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Abstract. In this paper, we introduce several new generalized convolutions with a weight

function for the Laplace, Fourier sine and Fourier cosine integral transforms. Convolution

properties and their applications for solving a class of integral equations and systems of

integral equations are presented.

1. Introduction

Convolutions and generalized convolutions have attracted considerable at-
tention from many researchers in the past decades. The development of this
research trend can be found in [1, 3, 6, 8, 9, 10, 11, 13, 16, 19, 20]. It should be
noted that the definition of the generalized convolution with a weight function
for three arbitrary integral transforms K1,K2,K3 is given in [4]. Accord-
ingly, for the recent years there have been some results on the generalized
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convolutions with a weight function for the Fourier transform, Fourier sine
transform, Fourier cosine transform, Kontorovich-Lebedev transform and their
applications (see [5, 14, 15, 20]). However, the convolution for the Laplace
transform has been studied since the early years of the 20th century (see
[1, 2, 6, 12, 16, 17, 18]), but so far there have not been any research results
about the generalized convolution for the Fourier sine, Fourier cosine and
Laplace integral transforms.

In this paper, we introduce generalized convolution with a weight function
for the Laplace, Fourier sine and Fourier cosine transforms and we study the
algebraic properties, convolution type inequalities and its applications.

The most obvious difference with results stated in [15] is that in this pa-
per we use the Laplace transform to construct a new generalized convolution.
Then the respective equations and systems of integral equations are quite
difference, so that we can not use the technique used in [15] to solve these
problems. Moreover, in this paper, our results are not only in space L1(R+)

but also in several weighted spaces Lα,βp (R+). This paper is organized as fol-
lows. In section 2 we recall several convolutions and generalized convolutions
related with our research results; In section 3 we introduce the new generalized
convolutions for three integral transform and obtain the main result of this
paper, Theorem 3.1. Moreover, in this section we also prove some inequalities
on different functional spaces and algebraic properties of the convolution op-
erator; In section 4, we apply the new generalized convolution to solve a class
of integral equations and systems of two integral equations.

2. Well-known convolutions

The Fourier sine, Fourier cosine and Laplace transforms are of the following
form (see [12])

(
Fsf

)
(y) =

√
2

π

∫ ∞
0

f(x) sinxydx, y > 0,

(
Fcf

)
(y) =

√
2

π

∫ ∞
0

f(x) cosxydx, y > 0,

(
Lf)(y) =

∫ ∞
0

f(x)e−yxdx, y > 0.

The convolution of two functions f and g for the Laplace transform is of the
form (see [12])

(f ∗ g)(x) =

∫ x

0
f(x− y)g(y)dy, x > 0, (2.1)
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which satisfies the following factorization identity

L(f ∗ g)(y) = (Lf)(y)(Lg)(y). (2.2)

The convolution of two functions f and g for the Fourier cosine transform is
of the following form (see [12])

(f ∗
Fc
g)(x) =

1√
2π

∫ ∞
0

f(y)
[
g(x+ y) + g(|x− y|)

]
dy, x > 0, (2.3)

which satisfies the following factorization identity

Fc(f ∗
Fc
g)(y) = (Fcf)(y)(Fcg)(y), ∀ y > 0, f, g ∈ L1(R+). (2.4)

The generalized convolution for the Fourier sine and Fourier cosine transforms
of f and g is defined as follows (see [12])

(f ∗
1
g)(x) =

1√
2π

∫ ∞
0

f(y)
[
g(|x− y|)− g(x+ y)

]
dy, x > 0, (2.5)

or can be defined in the following form

(f ∗
1
g)(x) =

1√
2π

∫ ∞
0

g(y)
[
f(x+ y) + sign(x− y)f(|x− y|)

]
dy, x > 0,

which satisfies the following factorization identity

Fs(f ∗
1
g)(y) = (Fsf)(y)(Fcg)(y), f, g ∈ L1(R+). (2.6)

The generalized convolution for the Fourier cosine and Fourier sine transforms
is defined by (see [5])(
f ∗

2
g
)
(x) =

1√
2π

∫ ∞
0

f(y)
[
g(x+ y) + sign(y − x)g(|y − x|)

]
dy, x > 0, (2.7)

which satisfies the following factorization identity

Fc
(
f ∗

2
g
)
(y) =

(
Fsf

)
(y)
(
Fsg
)
(y). (2.8)

We consider the two parameters weighted function space Lp(R+, x
αe−βxdx),

or Lα,βp (R+) for convenient, with the norm as follows

||f(x)||
Lα,βp (R+)

=
(∫ ∞

0
|f(x)|pxαe−βxdx

)1/p
, 1 ≤ p <∞.
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3. The Laplace, Fourier sine and Fourier cosine generalized
convolutions

Definition 3.1. The generalized convolutions with a weight function γ(y) =
e−µy sin y, µ > 0 of two functions f, g for the Laplace, Fourier sine and Fourier
cosine transforms are defined by(

f
γ
∗ g
)
{ 1

2}(x) (3.1)

=
1

2π

∫ ∞
0

∫ ∞
0

{[ v + µ

(v + µ)2 + (x− 1− u)2
± v + µ

(v + µ)2 + (x− 1 + u)2

]
−
[ v+µ

(v+µ)2 + (x+1−u)2
± v+µ

(v+µ)2 + (x+1+u)2

]}
f(u)g(v)dudv, x > 0.

The most important property of a generalized convolution is the factoriza-
tion identity. The below theorem will show that in the factorization identity
of the generalized convolution (3.1) contains the Laplace transform while in
[15], the respective factorization identity contained the Kontorovich-Lebedev
transform.

Theorem 3.2. Suppose that f(x) and g(x) are two functions in L1(R+).

Then, the generalized convolutions
(
f
γ
∗ g
)
{ 1

2} belong to L1(R+), and the fol-

lowing estimaties hold

‖
(
f
γ
∗ g
)
{ 1

2}‖L1(R+)
≤ ‖f‖L1(R+)‖g‖L1(R+).

Moreover, the generalized convolutions
(
f
γ
∗ g
)
{ 1

2} belong to C0(R+) and satisfy

the following factorization identities and the Parseval’s type identities

F{ sc}
(
f
γ
∗ g
)
{ 1

2}(y) = ±e−µy sin y(F{ cs}f)(y)(Lg)(y), ∀ y > 0, (3.2)

(
f
γ
∗ g
)
{ 1

2}(x) = ±
√

2

π

∫ ∞
0

(
F{ cs}f

)
(y)
(
Lg
)
(y)e−µy sin y

{
sinxy

cosxy

}
dy. (3.3)

Proof. Set

θ{ 1
2}(x, u, v) =

[ v + µ

(v + µ)2 + (x− 1− u)2
± v + µ

(v + µ)2 + (x− 1 + u)2

]
−
[ v + µ

(v + µ)2 + (x+ 1− u)2
± v + µ

(v + µ)2 + (x+ 1 + u)2

]
.

For µ > 0, v ≥ 0, we have the following estimation∣∣∣ v + µ

(v + µ)2 + (x− 1− u)2

∣∣∣ ≤ 1

v + µ
≤ 1

µ
,
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which implies that

|θ{ 1
2}(x, u, v)|≤ 4

µ
. (3.4)

Thus,

|(f
γ
∗ g){ 1

2}| ≤
2

πµ

∣∣∣∫ ∞
0

∫ ∞
0

f(u)g(v)dudv
∣∣∣

≤ 2

πµ

∫ ∞
0
|f(u)|du

∫ ∞
0
|g(v)|dv

=
2

πµ
‖f‖L1(R+)‖g‖L1(R+). (3.5)

Moreover, we have

∫ ∞
0
|θ{ 1

2}(x, u, v)|dx ≤
∫ ∞
−1−u

v + µ

(v + µ)2 + t2
dt+

∫ ∞
−1+u

v + µ

(v + µ)2 + t2
dt

+

∫ ∞
1−u

v + µ

(v + µ)2 + t2
dt+

∫ ∞
1+u

v + µ

(v + µ)2 + t2
dt

=4

∫ ∞
0

v + µ

(v + µ)2 + t2
dt = 2π. (3.6)

Therefore,

‖(f
γ
∗ g){ 1

2}‖L1(R+)
=

∫ ∞
0
|(f

γ
∗ g){ 1

2}(x)|dx

≤
∫ ∞
0
|f(u)|du

∫ ∞
0
|g(v)|dv

= ‖f‖L1(R+)‖g‖L1(R+) <∞.

Hence,

(
f
γ
∗ g
)
{ 1

2} ∈ L1(R+). (3.7)
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From (3.1) and using the formula
∫∞
0 e−αx cosxydx = α

α2+y2
(α > 0), we get

(
f
γ
∗ g
)
{ 1

2}(x)

=
1

2π

∫
R3
+

f(u)g(v)e−(v+µ)y
{[

cos(x− 1− u)y ± cos(x− 1 + u)y
]

−
[

cos(x+ 1− u)y ± cos(x+ 1 + u)y
]}
dudvdy

=± 2

π

∫
R3
+

f(u)g(v)e−(v+µ)y
{

sinxy. sin y. cosuy

cosxy. sin y. sinuy

}
dudvdy

=± 2

π

∫ ∞
0

[ ∫ ∞
0

f(u)

{
cosuy

sinuy

}
du.

∫ ∞
0

g(v)e−vydv
]
e−µy sin y

{
sinxy

cosxy

}
dy

=±
√

2

π

∫ ∞
0

(F{ cs}f)(y)(Lg)(y)e−µy sin y

{
sinxy

cosxy

}
dy.

Then the Parseval’s type identities (3.3) hold. Combining with (3.7), we obtain
the factorization identities (3.2). From (3.3) and Riemann-Lebesgue lemma,

we get
(
f
γ
∗ g
)
{ 1

2} ∈ C0(R+). �

Theorem 3.2 shows the existence of convolutions (3.1) in L1(R+) and fac-
torization identities (3.2). In Theorem 3.3 and Theorem 3.4 below, we will

study the existence of convolutions (3.1) in Lα,βr (R+) and the corresponding
norm of inequalities.

Theorem 3.3. Let p > 1, r ≥ 1, 0 < β ≤ 1, f(x) ∈ Lp(R+), g(x) ∈ L1(R+).

Then the generalized convolutions
(
f
γ
∗ g
)
{ 1

2} are well-defined, continuous and

bounded in Lα,βr (R+). Moreover, these generalized convolutions satisfy the
following inequalities

‖
(
f
γ
∗ g
)
{ 1

2}‖Lα,βr (R+)
≤ C‖f‖Lp(R+)‖g‖L1(R+), (3.8)

where C = ( 2
πµ)1/p.β−

α+1
r .Γ1/r(α+ 1) and Γ(x) is Gamma Euler function.

If we suppose in addition that f(x) ∈ L1(R+) ∩ Lp(R+), then the generalized

convolutions
(
f
γ
∗ g
)
{ 1

2} belong to C0(R+), satisfy the factorization identities

(3.2), and satisfy Parseval’s type identities (3.3).
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Proof. By applying Hölder’s inequality for q > 1, 1
p + 1

q = 1, and (3.4), (3.6),
we get

|
(
f
γ
∗ g
)
{ 1

2}|≤
1

2π

[ ∫
R2
+

|f(u)|p|θ{ 1
2}(x, u, v)||g(v)|dudv

]1/p
×
[ ∫

R2
+

|g(v)||θ{ 1
2}(x, u, v)|dudv

]1/q
≤ 1

2π

[ ∫
R2
+

|f(u)|p|g(v)| 4
µ
dudv

]1/p[ ∫ ∞
0
|g(v)|2πdv

]1/q
=
( 2

πµ

)1/p
‖f‖Lp(R+)‖g‖L1(R+).

Thus, convolutions (3.1) exist and continuous. By applying formula (3.225.3)
in [8] (p.115), we get∫ ∞

0
xαe−βx|

(
f
γ
∗ g
)
{ 1

2}(x)|
r
dx ≤ Cr‖f‖rLp(R+)‖g‖

r
L1(R+).

Hence, convolutions (3.1) are in Lα,βr (R+) and the identities (3.8) hold.
From the hypothesis of Theorem 3.3 and by similar argument as Theorem

3.2, we get Parseval’s type identities (3.3), therefore the factorization identities
(3.2) hold. Combining with the Riemann-Lebesgue Lemma, we show that(
f
γ
∗ g
)
{ 1

2}(x) ∈ C0(R+). �

Theorem 3.4. Let α > −1, 0 < β ≤ 1, p > 1, q > 1, r ≥ 1 such that 1
p +

1
q = 1. Then for f(x) ∈ Lp(R+) and g(x) ∈ Lq(R+, e

(q−1)x), the generalized

convolutions (f
γ
∗g){ 1

2} are well-defined, continuous, bounded in Lα,βr (R+) and

‖(f
γ
∗ g){ 1

2}‖Lα,βr (R+)
≤ C‖f‖Lp(R+)‖g‖Lq(R+,e(q−1)x), (3.9)

where C = ( 2
πµ)1/q.β−

α+1
r .Γ1/r(α+ 1).

Moreover, if f(x) ∈ L1(R+)∩Lp(R+) and g(x) ∈ L1(R+)∩Lq(R+, e
(q−1)x)

then the convolutions (f
γ
∗ g){ 1

2} ∈ C0(R+) satisfy the factorization identities

(3.2) and Parseval’s type identities (3.3).
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Proof. By applying Hölder’s inequality for p, q > 1 satisfies and from (3.4),
(3.6), we have

|
(
f
γ
∗ g
)
{ 1

2}|≤
1

2π

[ ∫
R2
+

|f(u)|p|θ{ 1
2}(x, u, v)|e−vdudv

]1/p
×
[ ∫

R2
+

|g(v)|q|θ{ 1
2}(x, u, v)|e(q−1)vdudv

]1/q
≤ 1

2π

[ ∫ ∞
0
|f(u)|pdu

∫ ∞
0

4

µ
e−vdv

]1/p[ ∫ ∞
0
|g(v)|qe(q−1)v2πdv

]1/q
=
( 2

πµ

)1/p‖f‖Lp(R+)‖g‖Lq(R+,e(q−1)x) .

Therefore, convolutions (3.1) exist and continuous. From which and applying
formula (3.225.3) (p.115, in [8]), we obtain

∫ ∞
0

xαe−βx|(f
γ
∗ g){ 1

2}(x)|
r
dx ≤ Cr‖f‖rLp(R+)‖g‖

r
Lq(R+,e(q−1)x).

It implies the existence of convolutions (3.1) in Lα,βr (R+) and (3.9) hold.
From the hypothesis of Theorem 3.4 and by similar argument as Theorem

3.3, we get Parseval’s type identities (3.3), therefore the factorization identities

(3.2) hold. The Riemann-Lebesgue Lemma implies (f
γ
∗ g){ 1

2}(x) ∈ C0(R+).

�

Corollary 3.5. Under the same conditions stated in Theorem 3.2, the gener-
alized convolutions (3.1) exist, continuous in Lp(R+) and satisfy the following
estimaties

‖(f
γ
∗ g){ 1

2}‖Lp(R+)
≤ ‖f‖Lp(R+)‖g‖Lq(R+,e(q−1)x). (3.10)

In case p = 2, the following Parseval’s type identity hold

∫ ∞
0
|(f

γ
∗ g){ 1

2}(x)|
2
dx =

∫ ∞
0
|e−µy sin y(F{ cs}f)(y)(Lg)(y)|2dy. (3.11)
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Proof. By applying Hölder’s inequality and (3.6), we get∫ ∞
0
|(f

γ
∗ g){ 1

2}(x)|
p
dx

≤ 1

(2π)p

∫ ∞
0

{[∫
R2
+

e−v|f(u)|p|θ(x, u, v)|dudv
]1/p

×
[ ∫

R2
+

e(q−1)v|g(v)|q|θ(x, u, v)|dudv
]1/q}p

dx

≤ 1

(2π)p

[ ∫
R2
+

e−v|f(u)|p2πdudv
][ ∫ ∞

0
e(q−1)v|g(v)|q2πdv

]p/q
=
[ ∫ ∞

0
|f(u)|pdu.

∫ ∞
0

e−vdv
][ ∫ ∞

0
e(q−1)v|g(v)|qdv

]p/q
=‖f‖pLp(R+)‖g‖

p

Lq(R+,e(q−1)x)
.

Therefore, the convolutions (f
γ
∗ g){ 1

2}(x) are cotinuous in Lp(R+) and (3.10)

hold.
On the other hand, we get the following Parseval’s equalities in L2(R+)

‖F{ sc}f‖L2(R+)
= ‖f‖L2(R+).

Combining with factorization identities (3.2), we get the Fourier-type Parseval
identities (3.11). �

Corollary 3.6. (a) Let f(x) ∈ L2(R+), g(x) ∈ L1(R+). Then the generalized

convolutions (3.1) exist and belong to Lα,βr (R+) (r ≥ 1, β ≥ 0, α > −1).
Moreover, the following estimaties hold

‖(f
γ
∗ g){ 1

2}‖Lα,βr (R+)
≤
√

2

πµ
.β−

α+1
r .Γ1/r(α+ 1)‖f‖L2(R+)‖g‖L1(R+). (3.12)

(b) If f(x), g(x) ∈ L1(R+) then the generalized convolutions (3.1) exist and

belong to Lα,βr (R+) (r ≥ 1, β ≥ 0, α > −1), and

‖(f
γ
∗ g){ 1

2}‖Lα,βr (R+)
≤ 2

πµ
.β−

α+1
r .Γ1/r(α+ 1)‖f‖L1(R+)‖g‖L1(R+). (3.13)

Proof. (a) By applying Schwartz’s inequality and (3.4), (3.6) we get

|
(
f
γ
∗ g
)
{ 1

2}(x)|≤ 1

2π

[ ∫ ∞
0

2π|g(v)|dv
]1/2[ ∫

R2
+

|f(u)|2|g(v)| 4
µ
dudv

]1/2
=

√
2

πµ
‖f‖L2(R+)‖g‖L1(R+).
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Combining with formula (3.225.3) (p.115, in [8]), we get

‖(f
γ
∗ g){ 1

2}‖Lα,βr (R+)
≤
√

2

πµ
.β−

α+1
r .Γ1/r(α+ 1)‖f‖L2(R+)‖g‖L1(R+).

Thus, (3.12) is proved.
(b) By applying Schwartz’s inequality and (3.4), we get

|
(
f
γ
∗ g
)
{ 1

2}(x)|≤ 1

2π

[ ∫
R2
+

|f(u)||g(v)| 4
µ
dudv

]1/2[ ∫
R2
+

|f(u)||g(v)| 4
µ
dudv

]1/2
=

2

πµ
‖f‖L1(R+)‖g‖L1(R+).

Combining with formula (3.225.3) (p.115, in [8]), we get (3.13). �

Theorem 3.7. (Titchmarch’s type theorem) Given continuous functions g ∈
L1(R+), f ∈ L1(R+, e

γx), γ > 0. If
(
f
γ
∗ g
)
{ 1

2}(x) = 0, ∀x > 0 then either

f(x) = 0, ∀x > 0 or g(x) = 0, ∀x > 0.

Proof. We have∣∣∣ dn
dyn

({cos yx

sin yx

}
f(x)

)∣∣∣ =
∣∣∣f(x)xn

{
cos(yx+ nπ2 )

sin(yx+ nπ2 )

}∣∣∣ (3.14)

≤|e−γxxn||eγxf(x)|≤ n!

γn
|eγxf(x)|.

Here, we used the following estimation

0 ≤ e−γxxn = e−γx
(γx)n

n!

n!

γn
≤ e−γxeγx n!

γn
=
n!

γn
,

and f ∈ L1(R+, e
γx). Combining with (3.14) we get

dn

dyn

({
cos yx
sin yx

}
f(x)

)
∈

L1(R+).
Since L1(R+, e

γx) ⊂ L1(R+), (F{ cs}f)(y) are analytic in R+. On the other

hand, we get that (Lg)(y) is analytic in R+. By using the factorization prop-

erties (3.2) for
(
f
γ
∗ g
)
{ 1

2}(x) = 0 we have (F{ cs}f)(y)(Lg)(y) = 0, ∀y > 0. It

implies that, either f(x) = 0, ∀x > 0 or g(x) = 0, ∀x > 0. The theorem is
proved. �

Proposition 3.8. The generalized convolutions (3.1) are non-commutative,
non-associative but satisfy the following equalities(

f
γ
∗ g
)
{ 1

2}(x) =
1√
2π

∫ ∞
0

g(v)
[(
f(u) ∗{

1
Fc

} k{ 1
2}(v, µ, u)

)
(x)
]
dv,
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here, k{ 1
2}(v, µ, u) =

v + µ

(v + µ)2 + (1 + u)2
± v + µ

(v + µ)2 + (1− u)2
, f(x), g(x) are

functions in L1(R+) and the convolutions (. ∗
1
.), (. ∗

Fc
.) are respectively defined

by (2.5) and (2.3).

Proof. From (3.1) and by applying (2.5), we get(
f
γ
∗ g
)
1
(x)

=
1

2π

∫ ∞
0

∫ ∞
0

[( v + µ

(v + µ)2 + (x− 1− u)2
+

v + µ

(v + µ)2 + (x− 1 + u)2

)
−
( v + µ

(v + µ)2 + (x+ 1− u)2
+

v + µ

(v + µ)2 + (x+ 1 + u)2

)]
f(u)g(v)dudv

=
1

2π

∫ ∞
0
g(v)

[ ∫ ∞
0
f(u)

( v+µ

(v+µ)2+(x−1−u)2
− v+µ

(v+µ)2+(x+1+u)2

)
du

+

∫ ∞
0

f(u)
( v + µ

(v + µ)2 + (x− 1 + u)2
− v + µ

(v + µ)2 + (x+ 1− u)2

)
du
]
dv

=
1√
2π

∫ ∞
0

g(v)
[(
f(u) ∗

1

v + µ

(v + µ)2 + (1 + u)2

)
(x)

+
(
f(u) ∗

1

v + µ

(v + µ)2 + (1− u)2

)
(x)
]
dv

=
1√
2π

∫ ∞
0
g(v)

[(
f(u) ∗

1

( v+µ

(v+µ)2+(1+u)2
+

v+µ

(v+µ)2+(1−u)2
))

(x)
]
dv.

The second part can be proved by similar way. �

4. Integral equations and Systems of Integral Equations

Not many integral equations and systems of integral equations can be solved
in closed form. The generalized convolutions (3.1) introduced in this paper
allow us to get the solutions in closed form for integral equations and system
of integral equations.

4.1. Consider the following integral equations

f(x) +

∫ ∞
0

(
ϕ ∗
{ 2

1}
f
)
(u)θ{ 1

2}(x, u)du = g(x), (4.1)

where

θ{ 1
2}(x, u) =

1

2π

∫ ∞
0

{[ v + µ

(v + µ)2 + (x− 1− u)2
± v + µ

(v + µ)2 + (x− 1 + u)2

]
−
[ v + µ

(v + µ)2 + (x+ 1− u)2
± v + µ

(v + µ)2 + (x+ 1 + u)2

]}
ψ(v)dv,
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here, the convolutions (. ∗
2
.), (. ∗

1
.) are respectively defined by (2.7) and (2.5).

Theorem 4.1. Let g(x), ϕ(x), ψ(x) ∈ L1(R+). Then, the necessary and suf-
ficient condition for the existence of the unique solutions of equations (4.1) in

L1(R+) is that 1 ± Fc
(
ϕ
γ
∗ ψ
)
2
(y) 6= 0, ∀ y > 0. Moreover, the solutions can

be presented in closed form as

f(x) = g(x)∓
(
g ∗{

1
Fc

} q)(x),

where q ∈ L1(R+) is defined by

(Fcq)(y) =
Fc
(
ϕ
γ
∗ ψ
)
2
(y)

1± Fc
(
ϕ
γ
∗ ψ
)
2
(y)

,

and the convolution (. ∗
Fc
.) is defined by (2.3).

Proof. Necessity. Assume that the integral equations (4.1) have solutions in
L1(R+), for all g in L1(R+). Therefore, there exists g ∈ L1(R+) such that

(F{ sc}g)(y) 6= 0, ∀ y > 0. (4.2)

By applying Theorem 3.2, and by using factorization properties (3.2) for (4.1),
we get

(F{ sc}f)(y)± e−µy sin yF{ cs}
(
ϕ ∗
{ 2

1}
f
)
(y)(Lψ)(y) = (F{ sc}g)(y).

Combining with (2.8) and (2.6), we obtain

(F{ sc}f)(y)± e−µy sin y
(
Fsϕ

)
(y)
(
F{ sc}f

)
(y)(Lψ)(y) = (F{ sc}g)(y).

Combining with (3.2), we get

(F{ sc}f)(y)
[
1± Fc

(
ϕ
γ
∗ ψ
)
2
(y)
]

= (F{ sc}g)(y). (4.3)

Using feedback evidence, assume that there exist y0 > 0, such that 1±Fc
(
ϕ
γ
∗

ψ
)
2
(y0) = 0. Combining with (4.3), we get

(F{ sc}g)(y0) = 0, ∀ g ∈ L1(R+). (4.4)
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It is a contradiction to (4.2). Hence, 1± Fc
(
ϕ
γ
∗ ψ
)
2
(y) 6= 0, ∀ y > 0.

Sufficiency. From (4.2) and the assumption of Theorem 4.1, we have

(F{ sc}f)(y) =
(F{ sc}g)(y)

1± Fc
(
ϕ
γ
∗ ψ
)
2
(y)

=(F{ sc}g)(y)
[
1∓

Fc
(
ϕ
γ
∗ ψ
)
2
(y)

1± Fc
(
ϕ
γ
∗ ψ
)
2
(y)

]

=(F{ sc}g)(y)∓ (F{ sc}g)(y).
Fc
(
ϕ
γ
∗ ψ
)
2
(y)

1± Fc
(
ϕ
γ
∗ ψ
)
2
(y)

. (4.5)

We recall the Wiener-Levy Theorem (p.63 in [7]) that if l is the Fourier trans-
form of an L1(R+) function, and η is analytic in a neighborhood of the ori-
gin that contains the domain {l(y),∀y ∈ R} and η(0) = 0, then η(l) is also
the Fourier transform of an L1(R+) function. For the Fourier cosine trans-
form it means that if l is the Fourier cosine transform of an L1(R+) function,
and η is analytic in a neighborhood of the origin that contains the domain
{l(y), ∀y ∈ R+}, and η(0) = 0, then η(l) is also the Fourier cosine transform
of an L1(R+) function.

With the given conditions 1± Fc
(
ϕ
γ
∗ ψ
)
2
(y) 6= 0,∀y > 0, the function η(z) =

z

1± z
satisfies the conditions of the Wiener-Levy Theorem. Then, there exists

a function q ∈ L1(R+) such that

(Fcq)(y) =
Fc
(
ϕ
γ
∗ ψ
)
2
(y)

1± Fc
(
ϕ
γ
∗ ψ
)
2
(y)

. (4.6)

From (4.5), (4.6) and q ∈ L1(R+) we have

(F{ sc}f)(y) =(F{ sc}g)(y)∓ (F{ sc}g)(y)(Fcq)(y)

=(F{ sc}g)(y)∓ F{ sc}
(
g ∗{

1
Fc

} q)(y).

Therefore, f(x) = g(x)∓
(
g ∗{

1
Fc

} q)(x), f(x) ∈ L1(R+). �

Example 4.2. We choose the functions ϕ and ψ as follow

ϕ(x) = e−ax, ψ(x) = e−bx (a, b > 0),
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and ϕ(x), ψ(x) ∈ L1(R+), we have

(Fsϕ)(y) =

√
2

π

y

a2 + y2
, (Lψ)(y) =

1

b+ y
. (4.7)

From the factorization identities (3.2) and (4.7), we have

Fc
(
ϕ
γ
∗ ψ
)
2
(y) =− e−µy sin y(Fsϕ)(y)(Lψ)(y)

=−
√

2

π
e−µy sin y.

y

(a2 + y2)(b+ y)
∈ L1(R+).

Then the convolutions in the Theorem 4.1, we have 1 ± Fc
(
ϕ
γ
∗ ψ
)
2
(y) 6= 0,

∀ y > 0. Due to Wiener-Levy Theorem, there esixts a function q ∈ L1(R+)
such that

(Fcq)(y) =
−
√

2
πe
−µy sin y. y

(a2+y2)(b+y)

1∓
√

2
πe
−µy sin y. y

(a2+y2)(b+y)

∈ L1(R+). (4.8)

Therefore

(q)(x) =Fc

[ −√ 2
πe
−µy sin y. y

(a2+y2)(b+y)

1∓
√

2
πe
−µy sin y. y

(a2+y2)(b+y)

]
(x)

=− 2

π

∫ ∞
0

y sin y cosxy

(a2 + y2)(b+ y)eµy ∓
√

2
πy sin y

dy,

and f(x) = g(x)∓
(
g ∗{

1
Fc

} q)(x).

4.2. Consider the following systems of two integral equations

f(x) +

∫ ∞
0

M{ 1
2}(x, u)g(u)du = p(x),

g(x) +

∫ ∞
0

N{ 1
2}(x, u)f(u)du = q(x), (4.9)
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where

M{ 1
2}(x, u)

=
1

2π

∫ ∞
0

ϕ(v)
{[ v + µ

(v + µ)2 + (x− 1− u)2
± v + µ

(v + µ)2 + (x− 1 + u)2

]
−
[ v + µ

(v + µ)2 + (x+ 1− u)2
± v + µ

(v + µ)2 + (x+ 1 + u)2

]}
dv,

N{ 1
2}(x, u) =

1√
2π

[
ψ(u+ x)± sign(u− x)ψ(|u− x|)

]
.

Theorem 4.3. Assume that ϕ(x), ψ(x), p(x), q(x) ∈ L1(R+) and 1 ∓ Fc
(
ψ
γ
∗

ϕ
)
2
(y) 6= 0, ∀y > 0. Systems (4.9) have unique solutions (f, g) in L1(R+) ×

L1(R+) given by

f(x) =p(x)∓
(
q
γ
∗ ϕ
)
{ 1

2}(x)±
(
p ∗{

1
Fc

} ξ)(x)−
((
q
γ
∗ ϕ
)
{ 1

2} ∗{
1
Fc

} ξ)(x),

g(x) =q(x)−
(
ψ ∗
{ 2

1}
p
)
(x)±

(
q ∗
{Fc1 }

ξ
)
(x)∓

((
ψ ∗
{ 2

1}
p
)
∗
{Fc1 }

ξ
)

(x),

where ξ ∈ L1(R+) such that

(Fcξ)(y) =
Fc(ψ

γ
∗ ϕ)2(y)

1∓ Fc(ψ
γ
∗ ϕ)2(y)

.

Here, the convolutions (.∗
1
.), (. ∗

Fc
.), (.∗

2
.) are defined by (2.5), (2.3) and (2.7)

respectively.

Proof. By using factorization properties (3.2), (2.6) and (2.8) for (4.9), we get

(F{ sc}f)(y)± e−µy sin y(F{ cs}g)(y)(Lϕ)(y) = (F{ sc}p)(y),

(F{ cs}g)(y) + (F{ ss}ψ)(y)(F{ sc}f)(y) = (F{ cs}q)(y). (4.10)

Solving the systems of two linear equations (4.10), we get

(F{ sc}f)(y) =
(F{ sc}p)(y)∓ e−µy sin y(F{ cs}q)(y)(Lϕ)(y)

1∓ e−µy sin y(Fsψ)(y)(Lϕ)(y)

=
[
(F{ sc}p)(y)∓ F{ sc}

(
q
γ
∗ ϕ
)
{ 1

2}(y)
][ 1

1∓ Fc(ψ
γ
∗ ϕ)2(y)

]
=
[
(F{ sc}p)(y)∓ F{ sc}

(
q
γ
∗ ϕ
)
{ 1

2}(y)
][

1± Fc(ψ
γ
∗ ϕ)2(y)

1∓ Fc(ψ
γ
∗ ϕ)2(y)

]
. (4.11)
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Due to Wiener-Levy Theorem, there exists a function ξ ∈ L1(R+) such that

(Fcξ)(y) =
Fc(ψ

γ
∗ ϕ)2(y)

1∓ Fc(ψ
γ
∗ ϕ)2(y)

. (4.12)

From (4.11) and (4.12), we have

(F{ sc}f)(y) =
[(
F{ sc}p

)
(y)∓ F{ sc}

(
q
γ
∗ ϕ
)
{ 1

2}(y)
][

1± (Fcξ)(y)
]

=
(
F{ sc}p

)
(y)∓ F{ sc}

(
q
γ
∗ ϕ
)
{ 1

2}(y)± F{ sc}
(
p ∗{

1
Fc

} ξ)(x)

− F{ sc}
((
q
γ
∗ ϕ
)
{ 1

2} ∗{
1
Fc

} ξ)(x).

Therefore,

f(x) = p(x)∓
(
q
γ
∗ ϕ
)
{ 1

2}(x)±
(
p ∗{

1
Fc

} ξ)(x)−
((
q
γ
∗ ϕ
)
{ 1

2} ∗{
1
Fc

} ξ)(x).

Similarly, we get

g(x) = q(x)−
(
ψ ∗
{ 2

1}
p
)
(x)±

(
q ∗
{Fc1 }

ξ
)
(x)∓

((
ψ ∗
{ 2

1}
p
)
∗
{Fc1 }

ξ
)

(x).

It is easy to see that f, g are functions in L1(R+). The proof is completed. �
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