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Abstract. This paper is concerned with inverse problems and optimal output feedback

control problems for semilinear infinite dimensional uncertain systems. We present several

interesting typical and nontypical control problems and their solutions. The nontypical

problems are related to control of the evolution of measures. We prove existence of optimal

feedback control laws for these systems in the presence of uncertainty of the principal oper-

ator. We consider both deterministic and stochastic systems. In the last section we present

the necessary conditions of optimality for the uncertain stochastic feedback control problem.

1. Introduction

First we consider inverse problems for infinite dimensional semilinear sys-
tems where the principal operator is unknown. The objective is to find one
such operator from a given class of infinitesimal generators that gives the best
fit of the measured data. Next we consider uncertain systems where the prin-
cipal operator is unknown but the class it belongs to is assumed to be known.
In the presence of this uncertainty, we consider feedback control problems for
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a class of semilinear systems and find from a given class, the best linear feed-
back control law that minimizes the maximum cost. Interestingly, these are
all done on general Banach spaces. We also consider stochastic analogs of
the aforementioned deterministic systems on Hilbert spaces and present solu-
tions to inverse problems. Finally, we consider control problems for uncertain
semilinear stochastic systems and present existence of linear optimal feedback
control laws for min-max problems.

Deterministic and stochastic optimal control problems in infinite dimensions
have been studied by many authors, see the monographs of Ahmed [1, 2, 4],
Curtain and Zwart [14] and Fattorini [16] and the references therein. In Borkar
and Govindan [12], the authors initiated a semigroup theory approach for char-
acterization of optimal admissible Markovian controls for semilinear stochastic
evolution equations in infinite dimensions with an objective to minimize an
associated discounted cost functional. For finite dimensional controlled sto-
chastic differential equations with a nondegenerate diffusion matrix, this task
is traditionally accomplished through the HJB equation which is an indirect
approach. This requires solving PDEs on Rn and then constructing the feed-
back control law from the solution. For the infinite dimensional case, the HJB
equation is a PDE on an infinite dimensional Hilbert space and certainly it is
a formidable computational problem given that existence problem is resolved.
The article [12] made an attempt towards obtaining a verification theorem
for such controlled systems. Subsequently, Ahmed [5] studied optimal feed-
back control of infinite dimensional stochastic evolution equations by using the
indirect approach. To be precise, some new results were obtained on the ques-
tion of existence of solutions of HJB equations in infinite dimensional Hilbert
spaces. One of those results was applied to prove the existence of an optimal
stationary feedback control. These results were later generalized in Ahmed
[3] to nonstationary stochastic control problems in Hilbert spaces. King [17]
considered problems on existence and regularity of integral representations of
feedback operators arising from parabolic control problems. The existence of
such representations is important for the design of low order compensators
and placement of sensors. In other words, these are problems of existence and
smoothness of functional gains for LQR feedback control systems governed by
parabolic partial differential equations. It is well known that under suitable
stabilizability conditions, a solution to this infinite dimensional LQR problem
exists in the form of a bounded linear feedback operator. Recently, Curtain, et
al. [13] provided new sufficient conditions under which the feedback operator
associated with the Linear Quadratic Regulator design for distributed param-
eter systems is nuclear or Hilbert-Schmidt. We refer to [13] and the references
therein for details. We also refer to Curtain and Zwart [14] for some earlier
studies on this topic. The min-max problems arise naturally in the study of
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control systems with uncertainty [4], [6-11]. Note that uncertainty can occur
in many ways. Ahmed and Xiang [8,9] considered uncertain systems wherein
uncertainty occurs because of unknown system parameters {σ}. In fact, to a
system designer, neither the true value of σ nor its probability law is known,
but the range of values it may take, Σ is known. This introduces uncertainty
in the system. The designer wishes to find a control policy to minimize the
maximum risk or maximize the minimum revenue. In [9, 10], the authors con-
sidered min-max problems of optimal control for a general class of nonlinear
uncertain evolution equations on Banach space and proved the existence of
optimal controls. In [8], Ahmed and Xiang continued the study of optimal
control problems for a class of nonlinear evolution equations with uncertain
parameters and proved the existence of optimal control and further presented
necessary conditions of optimality. The main result therein was applied to
quasi-linear partial differential equations with uncertain coefficients. In re-
cent papers, Ahmed [6,7] considered the optimal output feedback boundary
control problems for a class of semilinear uncertain parabolic systems, in the
sense that the uncertainty appears in the form of a set, and further consid-
ered a more general state dependent uncertainty. Using the game-theoretic
approach, Ahmed proved the existence of saddle points giving the optimal
strategies. Recently, Mordukhovich [18] considered the problem of optimal
design of output feedback controller for a class of uncertain systems described
by parabolic equations with Dirichlet boundary control. The design variable
here is the feedback control law mapping output into control actions on the
boundary. Later on, Ahmed [7] considered a more general optimal output
feedback boundary control problems for a class of semilinear uncertain para-
bolic systems. The uncertain initial boundary value problem is converted into
an equivalent Cauchy problem described by a differential inclusion in appro-
priate Banach spaces and proved the existence of saddle points and presented
necessary conditions for optimal strategy. Recently, Ahmed and Charalam-
bous considered minimax games in [11] for stochastic uncertain systems in a
general set-up with the pay-off being a nonlinear functional of the uncertain
measure where the uncertainty is measured in terms of relative entropy be-
tween the uncertain and control induced measures. Note that the adversary
is the uncertain measure which maximizes the cost while the minimizer is the
control induced measure. A new approach to constructive output feedback
robust nonlinear controller design based on the min-max LQG control the-
ory and the use of Integral Quadratic Constraints (IQCs) was proposed in
Petersen [20]. This approach provides a methodology for constructing robust
nonlinear controllers for a class of uncertain nonlinear systems (uncertainty in
a different sense) considered over a finite time horizon. For details, see [20].
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In this paper, we deal with both uncertain deterministic and stochastic
systems. It is interesting to observe that the uncertainty that we deal with here
is very different from all those mentioned earlier from the current literature.
To be precise, we begin the paper with an inverse (identification) problem in
the deterministic case, see Ahmed [2] for a detailed study on the subject. In
this paper we consider the infinitesimal generator A (the principal operator)
to be unknown, but it is assumed that the class of infinitesimal generators
it belongs to is known. The cost functional given by the expression (2.3),
representing the identification error for the semilinear system (2.1)-(2.2), is to
be minimized with respect to A ∈ G, where G is a known set of unbounded
operators. This is the inverse problem which is resolved in Theorem 4. To the
best of our knowledge, this problem seems to have never been considered in the
literature. We then consider an uncertain control problem wherein again there
is uncertainty because the generator A is unknown but belongs to a known
family. The problem here is to find a bounded linear state or output feedback
operator B that minimizes the cost functional given by (2.6). The existence of
an optimal operator B is proved in Theorem 5. Clearly, this is not a standard
min-max problem as we look for the existence of operators that minimize the
cost. More so, unlike here in Theorem 5, wherein we establish the existence of
feedback control operators, Curtain, et al. [12] show the existence of a control
variable/input u(·) that minimizes the classical LQR cost functional of a linear
controlled system.

In the second part of the paper, we consider the stochastic system (2.7) on
a Hilbert space. Again, the problem is to identify the principal operator A
in the presence of noise. The goal is to find an operator A that minimizes
the cost functional given by the expression (2.9). This is proved in Theorem
8 under some standard hypothesis. Furthermore, a stochastic version of the
deterministic problem resolved in Theorem 5 is given in Theorem 9. This
result is again very different from the main result of Petersen [20] and others.
In [20] the author proves the existence of a control u that minimizes the cost
functional. In contrast, our result (Theorem 9) proves directly the existence
of an optimal output feedback operator that minimizes the cost functional.

In section 5, the paper also addresses some interesting problems on control
of induced measure valued functions. These are nonstandard problems and
generally can not be treated in the classical sense. They are dependent on
the weak compactness property of the reachable set of measures. Some of
the objective functionals are set functions aimed at reducing the Hausdorff
dimension of supports of induced measures.

The rest of the paper is organized as follows: In Section 2, some determinis-
tic and stochastic control and inverse problems are formulated and basic back-
ground materials presented. Section 3 discusses the main results on inverse
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problems and optimal feedback control problems for deterministic systems.
In Sections 4 similar results are presented for stochastic systems. In Section
5, assuming the principal operator known and fixed, we present some results
optimizing certain functionals of induced measures. In section 6, we present
necessary conditions of optimality characterizing the optimal set of operators.
The proof of this result is rather informal.

2. Problem Formulation

Let X be a Banach space and M ≥ 1 and ω ∈ R. Let G0(M,ω) denote
the class of infinitesimal generators of C0-semigroups on X with stability
parameters {M,ω} fixed. In other words, every A ∈ G0(M,ω) generates a
C0-semigroup say SA(t), t ≥ 0, on X satisfying

‖ SA(t) ‖L(X)≤M expωt, t ≥ 0.

For details on semigroup theory the reader is referred to [1] and the references
therein. We consider the following semilinear system including the output
equation.

dx/dt = Ax+ f(x), x(0) = ξ, A ∈ G ⊂ G0(M,ω), (2.1)

y = Lx. (2.2)

The first equation represents the state equation and the second one the output
equation. The operator L ∈ L(X,Y ) denotes the sensor (measurement opera-
tor) where Y is another Banach space, f : X −→ X is a continuous nonlinear
map and G is a nonempty set. Let ` : I × Y −→ R and define

J(A) ≡
∫ T

0
`(t, y(t))dt ≡

∫ T

0
`(t, Lx(t))dt. (2.3)

Inverse Problem(A): The set G is known, but which A is in force is not
known. The problem is to find an A ∈ G that minimizes the functional (2.3).
This is an inverse problem. We are interested in the question of existence of
an optimal generator minimizing the functional (2.3).

Uncertain System (Control Problem(B)): Consider the system

dx/dt = Ax+By + f(x), x(0) = ξ, A ∈ G, (2.4)

y = Lx, (2.5)

with B ∈ L(Y,X) considered to be a linear output feedback operator. The
cost functional is given by

J(B) ≡ sup
A∈G

{∫
I
`(t, yA,B(t))dt ≡

∫
I
`(t, LxA,B(t))dt

}
, (2.6)
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where xA,B denotes the mild solution of equation (2.4) corresponding A ∈
G0(M,ω) and B ∈ L(Y,X). Let (L(Y,X), τso) denote the space of bounded
linear operators from Y to X endowed with the strong operator topology and
Γ a compact subset of it. The problem is to find a B ∈ Γ that minimizes
the functional (2.6). Note that this is a min-max problem on Γ × G. Here
the set G ⊂ G0(M,ω) is considered to be the set of uncertainty meaning the
principal operator of the semilinear system (2.4) is not precisely known but
it is a member of a known family. The objective is to control the system
assuming the worst possible situation.

Uncertain Stochastic system (inverse Problem (C)): Let (Ω,F ,Ft≥0, P )
be a complete filtered probability space and let E(z) denote the expectation
of the random variable z. Consider the system

dx = Axdt+ f(x)dt+ CdW, x(0) = ξ, A ∈ G, (2.7)

y = Lx, (2.8)

where W is an E-valued Ft Brownian motion and C ∈ L(E,X). Here we
consider again the following inverse problem. The cost functional (mismatch
between measured data and the data generated by the model) is given by

J(A) ≡ E
∫
I
`(t, yA(t))dt. (2.9)

The problem is to find an A ∈ G that minimizes the functional given by (2.9).

Uncertain Stochastic System (Control Problem)(D): Consider the sys-
tem

dx = Axdt+Bydt+ f(x)dt+ CdW, x(0) = ξ, A ∈ G, (2.10)

y = Lx, (2.11)

with B ∈ L(Y,X) considered to be a linear output feedback operator. The
cost functional is given by

J(B) ≡ sup
A∈G

{
E
∫
I
`(t, yA(t))dt ≡ E

∫
I
`(t, LxA(t))dt

}
. (2.12)

Let (L(X), τso) denote the space of bounded linear operators in X endowed
with the strong operator topology and Γ a compact subset of it. The problem
is to find a B ∈ Γ that minimizes the functional (2.12). Note that this is a
min-max problem on (L(X), τso).
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3. Solution of Problems Related to Deterministic Systems

First we consider the inverse problem (A). We need the following lemma.

Lemma 1. Let {X,Y } be a pair of Banach spaces representing the state and
output spaces respectively. Consider the system (2.1) and (2.2) and suppose
f is locally Lipschitz having at most linear growth, L ∈ L(X,Y ). Then, for
each ξ ∈ X and A ∈ G0(M,ω) the system (2.1) has a unique mild solution
x(A, ξ) ∈ C(I,X) ⊂ B∞(I,X) with the output y ∈ C(I, Y ).

Proof. The proof is standard. We give a brief outline. Since A ∈ G0(M,ω),
there exists a unique C0-semigroup of operators SA(t), t ≥ 0, on X satisfying
‖ SA(t) ‖L(X)≤Meωt, t ≥ 0. Using this semigroup, system (2.1) can be written
as an integral equation on the Banach space X given by

x(t) = SA(t)ξ +

∫ t

0
SA(t− s)f(x(s))ds, t ∈ I ≡ [0, T ]. (3.1)

Since f has at most linear growth, it is easy to verify that there exists a finite
positive number b such that any solution of equation (3.1) (if one exists) is
bounded on bounded intervals, that is sup{|x(t)|X , t ∈ I} ≤ b. The fact that
x ∈ C(I,X) follows from the strong continuity of the semigroup SA(t), t ≥ 0,
and the linear growth and continuity of f. Using the local Lipschitz property
of f, one can easily verify that the operator F given by

(Fx)(t) ≡ SA(t)ξ +

∫ t

0
SA(t− s)f(x(s))ds, t ∈ I, (3.2)

has a unique fixed point in the Banach space C(I,X). In fact one first shows
that for large enough n ∈ N, the n-th iterate of F given by Fn is a contraction.
The assertion then follows from Banach fixed point theorem. �

Definition 2. (D1): The set G0(M,ω) is endowed with the topology of strong
convergence of the resolvents denoted τro making (G0(M,ω), τro) a topological
space. A sequence {An} ∈ G0(M,ω) is said to be τro convergent to A0 ∈
G0(M,ω) if, and only if, R(λ,An)

τso−→ R(λ,A0) in (L(X), τso) for every λ ∈
(ω,∞).
(D2): A subset G ⊂ G0(M,ω) is said to be compact in the resolvent operator
topology τro if every sequence from G has a subsequence that converges in the
τro topology to an element of G.

In order to solve the problem (A), we need one more result concerning
continuity of the map A −→ xA. For convenience of notation, we use S0(M,ω)
to denote the semigroups corresponding to infinitesimal generators denoted by
G0(M,ω).
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Lemma 3. Under the assumptions of Lemma 1, the map A −→ xA is con-
tinuous with respect to the resolvent operator topology on G0(M,ω) and the
supnorm topology on C(I,X).

Proof. Consider the system (2.1) corresponding to A = An ∈ G0(M,ω) and
A = A0 ∈ G0(M,ω) respectively and let xn ∈ C(I,X) and x0 ∈ C(I,X) denote

the corresponding mild solutions. We show that as An
τro−→ A0, xn −→ x0 in

C(I,X). Since {Sn, S0} ∈ S0(M,ω) there exists a finite positive number M̃,
dependent on {M,ω} and T, such that

sup{‖ Sn(t) ‖L(X), ‖ S0(t) ‖L(X), t ∈ I, n ∈ N} ≤ M̃.

It follows from these bounds and the linear growth assumption for f that there
exists a finite positive number b such that

sup{|xn(t)|X , |x0(t)|X , t ∈ I, n ∈ N} ≤ b. (3.3)

Using the integral equation (3.1) for A = An and A = A0 and denoting the
corresponding solutions by xn and x0 respectively and subtracting one from
the other we have the identity

x0(t)− xn(t) = En(t) +

∫ t

0
Sn(t− s)[f(x0(s))− f(xn(s))]ds, t ∈ I, (3.4)

where

En(t) ≡ (S0(t)ξ − Sn(t)ξ) +

∫ t

0
(S0(t− s)− Sn(t− s))f(x0(s))ds, t ∈ I.(3.5)

It follows from Trotter-Kato approximation theory for semigroups [ 1, Theorem

4.5.4, Remark 4.5.5] that as An
τro−→ A0, Sn(t)

τso−→ S0(t) uniformly on the
interval I which is compact. Consequently, for fixed ξ ∈ X, the first term
of the expression (3.5) converges strongly in X uniformly on I. Since x0 ∈
C(I,X) and f has at most linear growth, it is easy to verify that there exists
a g ∈ L+

1 (I) such that

sup{|[S0(t− s)− Sn(t− s)]f(x0(s))|X , t ∈ [s, T ]} ≤ g(s), s ∈ I.

Further, it follows from the strong convergence of the semigroup Sn(t) to S0(t)
that

|[S0(t− s)− Sn(t− s)]f(x0(s))|X → 0

for every s ∈ [0, t]. Then by Lebesgue dominated convergence theorem∫ t

0
(S0(t− s)− Sn(t− s))f(x0(s))ds

s−→ 0 in X

uniformly in t ∈ I. In other words en(t) ≡ |En(t)|X → 0 uniformly in t on I.
Now it follows from the estimate (3.3) and the local Lipschitz property of f
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that there exists a finite positive number Kb such that

|x0(t)− xn(t)|X ≤ en(t) + M̃Kb

∫ t

0
|x0(s)− xn(s)|X ds, t ∈ I. (3.6)

Thus it follows from Gronwall inequality applied to (3.6) that xn(t)
s−→ x0(t)

in X uniformly on I. This proves the theorem as stated. �

Now we are prepared to consider the inverse problem (A).

Theorem 4. Consider the problem (A) and suppose the set G ⊂ G0(M,ω) is
compact in the resolvent operator topology τro. Further, suppose the assump-
tions of Lemma 1 hold and the function ` : I × Y −→ R is measurable in the
first argument and lower semicontinuous in the second on Y and that there
exists an `0 ∈ L1(I) such that `(t, y) ≥ `0(t) for all (t, y) ∈ I×Y. Then problem
(A) has a solution.

Proof. Since the set G ⊂ G0(M,ω) is assumed to be compact in the resolvent
operator topology τro, it suffices to prove that the functional A→ J(A), given
by the expression (2.3), is lower semicontinuous with respect to the topology
τro. Let {An, A0} ∈ (G0(M,ω), τro) and {xn, x0} ∈ C(I,X) the corresponding

solutions of the integral equation (3.1). Let An
τro−→ A0. Then it follows from

Lemma 3 that xn(t)
s−→ x0(t) in X uniformly in t ∈ I. Since the sensor

(output operator) L ∈ L(X,Y ), it is clear that

yn(t) ≡ Lxn(t)
s−→ Lx0(t) ≡ y0(t) in Y

for each t ∈ I (even uniformly). Thus it follows from lower semicontinuity of
` in its second argument that

`(t, y0(t)) = `(t, Lx0(t)) ≤ lim `(t, Lxn(t)) = lim `(t, yn(t)) (3.7)

and hence

J(A0) ≡
∫
I
`(t, y0(t))dt

≤
∫
I

lim `(t, yn(t))dt ≤ lim

∫
I
`(t, yn(t))dt ≡ lim J(An). (3.8)

This proves that J is lower semicontinuous in the resolvent operator topology
τro. Since G is compact in this topology and by assumption `0 ∈ L1(I), it is
clear that J(A0) > −∞ and hence J attains its (finite) minimum on G. This
completes the proof. �

Now we consider the problem (B) with reference to the system (2.4)-(2.5)
and the objective functional (2.6). Since L ∈ L(X,Y ) is fixed, it is obvious
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that the system (2.4)-(2.5) is equivalent to the system

ẋ = Ax+BLx+ f(x), x(0) = ξ, A ∈ G, (3.9)

where xA,B is the mild solution of equation (3.9) corresponding to the pair
A,B. Define the functional

η(B,A) ≡
∫
I
`(t, LxA,B(t))dt (3.10)

and note that the functional (2.6) is given by

J(B) ≡ sup{η(B,A), A ∈ G}. (3.11)

Now we are prepared to state the following result.

Theorem 5. Consider the system (3.9) with ξ ∈ X, L ∈ L(X,Y ) and f
satisfying the assumptions of Lemma 1. Further, suppose G is compact in
the resolvent operator topology τro and Γ ⊂ L(Y,X) is compact in the strong
operator topology τso and the integrand ` is measurable in t ∈ I and continuous
in y ∈ Y satisfying

|`(t, y)| ≤ α(t) + β|y|p, α ∈ L+(I), β ≥ 0, p ∈ (0,∞). (3.12)

Then the control problem (B) has a solution, in the sense there exists a B ∈ Γ
at which J given by (3.11) attains its minimum.

Proof. Since the operator L ∈ L(X,Y ) is fixed, it follows from Lemma 3 that,
for every fixed B ∈ Γ, the map A −→ xA,B is continuous with respect to the
topology τro on G0(M,ω) and the uniform topology on C(I,X). Thus it follows
from continuity of the map y −→ `(t, y) in Y and (3.12) and the definition
(3.10) that the functional A −→ η(B,A) is continuous with respect to the
topology τro. By hypothesis G is compact in this topology and therefore, for
every B ∈ L(Y,X), there exists an AB ∈ G (not necessarily unique) at which
A −→ η(B,A) attains its maximum. Thus the map

B −→ J(B) ≡ sup{η(A,B), A ∈ G} = η(B,AB)

is well defined. We show that this functional is continuous with respect to the

strong operator topology on L(Y,X). Let Bn
τso−→ Bo and let An = ABn ∈ G

denote any element of G at which A −→ η(Bn, A) attains its maximum giving

J(Bn) ≡ η(An, Bn) =

∫
I
`(t, Lxn(t)) ≡

∫
I
`(t, yn(t))dt

where xn ∈ C(I,X) is the mild solution of the evolution equation

dx/dt = Anx+Bnx+ f(x), x(0) = ξ. (3.13)
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Since Γ is τso compact there exists a subsequence of the sequence {Bn} and
a corresponding subsequence of the (maximizing) sequence {An} ∈ G, all
relabeled as the original sequence, such that

Bn
τso−→ Bo in Γ,

(3.14)

An
τro−→ Ao in G.

Corresponding to the pair {Ao, Bo}, let xo denote the mild solution of the
evolution equation

dx/dt = Aox+Box+ f(x), x(0) = ξ. (3.15)

Let {Sn(t), So(t)} denote the semigroups corresponding to the infinitesimal
generators {An, Ao} respectively. Using these semigroups we obtain the fol-
lowing integral equations for the pair {xo, xn} :

xo(t) = So(t)ξ +

∫ t

0
So(t− s)Boxo(s)ds

+

∫ t

0
So(t− s)f(xo(s))ds, (3.16)

xn(t) = Sn(t)ξ +

∫ t

0
Sn(t− s)Bnxn(s)ds

+

∫ t

0
Sn(t− s)f(xn(s))ds. (3.17)

Subtracting equation (3.17) from equation (3.16) we obtain the following ex-
pression

xo(t)− xn(t) = αn(t) + βn(t) +

∫ t

0
Sn(t− s)Bn(xo(s)− xn(s))ds

+

∫ t

0
Sn(t− s)(f(xo(s))− f(xn(s)))ds, (3.18)

where αn and βn are given by

αn(t) ≡ (So(t)− Sn(t))ξ +

∫ t

0
(So(t− s)− Sn(t− s))Boxo(s)ds

+

∫ t

0
(So(t− s)− Sn(t− s))f(xo(s))ds, t ∈ I, (3.19)

and

βn(t) ≡
∫ t

0
Sn(t− s)(Bo −Bn)xo(s)ds, t ∈ I (3.20)
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respectively. We use the expression (3.18). It follows from linear growth and
local Lipschitz property of f and boundedness of the admissible set Γ ⊂ L(X)
that there exists a pair of finite positive numbers {Kb, γ} such that

|xo(t)− xn(t)|X ≤ |αn(t)|X + |βn(t)|X

+M̃(γ +Kb)

∫ t

0
|xo(s)− xn(s)|Xds, t ∈ I.(3.21)

Using similar steps as in Lemma 3, involving strong convergence of the semi-
groups, convergence of Bn to Bo in the strong operator topology, and Lebesgue
dominated convergence theorem, it is easy to verify that

lim
n→∞

|αn(t)|X = 0 uniformly on I, (3.22)

lim
n→∞

|βn(t)|X = 0 uniformly on I. (3.23)

Now by Gronwall inequality, it follows from (3.21) that

|xo(t)− xn(t)|X ≤ {|αn(t)|X + |βn(t)|X}

+C

∫ t

0
{αn(s)|X + |βn(s)|X}ds, t ∈ I. (3.24)

where C ≡ M̃(γ+Kb) exp{M̃(Kb+γ)T}. From (3.22)-(3.24) we conclude that

lim
n→∞

‖ xo − xn ‖C(I,X)= 0.

Thus we have proved that B −→ J(B) is τso continuous on Γ. Since Γ is τso
compact, J attains its minimum on Γ. This proves the existence of a solution
of the min-max problem as stated. �

4. Solution of Problems Related to Stochastic Systems

Now we consider the problem (C) with reference to the system (2.7)-(2.8)
and the objective functional (2.9). Again this is an inverse problem in the
presence of noise.

Let (Ω,F ,Ft≥0, P ) denote a complete filtered probability space where Ft, t ≥
0, is an increasing family of sub sigma algebras of the sigma algebra F . For
simplicity, throughout this section we assume that both X and Y are sepa-
rable Hilbert spaces and that X has a complete orthonormal basis {xi}. Let
X ≡ L2(Ω, X) denote the space of second order X valued random variables
and Ba

∞(I,X ) denote the class of Ft adapted second order X valued random
processes defined on I. Endowed with the norm topology given by

‖ x ‖Ba
∞(I,X )≡ sup{|x(t)|X , t ∈ I} ≡ supt∈I

(∫
Ω
|x(t, ω)|2XP (dω)

)1/2

(4.1)

it is a Banach space.



Inverse problems and optimal feedback control operators 163

Let E be another separable Hilbert space and W ≡ {W (t), t ≥ 0} an
Ft adapted Brownian motion in E with the incremental covariance operator
Q ∈ L+

s (E), the class of positive symmetric operators in E. To proceed further,
we need the following classical result asserting the existence of a mild solution
of equation (2.7).

Lemma 6. Suppose A ∈ G0(M,ω), f : X −→ X is uniformly Lipschitz,
C ∈ L(E,X) and W a Q Brownian motion in E such that CQC∗ ∈ L1(X).
Then for any F0 measurable X valued random variable ξ having finite second
moment, equation (2.7) has a unique Ft-adapted mild solution x ∈ Ba

∞(I,X ).

Proof. The proof is classical [ 15, Da Prato and Zabczyk, Chapter 7]. �

We are now prepared to consider the inverse problem (C). We need the
following result.

Theorem 7. Consider the system (2.7) and suppose the assumptions of
Lemma 6 hold. Then the map A −→ xA is continuous from G0(M,ω) to
Ba
∞(I,X ) with respect to their respective topologies.

Proof. Let {An, Ao} ∈ (G0(M,ω), τro) and {xn, xo} ∈ Ba
∞(I,X ) be the cor-

responding mild solutions of equation (2.7). Suppose An
τro−→ Ao. Then by

Trotter-Kato approximation theory for semigroups we know that, along a sub-

sequence if necessary, Sn(t)
τso−→ So(t) in L(X) uniformly in t ∈ I. We show

that xn
s−→ xo in Ba

∞(I,X ). Since {xo, xn} are mild solutions, they satisfy the
following integral equations

xo(t) = So(t)ξ +

∫ t

0
So(t− s)f(xo(s))ds

+

∫ t

0
So(t− s)CdW (s), t ∈ I, (4.2)

xn(t) = Sn(t)ξ +

∫ t

0
Sn(t− s)f(xn(s))ds

+

∫ t

0
Sn(t− s)CdW (s), t ∈ I. (4.3)

Subtracting equation (4.3) from equation (4.2) we obtain the following expres-
sion

(xo(t)− xn(t)) = En(t) +

∫ t

0
Sn(t− s)[f(xo(s))− f(xn(s))]ds, t ∈ I, (4.4)
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where En is given by

En(t) ≡
{

(So(t)− Sn(t))ξ +

∫ t

0
(So(t− s)− Sn(t− s))f(xo(s))ds

+

∫ t

0
(So(t− s)− Sn(t− s))CdW

}
. (4.5)

From the Lipschitz property of f with Lipschitz constant K, it is easy to verify
that

E|xo(t)− xn(t)|2X ≤ 2

{
E|En(t)|2X + (M̃K)2T

∫ t

0
E|xo(s)− xn(s)|2Xds

}
(4.6)

for all t ∈ I. Then using Gronwall Lemma we arrive at the following inequality

E|xo(t)− xn(t)|2X

≤ 2

{
E|En(t)|2X + (M̃K)2T exp{(M̃K)2T}

∫ t

0
E|En(s)|2Xds

}
(4.7)

for all t ∈ I. We prove that

lim
n→∞

E|En(t)|2X = 0 uniformly in t ∈ I. (4.8)

For convenience, we write En(t) ≡ E1,n(t) + E2,n(t) + E3,n(t) and prove that
each of these components has the property (4.8). Considering the first term,
E1,n(t) ≡ (So(t)− Sn(t))ξ, we have

E|E1,n(t)|2X = Tr

(
(So(t)− Sn(t))Pξ(S

∗
o(t)− S∗n(t))

)
, (4.9)

where Pξ is the covariance of the X valued random variable ξ. Since by as-

sumption ξ is (strongly) second order, it is clear that Pξ ∈ L+
1 (X) and so a

compact operator. Thus it follows from the convergence of Sn(t) to So(t) in
the strong operator topology (τso) uniformly on I that

lim
n→∞

{E|E1,n(t)|2X}= lim
n→∞

Tr

(
(So(t)− Sn(t))Pξ(S

∗
o(t)− S∗n(t))

)
=0 (4.10)

uniformly in t ∈ I. Next considering the third term

E3,n(t) ≡
∫ t

0
(So(t− s)− Sn(t− s))CdW, t ∈ I,

and recalling that C is time invariant it is easy to verify that

E|E3,n(t)|2X =

∫ t

0
Tr[(So(s)− Sn(s))(CQC∗)(So(s)

∗ − Sn(s)∗)]ds. (4.11)

By hypothesis CQC∗ ∈ L+
1 (X) and therefore a compact operator and since

Sn(t)
τso−→ So(t) uniformly on I, it is clear that the integrand converges to zero
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uniformly in t on I, and hence, by virtue of dominated convergence theorem,
we obtain

lim
n→∞

sup{E|E3,n(t)|2X , t ∈ I} = 0. (4.12)

Next we consider the second term

E2,n(t) ≡
∫ t

0
(So(t− s)− Sn(t− s))f(xo(s))ds, t ∈ I.

Define z(t) ≡ f(xo(t)), t ∈ I. Since f is assumed to be uniformly Lipschitz
on X, it has at most linear growth, and by Lemma 6, xo ∈ Ba

∞(I,X ), and
therefore z ∈ Ba

∞(I,X ). In other words z is a strongly second order X valued
random process adapted to Ft. Define the covariance of the process z by

(Pz(t)h, h) ≡ E{(z(t), h)2}.

Since z ∈ Ba
∞(I,X ), it is evident that Pz(t) ∈ L+

1 (X) ⊂ L1(X) for each
t ∈ I and that Pz ∈ L∞(I,L1(X)) ⊂ L1(I,L1(X)). Using this operator valued
function, it is easy to verify that the second moment of the random process
E2,n is given by

E{|E2,n(t)|2X}

=

∫ t

0
Tr{(So(t− s)− Sn(t− s))Pz(s)(S∗o(t− s)− S∗n(t− s))}ds,

(4.13)

for each t ∈ I. Hence it follows from compactness of the operator valued func-
tion Pz(·) and strong convergence of the semigroup Sn(t) to So(t) uniformly
on I that the integrand of the expression (4.13) converges to zero for each
s ∈ [0, t] and t ∈ I. Then by use of Lebesgue dominated convergence theorem,
it is easy to verify that

lim
n→∞

sup{E{|E2,n(t)|2X}, t ∈ I} = 0. (4.14)

Using (4.10),(4.12) and (4.14) we obtain the proof of (4.8). Thus it follows
from (4.7) that

lim
n→∞

sup{E|xo(t)− xn(t)|2X , t ∈ I} = 0. (4.15)

This proves the continuity as stated in the theorem. �

Now we can prove the existence of solution of the inverse problem C.

Theorem 8. Consider the system (2.7) with the objective functional (2.9)
and suppose the assumptions of Theorem 7 hold. Let ` be Borel measurable
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on I × Y and lower semicontinuous in its second argument and suppose there
exist α ∈ L+

1 (I) and β ≥ 0 such that

|`(t, y)| ≤ α(t) + β|y|2Y (4.16)

and L ∈ L(X,Y ). Then the inverse problem (C) admits a solution.

Proof. By Theorem 7, A −→ xA is continuous with respect to the topologies
as indicated in the statement of the theorem. Since L is a bounded linear
operator from X to Y, it is clear that A −→ yA ≡ LxA is continuous from
G0(M,ω) to Ba

∞(I,Y) in the respective topologies where Y ≡ L2(Ω, Y ). Thus,

if An
τro−→ Ao in G0(M,ω) and {xn, xo} are the corresponding mild solutions of

equation (2.7), then, along a subsequence if necessary, xn
s−→ xo in Ba

∞(I,X )
and hence yn → yo in Ba

∞(I,Y). Clearly, yn(t) → yo(t) in L2(Ω, Y ) for each
t ∈ I. Thus it follows from well known Cauchy theorems that yn(t)→ yo(t) in
probability (in P measure) and hence there exists a subsequence {ynk

} of {yn}
such that ynk

(t)
s−→ yo(t) (in Y ) P -a.s. Relabeling the subsequence {ynk

}k as
{yk} it follows from lower semicontinuity of ` in its second argument that

`(t, yo(t)) ≤ lim `(t, yk(t)) P − a.s

for all t ∈ I. Since {Ak} ∈ G(M,ω) it follows from (4.16) that `(·, yk(·))
is uniformly integrable. Thus by Fatou’s Lemma, it follows from the above
inequality that

J(Ao) ≡ E
∫
I
`(t, yo(t))dt ≤ lim E

∫
I
`(t, yk(t))dt = lim J(An).

This proves that J defined by the expression (2.9) is lower semicontinuous in
the τro topology of G0(M,ω). Since G ⊂ G0(M,ω) is compact in this topology,
J attains its minimum on it. Thus the problem (C) admits a solution. �

An example. We present here a simple example of the cost integrand ` such
as

`(t, LxA(t)) ≡< Ξ(LxA(t)− yd(t)), (LxA(t)− yd(t) >Y
where yd is any observed (measured) data possibly an element of Ba

∞(I,Y)
and Ξ ∈ L+

s (Y ) (the class of bounded positive selfadjoint operators).

Uncertain Stochastic System (Control Problem)(D): Now we consider
the control problem of the uncertain system (2.10)-(2.11) with the pay-off
functional given by (2.12).

Theorem 9. Consider the system (2.10) with ξ ∈ X being F0-measurable,
L ∈ L(X,Y ) and suppose f satisfies the assumption of Lemma 6. Further,
suppose G is compact in the resolvent operator topology τro and Γ ⊂ L(Y,X) is
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compact in the strong operator topology τso and the integrand ` is measurable
in t ∈ I and continuous in y ∈ Y satisfying

|`(t, y)| ≤ α(t) + β|y|2, α ∈ L+(I), β ≥ 0. (4.17)

Then the control problem (D) has a solution, in the sense that there exists a
B ∈ Γ at which J given by (2.12) attains its minimum.

Proof. The proof is quite similar to that of the deterministic case. First note
that we are now concerned with the uncertain feedback control system

dx = Axdt+BLxdt+ f(x)dt+ CdW, t ∈ I (4.18)

with A ∈ G being uncertain. Since L ∈ L(X,Y ) is fixed and Γ ⊂ L(Y,X) is

bounded, taking f̃(x) ≡ f(x) +BLx, it is easy to verify that with f replaced

by f̃ , the results of Lemma 6, Theorem 7 and Theorem 8 remain valid. Let
xA,B ∈ Ba

∞(I,X ) denote the mild solution of equation (4.18) corresponding
to any choice of A ∈ G ⊂ G0(M,ω) and B ∈ Γ. Define the functional

η(B,A) ≡ E
(∫

I
`(t, LxA,B(t))dt

)
. (4.19)

For each B ∈ Γ fixed, it follows from Theorem 7 that A −→ xA,B is continuous
with respect to the topologies mentioned there. By assumption, ` is continuous
in its second argument. Thus, following similar arguments as in the proof of
Theorem 8, it is easy to verify that A −→ η(A,B) is continuous in the resolvent
operator topology τro. Since G is compact in this topology, for each B ∈ Γ
there exists an element AB ∈ G such that

J(B) = η(B,AB) ≡ sup{η(B,A), A ∈ G}. (4.20)

We must show that B −→ J(B) is continuous with respect to the strong

operator topology of (L(Y,X), τso). Let {Bn} ∈ Γ and suppose Bn
τso−→ Bo.

Then it follows from the above result (see (4.20)) that there exists a sequence
An ∈ G such that J(Bn) = η(Bn, An). Let xn ≡ xAn,Bn and yn = Lxn ≡
LxAn,Bn . Since G is τro compact, there exists a subsequence of the sequence
{An}, relabeled as the original sequence, and an element Ao ∈ G such that

An
τro−→ Ao. Let {Sn(t), So(t)}, t ≥ 0, denote the semigroups corresponding to

the sequence of generators {An, Ao}. Note that the mild solutions {xn, xo} of
equation (4.18) corresponding to the pairs {An, Bn} and {Ao, Bo} respectively
are given by the solutions of the following integral equations

xn(t) = Sn(t)ξ +

∫ t

0
Sn(t− s)BnLxn(s)ds

+

∫ t

0
Sn(t− s)f(xn(s))ds+

∫ t

0
Sn(t− s)CdW, (4.21)
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and

xo(t) = So(t)ξ +

∫ t

0
So(t− s)BoLxo(s)ds

+

∫ t

0
So(t− s)f(xo(s))ds+

∫ t

0
So(t− s)CdW (4.22)

respectively. Using the above equations and carrying out some straightforward
algebra, it is easy to verify that

(xo(t)− xn(t)) ≡ αn(t) + βn(t) + γn(t) +

∫ t

0
Sn(t− s)BnL(xo(s)− xn(s))ds

+

∫ t

0
Sn(t− s)(f(xo(s))− f(xn(s)))ds, (4.23)

where

αn(t) ≡ (So(t)− Sn(t))ξ +

∫ t

0
(So(t− s)− Sn(t− s))BoLxo(s)ds

+

∫ t

0
(So(t− s)− Sn(t− s))f(xo(s))ds (4.24)

βn(t) ≡
∫ t

0
Sn(t− s)(Bo −Bn)Lxo(s)ds (4.25)

γn(t) ≡
∫ t

0
(So(t− s)− Sn(t− s))CdW. (4.26)

By use of standard triangle inequality, it is easy to deduce from (4.23) that
there exists a positive constant κ > 0 such that

E|xo(t)− xn(t)|2X ≤ κ
{
E|αn(t)|2X + E|βn(t)|2X + E|γn(t)|2X

+
(
M̃γ ‖ L ‖ +M̃K

)2
T

∫ t

0
E|xo(s)− xn(s)|2ds

}
(4.27)

for all t ∈ I, where γ ≡ sup{‖ B ‖L(Y,X), B ∈ Γ} and M̃ ≡M exp (|ω|T ). Now
we use compactness of the covariance operators Pξ, CQC

∗ and strong conti-
nuity of the semigroups {Sn, So} uniformly on compact intervals and follow
similar approach as in Theorem 7 to prove that

E|αn(t)|2X + E|βn(t)|2X + E|γn(t)|2X → 0

uniformly in t ∈ I. Then it follows from the expression (4.27) and Gron-

wall inequality, that xn
s−→ xo in Ba

∞(I,X ). Thus, again it follows from
Cauchy theorems that along a subsequence, relabeled as the original sequence,
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`(t, Lxn(t))→ `(t, Lxo(t)) for all t ∈ I and P -a.s. Then it follows from (4.17)
and Lebesgue dominated convergence theorem that

lim
n→∞

E
∫
I
`(t, Lxn(t))dt = E

∫
I
`(t, Lxo(t))dt. (4.28)

This proves that limn→∞ J(Bn) = J(Bo). Thus we have proved the continuity
of the map B → J(B) as defined by (4.20) with respect to the topology τso on
L(Y,X). Since Γ is τso compact, J attains its minimum on Γ and hence the
uncertain stochastic feedback control problem (D) has a solution. �

5. Control of Induced Measure Valued Functions

Here we consider the systems (2.10)-(2.11) with the principal operator as-
sumed known and fixed. It is only the control operator B that is to be chosen
from the admissible set Γ so as to extremize certain functionals of the induced
measures. First note that, under the assumptions of Theorem 9, for each
B ∈ Γ the system

dx = Axdt+BLxdt+ f(x)dt+ CdW, x(0) = ξ, t ∈ I (5.1)

has a unique mild solution xB ∈ Ba
∞(I,X ). Thus for each t ∈ I, xB(t) ∈

L2(Ω, X) and Ft measurable. Let B(X) denote the Borel algebra of subsets of
the Hilbert space X and M1(X) the space of probability measures on B(X).
Clearly, the measure µBt given by

µBt (V ) ≡ P (xBt )−1(V ) ≡ Prob.{xB(t) ∈ V }, V ∈ B(X)

is well defined. Let µ0 denote the measure µ0 ≡ Pξ−1 giving the distribution
of the initial state ξ. We introduce the reachable set

R(t) ≡ {µ ∈M1(X) : µ = µBt , B ∈ Γ} (5.2)

and show that it is weakly sequentially compact.

Theorem 10. Consider the system (5.1). Suppose A is the infinitesimal
generator of a C0-semigroup S(t), t ≥ 0, in L(X), L ∈ L(X,Y ) and B ∈ Γ
where Γ is compact in the strong operator topology of L(Y,X), f is uniformly
Lipschitz on X, C ∈ L(E,X) and W is a Q Brownian motion in E such
that CQC∗ ∈ L+

1 (X), and ξ is F0-measurable X valued random variable with
finite second moment. Then for each t ∈ I, R(t) is a weakly compact subset
of M1(X).

Proof. We show that every sequence {µnt } ∈ R(t) has a subsequence that
converges weakly to an element µot ∈ R(t). Since µnt ∈ R(t), there exists a
Bn ∈ Γ such that µnt = P (xBn(t))−1. By compactness of Γ in the strong
operator topology, there exists a subsequence of this sequence, relabeled as the
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original sequence, and Bo ∈ Γ such that Bn
τso−→ Bo. Let {xn, xo} denote the

mild solutions of equation (5.1) corresponding to {Bn, Bo} respectively. Then
as shown in the proof of Theorem 9 (with A considered fixed) xn → xo in
Ba
∞(I,X ) and hence xn(t)→ xo(t) in L2(Ω, X) for all t ∈ I. It is well known

that mean convergence implies convergence in measure and convergence in
measure implies the existence of a subsequence that converges P -a.s. So there
exists a subsequence xnk of the sequence xn and an element xo ∈ Ba

∞(I,X )

such that xnk(t)
s−→ xo(t) in X P-a.s. Define

µnk
t = P (xnk(t))−1, and µot = P (xo(t))−1.

Clearly, {µnk
t , µ

o
t} ∈ R(t) for each t ∈ I. Let BC(X) denote the Banach

space of real valued bounded continuous functions on X (endowed with the
standard sup norm topology). Then for any ϕ ∈ BC(X) it is clear that
ϕ(xnk(t))→ ϕ(xo(t)) with probability one which is equivalent to∫

X
ϕ(ζ)µnk

t (dζ)→
∫
X
ϕ(ζ)µot (dζ).

This shows that µnk
t

w−→ µot for each t ∈ I. Thus we have proved weak sequen-
tial compactness of the reachable set R(t) for each t ∈ I. This completes the
proof. �

We use the above result to solve the following mass transfer problem. Let D
be a closed subset of X supporting the initial measure µ0, that is µ0(D) = 1.
Let K, a closed subset of X, denote the target set possibly satisfying D∩K = ∅.
We seek a control operator B ∈ Γ that maximizes the mass of the measure
µBT (·) on K. Here the objective functional is given by

J(B) ≡ µBT (K) (5.3)

where µB is the measure induced by the (mild) solution of equation (5.1)
corresponding to the control operator B ∈ Γ.

Corollary 11. Consider the system (5.1) with the objective functional (5.3)
and suppose the assumptions of Theorem 10 hold. Then there exists a control
operator B0 ∈ Γ such that J(Bo) ≥ J(B) for all B ∈ Γ.

Proof. It suffices to prove that J given by (5.3) is upper semicontinuous in the
strong operator topology of L(Y,X). Let {Bn, Bo} be any sequence from Γ and
{µn, µo} a sequence of measure valued functions induced by the corresponding

solutions of equation (5.1). Suppose Bn
τso−→ Bo. Then it follows from Theorem

10, that along a subsequence, if necessary, µnt
w−→ µot . Since K is a closed set,

it follows from a well known result [19, Parthasarathy, Theorem 6.1, p40] that

limµnt (K) ≤ µot (K). (5.4)
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This is the same as lim J(Bn) ≤ J(Bo). Thus J is upper semicontinuous on Γ
with respect to strong operator topology. Compactness of Γ in this topology
implies existence of an optimal operator Bo. This proves the existence of a
Bo ∈ Γ such that J(Bo) ≥ J(B) for all B ∈ Γ. �

This result can be further extended as follows. The objective functional is
given by

J(B) ≡
∫
I
µBt (K)λ(dt). (5.5)

The problem is to find an operator B ∈ Γ at which J given by (5.5) attains its
maximum. Note that if λ is the Lebesgue measure, maximizing this functional
is equivalent to finding a control law that maximizes the residence time of the
solution process in the set K.

Corollary 12. Consider the system (5.1) with the objective functional (5.5)
and suppose the assumptions of Theorem 10 hold and that λ is a countably
additive positive measure having bounded total variation on I. Then there exists
a control operator Bo ∈ Γ such that J(Bo) ≥ J(B) for all B ∈ Γ.

Proof. By Corollary 11, the expression (5.4) holds. Clearly, the functions on
both the sides of the inequality are bounded measurable and λ integrable over
I. By integrating this over the interval I with respect to the measure λ, it
is easy to verify that J(Bo) ≥ lim J(Bn). Thus the statement of the theorem
follows from τso compactness of the admissible set Γ. �

Note that λ need not be a non atomic measure. In fact we can even choose
a purely atomic measure such as λ(dt) ≡

∑∞
i=1 αiδti(dt) where δs denotes the

Dirac measure supported at s ∈ I. Since λ is assumed to be a positive measure
having bounded variation, it is necessary that

∑∞
i=1 αi <∞.

There are other interesting applications. One such problem is the evasion
problem where one wants to avoid approaching a danger zone. Let D ⊂ X
denote the forbidden zone and Dε ≡ {x ∈ X : d(x,D) < ε} the open ε neigh-
borhood of the set D. The objective is to stay away from Dε if possible. Thus
we may try to find a feedback operator B ∈ Γ that minimizes the functional

J(B) ≡
∫
I
µBt (Dε)λ(dt). (5.6)

Corollary 13. Consider the system (5.1) with the objective functional (5.6)
and suppose the assumptions of Theorem 10 hold and that λ is a countably
additive positive measure having bounded total variation on I. Then there exists
an optimal control operator in Γ at which J given by (5.6) attains its minimum.
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Proof. (Outline) We use the notations and arguments of Corollary 11. Since
Dε is an open set, it follows from [19, Parthasarathy, Theorem 6.1, p40] that
limµnt (Dε) ≥ µot (D

ε) for all t ∈ I. Hence one can easily verify that the func-
tional J is lower semicontinuous, that is, J(Bo) ≤ lim J(Bn). Thus by τso
compactness of the admissible set Γ, J attains its infimum on Γ proving exis-
tence of an optimal feedback operator. �

Another interesting problem is concerned with minimizing the Hausdorff
dimension of the support of the measure induced by the process xB. Let K(X)
denote the hyper space of compact subsets of the Hilbert space X. This is fur-
nished with the metric topology ρH where ρH denotes the standard Hausdorff
metric on K(X). It is well known that (K(X), ρH) is a Polish space if X is
Polish. In our case X is a separable Hilbert space so a Polish space.

Here, we are concerned with the objective functional given by

J(B) ≡ inf{η(K,B),K ∈ K(X)} (5.7)

where

η(K,B) ≡ ν(K) + (β/T )

∫
I
µBt (X \K) λ(dt)

with ν : K(X) −→ [0,∞] an extended nonnegative real valued set function
defined on K(X).

Theorem 14. Consider the system (5.1) and suppose the assumptions of
Theorem 10 hold. Further, suppose ν satisfies the following properties: (P1):
ν(K1) ≤ ν(K2) whenever K1,K2 ∈ K(X) satisfying K1 ⊂ K2. (P2): ν is coer-
cive with respect to the Hausdorff dimension dH in the sense that limdH(K)→∞
ν(K) = ∞. Then, there exists a B ∈ Γ at which J given by (5.7) attains its
minimum.

Proof. (Outline) We show that J given by (5.7) is lower semicontinuous with
respect to the relative τso topology on Γ ⊂ L(Y,X). Since the second term of
η is bounded above by (β/T )λ(T ) and ν is coercive there exists a Ko ∈ K(X)
such that for allB ∈ L(Y,X), the minimizing set {K : K ∈ K(X)} ⊂ Ko. Thus
it suffices to restrict η on the compact topological space (K(Ko), ρH)×(Γ, τso).
In other words (5.7) is equivalent to

J(B) ≡ inf{η(K,B),K ∈ K(Ko)}. (5.8)

We verify that J given by (5.8) is lower semicontinuous in τso. Let {Bn} be any

sequence from Γ such that Bn
τso−→ Bo. Let {Kn} ∈ K(Ko) the corresponding

sequence of minimizers of K −→ η(K,Bn). That is η(Kn, Bn) ≤ η(K,Bn) for
all K ∈ K(Ko). Since (K(Ko), ρH) is a compact topological space, there exists
a subsequence of the sequence {Kn, Bn} ⊂ K(Ko)×Γ, relabeled as the original



Inverse problems and optimal feedback control operators 173

sequence, and an element (Ko, Bo) ∈ K(Ko)× Γ such that

(Kn, Bn) −→ (Ko, Bo)

with respect to the topology ρH × τso. Since, for each t ∈ I, the reachable
set R(t) is weakly compact, it is uniformly tight and hence it follows from
compactness of the sets {Kn,Ko} that

limµnt (X \Kn) ≥ µot (X \Ko).

This follows from the same argument as (5.4). Now using this it is easy to
verify that

(β/T )

∫
I
µot (X \Ko) λ(dt) ≤ (β/T ) lim

∫
I
µnt (X \Kn) λ(dt). (5.9)

By lower semicontinuity of ν we have

ν(Ko) ≤ lim ν(Kn). (5.10)

Adding up (5.9) and (5.10) and recalling that sum of liminfs is equal to or less
than liminf of the sum we arrive at the conclusion that J(Bo) ≤ lim J(Bn)
proving lower semicontinuity of J given by (5.8) and hence (5.7). Thus it
follows from τso compactness of the set Γ that J attains its infimum on Γ.
This completes the outline of our proof. �

The results presented above can be easily extended to cover time varying
operators by choosing for the admissible class the set Fad ≡ Bs(I,Γ). This
is the class of strongly measurable operator valued functions defined on I
and taking values from a set Γ ⊂ L(Y,X) which is compact in the strong
operator topology. The set Fad, furnished with the Tychnoff product topology,
is compact.

Remark 15. In all the results presented above we have considered admissible
feedback operators which are independent of time. As mentioned above, by use
of Tychonoff product topology the results can be easily extended to operator
valued functions. Time invariant operators, however, are easy to construct
and implement and so it is preferred in engineering applications.

6. Necessary Conditions of Optimality

So far we have proved existence of optimal operators extremizing certain
objective functionals. These optimal operators can be characterized through
necessary conditions of optimality. Using the necessary conditions one can
construct the optimal operators. This is a subject of another paper. For
completeness we present here one result for the problem (D).
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Theorem 16. Consider the system (2.10)-(2.11) with the objective (cost) func-
tional (2.12) and suppose the assumptions of Theorem 9 hold and that the set
G is a convex subset of G0(M,ω) and Γ is a convex subset of Ls(X). Further
suppose f is Fréchet differentiable with the derivative Df(x) ∈ L(X) uni-
formly bounded. Suppose the integrand ` is once continuously Fréchet differ-
entiable with the Fréchet derivative along the optimal trajectory `y(·, Lxo(·)) ∈
La1(I,Y). Then, in order that the pair {Ao, Bo} ∈ G× Γ be optimal, it is nec-
essary that there exists a pair of solutions {xo, ψ} ∈ Ba

∞(I,X ) of the evolution
equations

dxo = (Aoxo +BoLxo)dt+ f(xo(t))dt+ CdW, x(0) ≡ ξ,
(6.1)

dψ = −{A∗oψ + (BoL)∗ψ + (Df(xo))
∗}dt− L∗`y(t, Lxo)dt, ψ(T ) = 0,

and that the following inequalities hold:

E
∫
I
< (A−Ao)∗ψ, xo >X dt ≤ 0, ∀ A ∈ G,

(6.2)

E
∫
I
< (B −Bo)∗ψ,Lxo >Y dt ≥ 0, ∀ B ∈ Γ.

Proof. (Outline of an informal proof): Clearly the pair {Ao, Bo} is optimal
if and only if the functional η, given by the expression (4.19), satisfies the
following inequalities:

η(Bo, A) ≤ η(Bo, Ao) ≤ η(B,Ao) ∀ {B,A} ∈ Γ×G. (6.3)

In other words the pair {Ao, Bo} is a saddle point for η. Now using the left
hand inequality of (6.3) and the convexity of the set G, it is easy to verify that

E
∫
I
< L∗`y(t, Lxo(t)), z(t) >X dt ≤ 0,

where z ∈ Ba
∞(I,X ) is the strong solution of the variational evolution equation

dz = [Aoz +BoLz +Df(xo)z]dt+ (A−Ao)xodt, z(0) = 0

with (A−Ao)xo ∈ La1(I,X ). Then it follows from continuity of the functional

(A−Ao)xo −→ z −→ E
∫
I
< L∗`y(t, Lxo(t)), z > dt

on La1(I,X ) that there exists a ψ ∈ Ba
∞(I,X ) ⊂ L∞(I,X ) such that

E
∫
I
< (A−Ao)∗ψ, xo >X dt ≤ 0, ∀ A ∈ G.
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The function ψ can be chosen as the strong solution of equation (6.1b). Next,
using the inequality on the right hand side of the expression (6.3) and the
convexity of the set Γ and similar arguments, one can verify the second in-
equality of (6.2). This way we obtain all the necessary conditions of optimality
as stated in the theorem. �

Remark 17. In general, the evolution equations (6.1) do not have strong
solutions unless {f, C, `} satisfy additional properties. Hence our proof of
Theorem 16 is rather informal. Here, Yosida regularization may play a signifi-
cant role. If we are satisfied with ε-optimal solution, we can certainly develop
necessary conditions of ε-optimality with formal proof. And this can be done
by using Yosida regularization of the set Γ and the operators {f, C} including
the Fréchet derivative L∗`y. We leave it as an open problem.
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