) < ∞, then the sequence {wn} generated by

the iteration scheme (3.1) satisfies

lim
n→∞

d(tnwn, wn) = 0.

Proof. Let w1 ∈ G and x∗ ∈ Fix(t) ∩ Fix(T ). By Lemma 3.2, we have
x∗ ∈ PT (x∗) = {x∗}. From Lemma 3.3, the limit lim

n→∞
d(wn, x

∗) exists. Let’s

denote this limit as c. We consider the distance d(tnvn, x
∗) as follows:

d(tnwn, wn) ≤ d(tnwn, t
nvn) + d(tnvn, wn)

≤ knd(wn, vn) + d(tnvn, wn)

= knd(wn, (1− βn)wn ⊕ βnzn) + d(tnvn, wn)

≤ kn[(1− βn)d(wn, wn) + βnd(wn, zn)] + d(tnvn, wn)

= knβnd(wn, zn) + d(tnvn, wn).

Then, we have

lim
n→∞

d(tnwn, wn) ≤ lim
n→∞

knβnd(wn, zn) + lim
n→∞

d(tnvn, wn).
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Using Lemma 3.4, we know that

lim
n→∞

d(wn, zn) = 0

and
lim
n→∞

d(tnvn, wn) = 0.

Since limn→∞ kn = 1 and {βn} is a bounded sequence, the limit of the first
term on the right-hand side is 0. Therefore,

lim
n→∞

d(tnwn, wn) = 0.

This completes the proof. �

Lemma 3.6. Let G be a nonempty, bounded, closed and convex subset of a
complete CAT (0) space X. Let t : G → G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptoti-
cally nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a nonex-

pansive mapping. If
∞∑
n=1

(kn − 1) < ∞, then the sequence {wn} generated by

the iteration scheme (3.1) satisfies

lim
n→∞

d(twn, wn) = 0.

Proof. Let w1 ∈ G and x∗ ∈ Fix(t) ∩ Fix(T ). By Lemma 3.2, we have x∗ ∈
PT (x∗) = {x∗}. From Lemma 3.3, the limit lim

n→∞
d(wn, x

∗) exists. Let’s denote

this limit by c. We consider the distance d(tnvn, x
∗) as follows:

d(twn, wn) = d(wn, twn)

≤ d(wn, t
nwn) + d(tnwn, twn)

= d(wn, t
nwn) + d(t(tn−1wn), twn)

≤ d(wn, t
nwn) + k1d(tn−1wn, wn)

≤ d(wn, t
nwn) + k1[d(tn−1wn, t

n−1wn−1) + d(tn−1wn−1, wn)]

≤ d(wn, t
nwn) + k1kn−1d(wn, wn−1) + k1d(tn−1wn−1, wn)

= d(wn, t
nwn) + k1kn−1d((1− αn−1)zn−1 ⊕ αn−1tn−1vn−1, wn−1)

+ k1d(tn−1wn−1, (1− αn−1)zn−1 ⊕ αn−1tn−1vn−1)
≤ d(wn, t

nwn) + k1kn−1[(1− αn−1)d(zn−1, wn−1)

+ αn−1d(tn−1vn−1, wn−1)]

+ k1[(1−αn−1)d(tn−1wn−1, zn−1)+αn−1d(tn−1wn−1, t
n−1vn−1)].

As n→∞, we know that

lim
n→∞

d(zn−1, wn−1) = 0
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and

lim
n→∞

d(tn−1vn−1, wn−1) = 0.

From Lemma 3.4, we also have

lim
n→∞

d(tn−1wn−1, zn−1) = lim
n→∞

d(tn−1vn−1, wn−1) = 0

and

lim
n→∞

d(tn−1wn−1, t
n−1vn−1) = 0.

From the first term, we know that lim
n→∞

d(wn, t
nwn) = 0 from Lemma 3.5.

Also, all the other terms on the right-hand side approach zero as n→∞ due
to Lemma 3.4 and the boundedness of the sequences involved. Therefore,

lim
n→∞

d(twn, wn) = 0.

This completes the proof. �

Theorem 3.7. Let G be a nonempty, bounded, closed and convex subset of a
complete CAT (0) space X. Let t : G → G be a single-valued asymptotically
nonexpansive mapping, and let T : G → FB(G) be a multivalued asymptot-
ically nonexpansive mapping, where Fix(t) ∩ Fix(T ) 6= ∅, and PT is a non-

expansive mapping. If
∞∑
n=1

(kn − 1) < ∞, the sequence {wn} generated by the

iteration scheme (3.1), then {wn} is ∆-convergent to a common fixed point of
t and T .

Proof. Let {wn} be the sequence generated by the iterative process (3.1) and
let x∗ be a common fixed point of t and T . By Lemma 3.3, we know that
lim
n→∞

d(wn, x
∗) exists. To prove the theorem, we must show that {wn} is ∆-

convergent to a common fixed point of t and T . Let A ⊂ G be the asymptotic
center of {wn}. By Lemma 2.3, A consists of exactly one point. Let’s call this
point w ∈ A. We need to prove that w ∈ Fix(t) ∩ Fix(T ).

First, we prove that w ∈ Fix(T ). Since w ∈ A and A is the asymptotic
center of {wn}, we have

lim sup
n→∞

d(wn, w) = min
y∈G

lim sup
n→∞

d(wn, y).

By Lemma 3.4, we know that limn→∞ d(wn, zn) = 0. Since {wn} is a bounded
sequence, the sequence {zn} is also bounded. Let {wnk

} be any subsequence of
{wn} that ∆-converges to a point y ∈ G. From the relation limn→∞ d(wn, zn) =
0, by Lemma 2.4(1), we can deduce that the corresponding subsequence {znk

}
also ∆-converges to the same point y. Since znk

∈ PT (tnkwnk
) for all k ∈ N,

and y ∈ G, it follows from Lemma 2.5 that y ∈ T (y), and thus y ∈ Fix(T ).
Therefore, every ∆-convergent subsequence of {wn} converges to a fixed point
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of T . Since the set of asymptotic centers is a single point, this implies
w ∈ Fix(T ).

Next, we prove that w ∈ Fix(t). From Lemma 3.6, we know that

lim
n→∞

d(wn, twn) = 0.

Since {wn} is ∆-convergent to w, by Lemma 2.4(2), we can deduce that
w = tw. Therefore, w ∈ Fix(t).

Since w ∈ Fix(t) and w ∈ Fix(T ), we conclude that {wn} is ∆-convergent
to a common fixed point of t and T . �

Remark 3.8. (Relation to demiclosedness) In the proof of Theorem 3.7, Lem-
mas 3.4-3.6 yield

d
(
tnvn, wn

)
→ 0 and d(wn, zn)→ 0.

Since {wn} is bounded in a CAT (0) space, it admits a ∆-cluster point w̄.
The demiclosedness principle for (asymptotically) nonexpansive single-valued
mappings in CAT (0) spaces (see Corollary 2.10) then gives

w̄ ∈ Fix(t).

On the multivalued side, the coupling through the nonexpansive metric se-
lection PT ensures Fix(T ) = Fix(PT ) and together with d

(
wn, PT (tnwn)

)
→

0, implies
w̄ ∈ Fix(PT ) = Fix(T ).

Consequently, w̄ ∈ Fix(t)∩Fix(T ), which is precisely the step that upgrades
the convergence of the iteration scheme (3.1) to convergence toward a common
fixed point of t and T .

4. Examples

Example 4.1. Let (X, d) be a complete CAT (0) space. For concreteness,
take X = R2 with the Euclidean metric, and let

G := {x ∈ X : ‖x‖ ≤ 1},
which is nonempty, bounded, closed and convex.

Define t : G→ G by t(x) = 1
2x. Then t is 1

2 -Lipschitz, hence asymptotically

nonexpansive with modulus kn ≡ 1 (so
∞∑
n=1

(kn − 1) < ∞) and Fix(t) = {0}.

Define a multivalued mapping T : G→ FB(G) by the constant convex set

T (x) ≡ G for all x ∈ G.
For the Hausdorff metric H on closed bounded subsets of X, we have

H(Tnx, Tny) = H(G,G) = 0
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for all x, y ∈ G and all n, so T is asymptotically nonexpansive (with modulus
kn ≡ 1). Let PT be the (unique) metric projection onto G,

PT := PG : X → G, PG(v) := arg min
w∈G

d(v, w).

Then PG is well-defined and nonexpansive in CAT (0) spaces. Moreover,
Fix(T ) = {x ∈ G : x ∈ T (x)} = G, hence

Fix(t) ∩ Fix(T ) = {0} 6= ∅.

Generate {wn} ⊂ G by the iteration scheme (3.1) with control sequences

0 < a ≤ αn, βn ≤ b < 1 and asymptotic moduli {kn} satisfying
∞∑
n=1

(kn −

1) < ∞. Since all assumptions of Theorem 3.7 are fulfilled (single-valued t
and multivalued T asymptotically nonexpansive, nonexpansive mapping PT ,
bounded convex G), the sequence {wn} is ∆-convergent to a common fixed
point 0 ∈ G of t and T .

Example 4.2. Let (X, d) be a complete CAT (0) space. For a concrete in-
stance, take X = R with the usual Euclidean metric and let

G := [0, 1],

which is nonempty, bounded, closed and convex.

Define t : G→ G by t(u) = 1
2u. Then t is 1

2 -Lipschitz, hence asymptotically

nonexpansive with modulus kn ≡ 1 (so
∞∑
n=1

(kn − 1) <∞), and

Fix(t) = {u ∈ G : u = 1
2u} = {0}.

Define a multivalued mapping T : G→ FB(G) by

T (u) :=
[

0, 13u
]
, u ∈ G.

Each T (u) is a nonempty closed convex subset of G. With the Hausdorff
metric H on closed bounded subsets of X, we have

H
(
T (u), T (v)

)
=
∣∣1
3u−

1
3v
∣∣ ≤ 1

3 |u− v|, u, v ∈ G,

so T is (asymptotically) nonexpansive with modulus kn ≡ 1. Let PT be the
(unique) metric projection onto T (u):

PT (u) := arg min
w∈T (u)

d(u,w).

Since u ≥ 1
3u for u ∈ [0, 1], the nearest point of u to the interval [0, 13u] is its

right endpoint, hence

PT (u) = 1
3u for all u ∈ G.
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Therefore, PT is single-valued and nonexpansive (indeed |PT (u) − PT (v)| =
1
3 |u− v|). Moreover,

Fix(T ) = {u ∈ G : u ∈ [0, 13u]} = {0}

and thus Fix(t) ∩ Fix(T ) = {0} 6= ∅.
Generate {wn} ⊂ G by iteration scheme (3.1) with control sequences 0 <

a ≤ αn, βn ≤ b < 1 and asymptotic moduli {kn} satisfying
∞∑
n=1

(kn − 1) < ∞

(here kn ≡ 1). Since all assumptions of Theorem 3.7 are satisfied (singlevalued
t and multivalued T asymptotically nonexpansive, nonexpansive mapping PT ,
bounded convex G), the sequence {wn} is ∆-convergent to the common fixed
point 0 ∈ G.

Example 4.3. Let X be the Hilbert space of real 2 × 2 symmetric matrices
endowed with the Frobenius norm ‖A‖F =

√
〈A,A〉F . Consider the nonempty,

bounded, closed and convex set

G := {A ∈ R2×2
sym : A � 0, ‖A‖F ≤ 1}.

Define t : G→ G by t(A) = 1
2A. Then t is 1

2 -Lipschitz, hence asymptotically

nonexpansive with modulus kn ≡ 1 (so
∞∑
n=1

(kn − 1) <∞), and

Fix(t) = {A ∈ G : A = 1
2A} = {0}.

Define T : G→ FB(G) by the closed convex segment

T (A) := conv{0, 13A} =
{
θ 1

3A : θ ∈ [0, 1]
}

= [ 0, 13A ].

Each T (A) is nonempty, closed, convex and consists of positive semidefinite
matrices. Let H denote the Hausdorff distance induced by ‖ · ‖F . Since
H([0, a], [0, b]) = ‖a− b‖F for a, b in a Hilbert space, we obtain

H
(
T (A), T (B)

)
=
∥∥∥1
3A−

1
3B
∥∥∥
F
≤ 1

3 ‖A−B‖F , (A,B ∈ G),

so T is nonexpansive (hence asymptotically nonexpansive with kn ≡ 1). Let
PT be the nearest point projection onto T (A):

PT (A) := arg min
W∈T (A)

‖A−W‖F .

In a Hilbert space, the metric projection onto a closed convex set is single-
valued and nonexpansive. Moreover, along the ray {θA : θ ≥ 0} one has
‖A− θ 13A‖F = (1− θ

3)‖A‖F , minimized at θ = 1, hence

PT (A) = 1
3A for all A ∈ G.
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Therefore,
Fix(T ) = {A ∈ G : A ∈ [0, 13A]} = {0}

and consequently Fix(t) ∩ Fix(T ) = {0} 6= ∅.
Generate {wn} ⊂ G by iteration scheme (3.1) with controls 0 < a ≤ αn,

βn ≤ b < 1 and asymptotic moduli {kn} satisfying
∞∑
n=1

(kn − 1) < ∞ (here

kn ≡ 1). All assumptions of Theorem 3.7 are satisfied, hence {wn} is ∆-
convergent to the common fixed point 0 ∈ G.

5. Application

The iteration scheme presented in Theorem 3.7 can be applied to solve
signal reconstruction problems, particularly in medical imaging techniques like
Compressed Sensing MRI. The objective is to recover an original signal u∗

from incomplete and noisy measurements. This problem is framed as a fixed
point problem where the desired solution is a common fixed point of two key
operators.

5.1. Problem Formulation. Let (X, d) be a complete CAT (0) space, rep-
resenting the space of all possible signals. We define the following:

(1) G ⊂ X: A nonempty, closed, bounded and convex subset representing
the space of feasible signals.

(2) t : G→ G: A single-valued asymptotically nonexpansive mapping that
models a data fidelity step. This operator ensures the reconstructed
signal is consistent with the acquired measurements.

(3) T : G → FB(G): A multivalued asymptotically nonexpansive map-
ping that models a structural constraint, such as the sparsity of the
signal in a transform domain (e.g., wavelet domain).

(4) PT : A nonexpansive selection mapping associated with T , which allows
us to choose a single element from the set T (v).

(5) Fix(t) ∩ Fix(T ) 6= ∅: We assume the existence of a common fixed
point u∗, which is the true signal we are trying to recover.

The reconstruction problem is to find a signal that satisfies both the data fi-
delity and structural constraints simultaneously. This is precisely the common
fixed point problem that the iteration scheme (3.1) is designed to solve.

5.2. Iterative Reconstruction Algorithm. The sequence {wn} is gener-
ated by the iteration scheme (3.1),{

vn = (1− βn)wn ⊕ βnzn,
wn+1 = (1− αn)zn ⊕ αntnvn

for n ∈ N, where zn ∈ PT (tnwn) and 0 < a ≤ αn, βn ≤ b < 1.
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In each iteration, the algorithm performs two main steps:

(1) An update is performed to enforce the structural constraints on the
signal, modeled by the multivalued mapping T . The selection zn ∈
PT (tnwn) ensures that the structural properties are satisfied.

(2) The signal is then updated again using the data fidelity operator t. The
asymptotically nonexpansive nature of the mappings and the specific
structure of the iteration guarantee the convergence of the sequence.

5.3. Convergence and Practical Implications. According to Theorem

3.7, if
∞∑
n=1

(kn − 1) <∞, the sequence {wn} generated by the iterative process

will ∆-converge to a common fixed point of t and T . In the context of signal
reconstruction, this means:

(1) The algorithm is guaranteed to converge to a solution that is both con-
sistent with the measured data and adheres to the a priori structural
constraints.

(2) The use of CAT (0) space geometry ensures the stability of the iterative
updates, which is crucial for handling complex, high-dimensional data.

(3) This approach provides a robust theoretical framework for developing
effective algorithms for real-world signal recovery problems, including
denoising, compressed sensing, and image restoration from incomplete
data.

5.4. Explanation of the Code. The MATLAB implementation follows a
structured iteration scheme (3.1). Below is a breakdown of the main steps:

(1) Load MRI Image: The algorithm uses a standard phantom MRI
image for testing.

(2) Degraded Image: Adds Gaussian noise with mean 0 and variance
0.01.

(3) Initialization: Sets up maximum iterations and arrays to store re-
sults (PSNR, SSIM). Let αn = 0.5 and βn = 0.2.

The quality of the reconstructed image is measured by the Peak
Signal-to-Noise Ratio (PSNR) in decibels (dB). The standard formula
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is defined as:

PSNR = 10 log10

(
MAX2

I

MSE

)
,

where MAXI is the maximum possible pixel value of the image, and
MSE is the Mean Squared Error, calculated as:

MSE =
1

MN

M∑
i=1

N∑
j=1

(uij − u∗ij)2,

where u being the original image, u∗ the reconstructed image, and
M ×N the image dimensions.

The Structural Similarity Index Measure (SSIM) between two im-
ages x and y is defined as:

SSIM =

[
2µxµy + C1

µ2x + µ2y + C1

]
×
[

2σxy + C2

σ2x + σ2y + C2

]
×

[
σ2x + σ2y + C3

µ2x + µ2y + C3

]
,

where
– µx and µy are the average pixel intensities of the images x and y,

respectively.

– σ2x and σ2y are the variances of the pixel intensities in the images
x and y, respectively.

– σxy is the covariance of the pixel intensities between the two im-
ages.

– C1, C2, C3 are small constants used to stabilize the division with
weak denominators.

(4) Iterative Reconstruction: The main iterative loop consists of:
– Applying a nonexpansive projection (wavelet-based denoising) to

remove noise.

– Updating the image using an asymptotically nonexpansive trans-
formation.

– Combining the updates using the fixed point iteration scheme.
(5) Convergence Check: The iteration stops when the relative error

falls below a predefined tolerance (10−5).

(6) Wavelet-Based Denoising: A Haar wavelet transform is applied to
remove small coefficients, ensuring a sparse reconstruction.
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The results are show in Figure 1 and Figure 2.

(a) Original image

(b) Degraded image

(c) PSNR:31.19dB,

SSIM: 0.5018,
19 Iterations

(d) Residual

Figure 1. Reconstructed image results by iteration scheme (3.1).
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Figure 2. Convergence of PSNR and SSIM for reconstruction
iteration scheme (3.1).

By applying Theorem 3.7, we guarantee convergence to an optimal recon-
structed signal using a structured iterative process. This approach is widely
used in compressed sensing, image processing, and denoising algorithms.

6. Conclusion

We studied a coupled iteration for two nonlinear mappings in CAT(0) spaces
in which a single-valued asymptotically nonexpansive map t : G → G is
blended with a multivalued asymptotically nonexpansive map T : G→ FB(G)
via a nonexpansive mapping PT . For the explicit two step iteration scheme
(3.1) with bounded controls 0 < a ≤ αn, βn ≤ b < 1 and a summable

asymptotic modulus
∞∑
n=1

(kn− 1) <∞, we proved that the generated sequence

{wn} ∆-converges to a common fixed point of t and T . The analysis hinges
on the identification Fix(T ) = Fix(PT ), quasi-Fejér type estimates yielding
asymptotic regularity, and a demiclosedness principle for (asymptotically) non-
expansive mappings adapted to CAT(0) geometry, which together ensure con-
vergence of the mixed scheme.
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