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Abstract. Many problems from physics, engineering and economics can be efficiently solved

when dealing with nonlinear integral equations which involve both integrals and derivatives

of unknown function. In this work, the existence of non-increasing integrable solutions for

a nonlinear integro-differential equation is investigated using the Darbo fixed point theorem

via the Hausdorff measure technique of non-compactness.

1. Introduction

The solutions of differential and integro-differential equations have a ma-
jor role in the fields of science and engineering. Therefore, many authors
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have considered the theoretical and numerical solutions for some types of
these equations [1, 2, 17, 20, 21, 22, 23, 24, 27, 28]. The non-linear integro-
differential equations are used to model several phenomena in science and tech-
nology includes chemistry, biology, physics, vibration, acoustic signals, signal
processing, fluid dynamics and viscoelasticity. Moreover, Integro-differential
equations are used mostly to study discontinuous stochastic processes [25]. In
this work, we investigate the solvability of the nonlinear integro-differential
equation:

u(t) = q(t) +

∫ t

0
p(t, s)f

(
s, u′(s)

)
ds, t ≥ 0, (1.1)

in the class L1 (R+)of Lebesgue integrable functions on R+. This equation
was investigated before in different Banach spaces or by using different fixed
point theorems under some various assumptions, see [4, 8, 9, 10, 11, 12, 13,
14, 15, 16].

Indeed, equation (1.1) is a general form of that reduced from many mathe-
matical modeling such as the resultant equation in treating the spread of the
COVID-19 disease [26].

The aim of this work is to find sufficient conditions under which the solution
of problem (1.1) are non-increasing. The rest of this article is organized as
follows: in the next section, we derive the equivalent integral equation. Also,
some needed definitions and theorems are stated. In the third section, the
main existence results are presented. In the last section, some conclusions and
possible future works are stated.

2. Preliminaries

First of all, we will transform (1.1) to an equivalent integral equation by
differentiate both sides of equation (1.1) with respect to t, so, we get

u′(t) = q′(t) + p(t, t)f
(
t, u′(t)

)
+

∫ t

0

∂p

∂t
(t, s)f

(
s, u′(s)

)
ds.

Put

x(t) = u′(t), q′(t) = h(t), p(t, t) = g(t),
∂p(t, s)

∂t
= k(t, s).

Then, we get

x(t) = h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds, t ≥ 0. (2.1)
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Note that the two equations (1.1) and (2.1) are equivalent and they are
solvable together, where

u(t) = q(0) +

∫ t

0
x(s)ds.

In the rest of this section, we give short notes for some definitions and
theorems that will be needed later to investigate the solvability of the nonlinear
Volterra integral equation (2.1).

Definition 2.1. ([3, 5], Superposition operator) Assume that a function f :
I × R→ R satisfies the Carathéodory conditions that is, it is measurable in t
for any x ∈ R and continuous in x for almost all t ∈ I. Then, to every function
x(t) being measurable on I, we may assign the function

F (x)(t) = f(t, x(t)), t ∈ I.

The operator F in such way called the superposition operator generated by
the function f and we have the following theorem.

Theorem 2.2. ([5]) The superposition operator F generated by the function
f maps continuously the space L1(I) into L1(I), if and only if

|f(t, x)| ≤ a1(t) + b|x|, ∀ t ∈ I, x ∈ R,

where a(t) ∈ L1(I) and b ≥ 0.

Definition 2.3. ([5], Linear integral operators) Consider the following linear
integral operator:

(Kx)(t) =

∫ ∞

0
k(t, s)x(s)ds, t ∈ R+,

where k(t, s) : R+×R+ → R is measurable with respect to its both variables.

Theorem 2.4. ([18, 19]) Assume that k(t, s) = k : R+×R+ → R is measurable
on R+such that the integral operator (Kx)(t) =

∫∞
0 k(t, s)x(s)ds, t ≥ 0 maps

L1
(
R+
)

into itself. Then K transforms the set of non-increasing functions

from L1
(
R+
)

into itself, if and only if for any A > 0, the following implication
is true.

t1 < t2 ⇒
∫ A

0
k (t1, s) ds ≥

∫ A

0
k (t2, s) ds.

Note that, in the case when K transforms L1
(
R+
)
into itself, then K is

continuous and bounded with norm ‖K‖ ([18]).
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Definition 2.5. (Measures of non-compactness) Let E be a Banach space
with norm ‖ ·‖ and zero element θ. Let X be a nonempty and bounded subset
of E and Br be a closed ball in E with center at θ and radius r.

The Hausdorff measure of noncompactness χ(X) is defined as [6]:

χ(X) = inf {r > 0 : there exists a finite subset Y of E, X ⊂ Y +Br} .

Another measure was defined in the space L1
(
R+
)
[4]. For ε > 0, let

c(X) = lim
ε→0

{
sup
x∈X

{
sup

[∫
D
|x(t)|dt, D ⊂ I, meas (D) ≤ ε

]}}
and

d(X) = lim
T→∞

{
sup

[∫ ∞

T
|x(t)|dt, x ∈ X

]}
.

Where meas D denotes the lebesgue measure of the subset D. Form

γ(X) = c(X) + d(X).

Where the function γ is a regular measure of weak noncompactness in the
space L1

(
R+
)
, and we have the following theorem.

Theorem 2.6. ([4, 5]) Let X be a nonempty, bounded and compact in measure
subset of E. Then

χ(X) ≤ γ(X) ≤ 2χ(X).

For compactness in measure, we have the following theorem.

Theorem 2.7. ([7]) Let X be a bounded subset of E, consisting of functions
which are almost everywhere non-decreasing (or non-increasing) on the inter-
val R+. Then X is compact in measure.

Theorem 2.8. ([5, 6]) Let Q be a nonempty, bounded, closed and convex
subset of E and let H : Q → Q be a continuous transformation which is a
contraction with respect to the measure of non-compactness µ, that is, there
exist q ∈ [0, 1) such that

µ(A(X)) ≤ qµ(X)

for any nonempty subset X of E. Then A has at least one fixed point in the
set Q.
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3. Main results

Consider the operator H associated with integral equation (2.1).

Hx = h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds, t ≥ 0. (3.1)

Then equation (2.1) becomes

x = Hx = h+ gFx+ λKFx, (3.2)

where

(Fx)(t) = f(t, x), (Kx)(t) =

∫ t

0
k(t, s)x(s)ds

are the superposition operator and the linear integral operator, respectively.

We shall treat the equation (2.1) under the following assumptions:

(i) h : R+ → R such that h ∈ L1
(
R+
)

and g : R+ → R is bounded func-
tion such that M = sup

t∈R+ |g(t)|, and h and g are almost everywhere

positive and non-increasing in R+,
(ii) f : R+ × R → R+satisfies the caratheodory conditions and there are

positive function a ∈ L1
(
R+
)

and constant b ≥ 0 such that

|f(t, x)| ≤ a(t) + b|x|, ∀ t, x.

Moreover, f(t, x) is assumed to be non-increasing on R+ × R for all
t, x.

(iii) k : R+×R+ → R satisfies caratheodory conditions such that the linear
operator K defined as

(Kx)(t) =

∫ t

0
k(t, s)x(s)ds, t > 0

maps the space L1
(
R+
)

into itself, also, for all A > 0 and for all

t ∈ R+, we have

t1 < t2 ⇒
∫ A

0
k (t1, s) ds ≥

∫ A

0
k (t2, s) ds.

(iv) q = b(M + ‖K‖) < 1.

Then, we can prove the following existence theorem.

Theorem 3.1. Assume that the assumptions (i) − (iv) are satisfied. Then
the equation (2.1) has at least one integrable solution on L1

(
R+
)

being non-

increasing on R+.
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Proof. First, note that the space L1
(
R+
)

is Banach space. Next, we will prove

that the operator H maps continuously the space L1
(
R+
)

into itself, we have∫ ∞

0
|(Hx)(t)|dt

=

∫ ∞

0

∣∣∣∣h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫ ∞

0
|h(t) + g(t)f(t, x(t))|dt+

∫ ∞

0

∣∣∣∣∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫ ∞

0
|h(t)|dt+

∫ ∞

0
|g(t)|[a(t) + b|x(t)|]dt+ ‖K‖[a(s) + b|x(s)|]ds

≤ ‖h‖+M‖a‖+ bM

∫ ∞

0
|x(t)|dt+ ‖K‖‖a‖+ b‖K‖

∫ ∞

0
|x(s)|ds

≤ ‖h‖+ [M + ‖K‖]‖a‖+ [bM + b‖K‖]
∫ ∞

0
|x(t)|dt

<∞.

Then due to assumptions (i),(ii),(iii) and Theorem 2.2, we see that the operator
H maps continuously the space L1

(
R+
)

into itself.
In view of our assumptions and for x ∈ Br, we have

‖Hx‖ =

∫ ∞

0

∣∣∣∣h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
= ‖h‖+ ‖gF‖+ ‖KFx‖
≤ ‖h‖+ sup

t∈R+

|g|‖F‖+ ‖K‖‖Fx‖

≤ ‖h‖+M

∫ ∞

0
|f(t, x(t))|dt+ ‖K‖

∫ ∞

0
|f(t, x(t))|dt

≤ ‖h‖+M

∫ ∞

0
[a(t) + b|x(t)|]dt+ ‖K‖

∫ ∞

0
[a(t) + b|x(t)|]dt

≤ ‖h‖+M‖a‖+ bM

∫ ∞

0
|x(t)|

]
dt+ ‖K‖‖a‖+ b‖K‖

∫ ∞

0
|x(t)|

]
dt

≤ ‖h‖+ [M + ‖K‖]‖a‖+ b[M + ‖K‖]‖x‖.

Then

‖Hx‖ ≤ ‖h‖+ [M + ‖K‖]‖a‖+ b[M + ‖K‖]r ≤ r.
So, H transforms Br into Br, where

r ≤ ‖h‖+ [M + ‖K‖]‖a‖
1− b[M + ‖K‖]

.
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Using assumption (iv), we see that r > 0. Next, let

Qr =
{
x ∈ Br : x is a.e. positive and non-increasing on R+

}
.

Then Qr is nonempty, bounded, convex, closed and compact in measure.
For convexity, let x1, x2 ∈ Qr, with ‖xi‖ < r, i = 1, 2, 0 < λ ≤ 1 and

x = λx1 + (1− λ)x2. Then

‖x‖ = ‖λx1 + (1− λ)x2‖
≤ λ ‖x1‖+ |1− λ| ‖x2‖
< λr + (1− λ)r

= r,

it implies that x ∈ Qr and hence Qr is convex.
To show that Qr is closed [4], let us take a sequence {xn} which converges to

x (in the norm of L1
(
R+
)
). Then {xn} converges in measure to x and using

Vitali theorem, we deduce that, there exists a subsequence of our sequence
which converges to x almost everywhere on R+. Hence we see that x is non-
increasing almost everywhere on R+ which means that x ∈ Qr then Qr is
closed.

We can prove that Qr is compact in measure by using Theorem 2.7.
Next, by taking x ∈ Qr, then x(t) is almost everywhere positive and non-

increasing on R+ and consequently, due to the assumption (ii), Fx(t) is also of
the same type, in virtue of the assumption (iii) and Theorem 2.4, we deduce
that KFx is also positive and non-increasing on R+. Further, the assumption
(i) permits us to deduce that

Hx(t) = h(t) + g(t)Fx(t) +KFx(t)

is also a.e. positive and non-increasing on R+. This fact together with asser-
tion H : Br → Br, gives that self-mapping of the set Qr, since the operator
K is continuous and F is continuous in view Theorem 2.2, we conclude that
H maps continuously Qr into Qr.

Now, we will prove that β(HX) ≤ qβ(X), for any bounded subset X of Qr,
take an arbitrary number ε > 0 and a set D ⊂ R+such that meas (D) ≤ ε.
Hence, for any x ∈ X, we see that

∫
D
|(Hx)(t)|dt =

∫
D

∣∣∣∣h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
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≤
∫
D
|h(t)|dt+

∫
D
|g(t)f(t, x(t))|dt

+

∫
D

∣∣∣∣∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫
D
|h(t)|dt+

∫
D
|g(t)||f(t, x(t))|dt+ ‖KFx‖L1(D)

≤
∫
D
|h(t)|dt+M

∫
D

[a(t) + b|x(t)|]dt+ ‖K‖L1(D)

∫
D
|f(t, x(s))|ds

≤
∫
D
|h(t)|dt+M

∫
D
a(t)dt+ bM

∫
D
|x(t)|dt

+ ‖K‖L1(D)

∫
D
a(s)ds+ b‖K‖L1(D)

∫
D
|x(t)|dt

≤
∫
D
|h(t)|dt+M

∫
D
a(t)dt+

[
bM + b‖K‖L1(D)

] ∫
D
|x(t)|dt,

where ‖K‖L1(D) denotes the norm of the operator K : L1
(
R+
)
→ L1

(
R+
)
.

Since

lim
ε→0

{
sup

{∫
D
|h(t)|dt : D ⊂ R+, meas(D) ≤ ε

}}
= lim

ε→0
sup

[∫
D
a(t)dt : D ⊂ R+, meas(D) ≤ ε

}]
= 0.

Hence, we get

c(HX) ≤ qc(X), q = b
[
M + ‖K‖L1(D)

]
. (3.3)

For T > 0, any x ∈ X, we have∫ ∞

T
|(Hx)(t)|dt

=

∫ ∞

T

∣∣∣∣h(t) + g(t)f(t, x(t)) +

∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫ ∞

T
|h(t) + g(t)f(t, x(t))|dt+

∫ ∞

T

∣∣∣∣∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫ ∞

T
|h(t)|dt+

∫ ∞

T
|g(t)||f(t, x(t))|dt+

∫ ∞

T

∣∣∣∣∫ t

0
k(t, s)f(s, x(s))ds

∣∣∣∣ dt
≤
∫ ∞

T
|h(t)|dt+M

∫ ∞

T
[a(t) + b|x(t)|]dt+ ‖K‖

∫ ∞

T
[a(s) + b|x(s)|]ds

≤ [bM + b‖K‖]
∫ ∞

T
|x(t)|dt.
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Hence, we get

d(HX) ≤ qd(X). (3.4)

Combine equations (3.2) and (3.3), we deduce that

γ(HX) ≤ qγ(X).

Using Theorem (2.6), where Qr is compact in measure and X ⊂ Qr, we get

χ(HX) ≤ qχ(X).

Hence, we can apply Darbo fixed point Theorem 2.8, where all its conditions
are satisfied. So Eq. (2.1) has at least one solution in L1

(
R+
)

and the same
for Eq. (1.1). �

4. Conclusions

The existence of non-increasing integrable solutions for a nonlinear integro-
differential equation is discussed in this article. The equivalent integral equa-
tion is derived first. Then, the Darbo fixed point theorem is used to prove
the main results. Based on the obtained results, finding exact or numerical
solutions might be considered for mathematical models that involve particular
types of equations in different fields of study.
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