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Abstract. In this study, we introduce a new modified Newton-Tikhonov method for ap-

proximating a solution of nonlinear ill-posed problems. The proposed iteration converges

quadratically. Order optimal error bounds are given in case the regularization parameter is

chosen a priori and by the adaptive method of Pereverzev and Schock(2005).

1. Introduction

In this study we are concerned with the problem of approximately solving
the nonlinear ill-posed operator equation

F (x) = f, (1.1)

where F : D(F ) ⊆ X → Y is a nonlinear operator between the Hilbert spaces
X and Y. Here and below 〈., .〉 denote the inner product and ‖.‖ denote the
corresponding norm. We assume throughout that f δ ∈ Y are the available
data with

‖f − f δ‖ ≤ δ
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and (1.1) has a solution x̂ (which need not be unique). Then the problem of
recovery of x̂ from noisy equation F (x) = f δ is ill-posed, in the sense that a
small perturbation in the data can cause large deviation in the solution.

Further it is assumed that F possesses a locally uniformly bounded Fréchet
derivative F ′(.) in the domain D(F ) of F. A large number of problems in
mathematical physics and engineering are solved by finding the solutions of
equations in a form like (1.1). If one works with such problems, the measure-
ment data will be distorted by some measurement error. Therefore, one has to
consider appropriate regularization techniques for approximately solving (1.1).

Iterative regularization methods are used for approximately solving (1.1).
Recall ([13]) that, an iterative method with iterations defined by

xδk+1 = Φ(xδ0, x
δ
1, · · · , xδk; yδ),

where xδ0 := x0 ∈ D(F ) is a known initial approximation of x̂, for a known
function Φ together with a stopping rule which determines a stopping index
kδ ∈ N is called an iterative regularization method if ‖xδkδ − x̂‖ → 0 as δ → 0.

The Levenberg-Marquardt method([17], [18], [19], [20], [21], [22], [23], [24])
and iteratively regularized Gauss-Newton method (IRGNA) ([3], [12]) are
the well-known iterative regularization methods. In Levenberg-Marquardt
method, the iterations are defined by,

xδk+1 = xδk − (A∗k,δAk,δ + αkI)−1A∗k,δ(F (xδk)− yδ), (1.2)

where A∗k,δ := F ′(xδk)
∗ is as usual the adjoint of Ak,δ := F ′(xδk) and (αk)

is a positive sequence of regularization parameter ([12]). In Gauss-Newton
method, the iterations are defined by

xδk+1 = xδk − (A∗k,δAk,δ + αkI)−1[A∗k,δ(F (xδk)− yδ) + αk(x
δ
k − x0)] (1.3)

where xδ0 := x0 and (αk) is as in (1.2).
In [3], Bakushinskii obtained local convergence of the method (1.3), under

the smoothness assumption

x̂− x0 = (F ′(x̂)∗F ′(x̂))νw, w ∈ N(F ′(x̂))⊥ (1.4)

with ν ≥ 1, w 6= 0 and F ′(.) is Lipschitz continuous; N(F ′(x̂)) denotes the
nullspace of F ′(x̂). For noise free case Bakushinskii ([3]) obtained the rate

‖xδk − x̂‖ = O(αk),

and Blaschke et.al.([12]) obtained the rate

‖xδk − x̂‖ = O(ανk), (1.5)

for 1
2 ≤ ν < 1.
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It is proved in [12], that the rate (1.5) can be obtained for 0 ≤ ν < 1
2

provided F ′(.) satifies the following conditions:

F ′(x̄) = R(x̄, x)F ′(x) +Q(x̄, x),

‖I −R(x̄, x)‖ ≤ CR, x̄, x ∈ B2ρ(x0),

‖Q(x̄, x)‖ ≤ CQ‖F ′(x̂)(x̄− x)‖
with ρ, CR and CQ sufficiently small. In fact in [12], Blaschke et.al. obtained
the rate

‖xδk − x̂‖ = o(α
2ν

2ν+1

k ), 0 ≤ ν < 1

2
by choosing the stopping index kδ according to the discrepancy principle

‖F (xδkδ)− y
δ‖ ≤ τδ < ‖F (xδk)− yδ‖, 0 ≤ k < kδ

with τ > 1 chosen sufficiently large. Subsequently, many authors extended,
modified, and generalized Bakushinskii’s work to obtain error bounds under
various contexts(see [4], [5], [6], [7], [8], [9], [10]).

In [13], Mahale and Nair considered a method in which the iterations are
defined by

xδk+1 = x0 − gαk(A∗0A0)A
∗
0[F (xδk)− yδ −A0(x

δ
k − x0)], xδ0 := x0 (1.6)

where A0 := F ′(x0), (αk) is a sequence of regularization parameters which
satisfies,

αk > 0, 1 ≤ αk
αk+1

≤ µ1, lim
k→0

αk = 0 (1.7)

for some constant µ1 > 1 and each gα, for α > 0 is a positive real-valued
piecewise continuous function defined on [0,M ] with M ≥ ‖A0‖2. They choose
the stopping index kδ for this iteration as the positive integer which satisfies

max{‖F (xδkδ−1)− y
δ‖, β̃kδ} ≤ τδ < max{‖F (xδk−1)− yδ‖, β̃k}, 1 ≤ k < kδ

where τ > 1 is a sufficiently large constant not depending on δ, and

β̃k := ‖F (xδk−1)− yδ +A0(x
δ
k − xδk−1)‖.

In fact, Mahle and Nair obtained an order optimal error estimate, in the sense
that an improved order estimate which is applicable for the case of linear
ill-posed problems as well is not possible, under the following new source
condition on x0 − x̂.

Assumption 1.1. There exists a continuous, stricly monotonically increasing
function ϕ : (0,M ]→ (0,∞) satisfying limλ→0 ϕ(λ) = 0 and ρ0 > 0 such that

x0 − x̂ = [ϕ(A∗0A0)]
1/2w (1.8)

for some w ∈ X with ‖w‖ ≤ ρ0.
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In [10], the author considered a particular case of this method, namely,
regularized modified Newton’s method defined iteratively by

xδk+1 = xδk − (A∗0A0 + αI)−1[A∗0(F (xδk)− yδ) + α(xδk − x0)], xδ0 := x0 (1.9)

for approximately solving (1.1). Using a suitably constructed majorizing se-
quence (see, [1], p.28), it is proved that the sequence(xδk) converges linearly to

a solution xδα of the equation

A∗0F (xδα) + α(xδα − x0) = A∗0y
δ (1.10)

and that xδα is an approximation of x̂. The error estimate in this paper was
obtained under the following source condition on x0 − x̂.

Assumption 1.2. There exists a continuous, stricly monotonically increasing
function ϕ : (0, a1]→ (0,∞) with a1 ≥ ‖F ′(x̂)‖2 satisfying

(1) limλ→0 ϕ(λ) = 0;
(2) for α ≤ 1, ϕ(α) ≥ α;

(3) supλ≥0
αϕ(λ)
λ+α ≤ cϕϕ(α), ∀ λ ∈ (0, a1];

(4) there exists w ∈ X such that

x0 − x̂ = ϕ(F ′(x̂)∗F ′(x̂))w. (1.11)

Later in [11], using a two step Newton method (see, [2]), the author proved
that the sequence (xδk) in (1.9) converges linarly to the solution xδα of (1.10).
The error estimate in [11] was based on the following source condition

x0 − x̂ = ϕ(A∗0A0)w,

where ϕ is as in Assumption 1.1 with a1 ≥ ‖A0‖2. In the present paper we
improve the semilocal convergence by modifying the method (1.9).

1.1. The new method. In this study we define a new iteration procedure

xδn+1,α = xδn,α − (A∗0An + αI)−1[A∗0(F (xδn,α)− yδ) + α(xδn,α − x0)], xδ0,α := x0
(1.12)

where An := F ′(xδn,α) and α > 0 is the regularization parameter. Using an
assumption on the Fréchet derivative of F we prove that the iteration in (1.12)
converges quadratically to the solution xδα of (1.10).

Recall ([14]) that, a sequence (xn) is said to converge quadratically to x∗ if
there exists positive reals β, γ such that

‖xn+1 − x∗‖ ≤ βe−γ2
n

for all n ∈ N. And the convergence of (xn) to x∗ is said to be linear if there
exists a positive number M0 ∈ (0, 1), such that

‖xn+1 − x∗‖ ≤M0‖xn − x∗‖.
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Quadratically convergent sequence will always eventually converge faster than
a linear convergent sequence.

We choose the regularization parameter α from some finite set

{α0 < α1 < · · · < αN}
using the balancing principle considered by Perverzev and Schock in [15].

The rest of this paper is organized in the following way. In Section 2 we
provide the convergence analysis of the proposed method and in Section 3
we provide the error analysis. Finally in Section 4 we provide the details for
implementing the method and the algorithm.

2. Convergence Analysis of (1.12)

The following assumption is used extensively for proving the results in this
paper.

Assumption 2.1. There exists a constant k0 > 0, r > 0 such that for ev-
ery x, u ∈ B(x0, r) ∪ B(x̂, r) ⊂ D(F ) and v ∈ X, there exists an element
Φ(x, u, v) ∈ X such that

[F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x− u‖.

In view of Assumption 2.1 there exists an element Φ0(x, x0, v) ∈ X such
that

[F ′(x)− F ′(x0)]v = F ′(x0)Φ0(x, x0, v), ‖Φ0(x, x0, v)‖ ≤ l0‖v‖‖x− x0‖.
Note that

l0 ≤ k0
holds in general and k0

l0
can be arbitrarily large [1], [2]. Let δ0 <

√
α0,

ρ <

√
1 + 2l0(1− δ0√

α0
)− 1

l0
,

and

γρ :=
l0
2
ρ2 + ρ+

δ0√
α0
.

For r ≤ 2−3k0
(2+3l0)k0

, k0 ≤ 2
3 , let g : (0, 1)→ (0, 1) be the function defined by

g(t) :=
3(1 + l0r)k0
2(1− l0r)

t, ∀ t ∈ (0, 1).

Lemma 2.2. Let l0r < 1 and u ∈ Br(x0). Then (A∗0Au + αI) is invertible:

(i) (A∗0Au + αI)−1 = [I + (A∗0A0 + αI)−1A∗0(Au −A0)]
−1(A∗0A0 + αI)−1

(ii) ‖(A∗0Au + αI)−1A∗0Au‖ ≤ 1+l0r
1−l0r ,
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where Au := F ′(u).

Proof. Note that by Assumption 2.1, we have

‖(A∗0A0 + αI)−1A∗0(Au −A0)‖ = sup
‖v‖≤1

‖(A∗0A0 + αI)−1A∗0(Au −A0)v‖

= sup
‖v‖≤1

‖(A∗0A0 + αI)−1A∗0A0Φ0(u, x0, v)‖

≤ l0‖u− x0‖ ≤ l0r < 1.

So I + (A∗0A0 + αI)−1A∗0(Au − A0) is invertible. Now (i) follows from the
following relation

A∗0Au + αI = (A∗0A0 + αI)[I + (A∗0A0 + αI)−1A∗0(Au −A0)].

To prove (ii), observe that by Assumption 2.1 and (i), we have

‖(A∗0Au + αI)−1A∗0Au‖ = sup
‖v‖≤1

‖(A∗0Au + αI)−1A∗0Auv‖

= sup
‖v‖≤1

‖(A∗0Au + αI)−1A∗0(Au −A0 +A0)v‖

= sup
‖v‖≤1

‖[I + (A∗0A0 + αI)−1A∗0(Au −A0)]
−1

(A∗0A0 + αI)−1A∗0(Au −A0 +A0)v‖

≤ 1

1− k0r
[‖(A∗0A0 + αI)−1A∗0A0Φ0(u, x0, v)‖

+‖(A∗0A0 + αI)−1A∗0A0v‖]

≤ 1 + l0r

1− l0r
.

This completes the proof. �

Theorem 2.3. Suppose Assumption 2.1 holds. Let
γρ

1−g(γρ) ≤ r ≤ 2−3k0
(2+3l0)k0

,

δ ∈ (0, δ0]. Then the sequence (xδn,α) defined in (1.12) is a Cauchy sequence

in Br(x0) and hence converges to xδα ∈ Br(x0). Further xδα satisfies (1.10) and
the following estimate holds for all n ≥ 0;

‖xδn,α − xδα‖ ≤ re−γ2
n
, (2.1)

where γ = −ln(g(γρ)).

Proof. Suppose xδn,α ∈ Br(x0), ∀n ≥ 0. Then
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xδn+1,α − xδn,α (2.2)

= (A∗0An + αI)−1[A∗0An(xδn,α − xδn−1,α)−A∗0(F (xδn,α)− F (xδn−1,α))]

+(A∗0An + αI)−1A∗0(An −An−1)(A∗0An−1 + αI)−1

×[A∗0(F (xδn−1,α)− yδ) + α(xδn−1,α − x0)]
= (A∗0An + αI)−1A∗0[An(xδn,α − xδn−1,α)− (F (xδn,α)− F (xδn−1,α))]

+(A∗0An + αI)−1A∗0(An −An−1)(xδn,α − xδn−1,α)

:= ζ1 + ζ2 (2.3)

where

ζ1 = (A∗0An + αI)−1A∗0[An(xδn,α − xδn−1,α)− (F (xδn,α)− F (xδn−1,α))],

and
ζ2 = (A∗0An + αI)−1A∗0(An −An−1)(xδn,α − xδn−1,α).

So by Fundamental Theorem of Integration,

ζ1 = (A∗0An+αI)−1A∗0

[ ∫ 1

0
(An−F ′(xδn−1,α+t(xδn,α−xδn−1,α)dt

]
(xδn,α−xδn−1,α)

and hence by Assumption 2.1 and Lemma 2.2,

‖ζ1‖

≤ ‖(A∗0An + αI)−1A∗0An

∫ 1

0
Φ(xδn−1,α + t(xδn,α − xδn−1,α), xδn,α,

xδn−1,α − xδn,α)dt‖

≤ 1 + l0r

1− l0r

∫ 1

0
Φ(xδn−1,α + t(xδn,α − xδn−1,α), xδn,α, x

δ
n−1,α − xδn,α)dt‖

≤ (l0r + 1)k0
2(1− l0r)

‖xδn,α − xδn−1,α‖2. (2.4)

Similarly,

‖ζ2‖ ≤ ‖(A∗0An + αI)−1A∗0(An −An−1)(xδn−1,α − xδn,α)‖
≤ ‖(A∗0An + αI)−1A∗0AnΦ(xδn,α, x

δ
n−1,α, x

δ
n−1,α − xδn,α)‖

≤ (1 + l0r)k0
1− l0r

‖xδn,α − xδn−1,α‖2. (2.5)

So by (2.3), (2.4)and (2.5), we have

‖xδn+1,α − xδn,α‖ ≤
3(1 + l0r)k0)

2(1− l0r)
‖xδn,α − xδn−1,α‖2

≤ g(en)en, (2.6)
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where

en := ‖xδn,α − xδn−1,α‖, n = 1, 2, · · · .

Now using induction we shall prove that xδn,α ∈ Br(x0). Note that

e1 = ‖xδ1,α − x0‖
= ‖(A∗0A0 + αI)−1A∗0(F (x0)− yδ)‖
= ‖(A∗0A0 + αI)−1A∗0(F (x0)− F (x̂)− F ′(x0)(x0 − x̂)

+F ′(x0)(x0 − x̂) + F (x̂)− yδ)‖

≤ ‖(A∗0A0 + αI)−1A∗0(

∫ 1

0
[F ′(x̂+ t(x0 − x̂))− F ′(x0)](x0 − x̂)dt

+F ′(x0)(x0 − x̂) + F (x̂)− yδ)‖

≤ ‖(A∗0A0 + αI)−1A∗0A0(

∫ 1

0
Φ(x0, x̂+ t(x0 − x̂), x0 − x̂)‖

+‖(A∗0A0 + αI)−1A∗0F
′(x0)(x0 − x̂)‖

+‖(A∗0A0 + αI)−1A∗0(F (x̂)− yδ)‖

≤ l0
2
ρ2 + ρ+

δ√
α

(2.7)

≤ γρ ≤ r

i.e., xδ1,α ∈ Br(x0). Now since γρ < 1, by (2.7), e1 < 1. Therefore by (2.6) and

the fact that g(µt) ≤ µg(t), for all t ∈ (0, 1), we have that en < 1, ∀ n ≥ 1 and

g(e1)
2n−1e1.

Now suppose xδk,α ∈ Br(x0) for some k. Then

‖xδk+1,α − x0‖ ≤ ‖xδk+1,α − xδk,α‖+ ‖xδk,α − xδk−1,α‖+ · · ·+ ‖xδ1,α − x0‖

≤ (g(e1)
2k−1 + g(e1)

2k−1−1 + · · ·+ 1)e1

≤ e1
1− g(e1)

≤ γρ
1− g(γρ)

≤ r.

Thus by induction xδn,α ∈ Br(x0), ∀ n ≥ 0.

Next we shall prove that (xδk+1,α) is a Cauchy sequence in Br(x0).
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‖xδn+m,α − xδn,α‖ ≤
m∑
i=0

‖xδn+i+1,α − xδn+i,α‖ (2.8)

≤
m∑
i=0

g(e1)
2n+i−1e1

≤ g(e1)
2n−1e1(1 + g(e1)

2 + · · ·+ g(e1)
2m)

≤ g(e1)
2n−1e1

1− g(e1)
≤ g(γρ)

2n−1γρ
1− g(γρ)

≤ re−γ2n . (2.9)

Thus (xδn,α) is a Cauchy sequence in Br(x0) and hence converges, say to xδα ∈
Br(x0). Further by letting n→∞ in (1.12) we obtain

F ′(x0)
∗(F (xδα)− yδ) + α(xδα − x0) = 0.

The estimate in (2.1) follows by letting m tends to ∞ in (2.9). �

Remark 2.4. Note that if r ∈ (r1, r2) where

r1 :=
2 + (2l0 − 3k0)γρ −

√
(4l20 + 9k20 − 36k0l0)γ2ρ − (12k0 + 8l0)γρ + 4

2l0(2 + 3k0γρ)

and

r2 := min
{2+(2l0 − 3k0)γρ+

√
(4l20 + 9k20 − 36k0l0)γ2ρ−(12k0 + 8l0)γρ + 4

2l0(2 + 3k0γρ)
,

2− 3k0
(2 + 3l0)k0

}
,

with γρ ≤ cl0k0 := min
{

1,

√
(8l0−12k0)2+16(36k0l0−9k0−4l0)−(8l0+12k0)

2(36k0l0−9k20−4l20)

}
then

γρ
1−g(γρ) ≤ r and l0r < 1.

3. Error analysis

We use the following assumption to obtain an error estimate for ‖xδα − x̂‖.

Assumption 3.1. There exists a continuous, strictly monotonically increas-
ing function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x0)‖2 satisfying;

(i) lim
λ→0ϕ(λ) = 0.

(ii) sup
λ≥0

αϕ(λ)
λ+α ≤ ϕ(α), ∀ λ ∈ (0, a].
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(iii) there exists v ∈ X such that

x0 − x̂ = ϕ(A∗0A0)v.

Theorem 3.2. Let xδα be as in (1.10). Then

‖xδα − x̂‖ ≤
max{1, ‖v‖}

1− q

( δ√
α

+ ϕ(α)
)
,

where q = l0r.

Proof. Let M =
∫ 1
0 F

′(x̂+ t(xδα − x̂))dt. Then

F (xδα)− F (x̂) = M(xδα − x̂)

and hence by (1.10), we have

(A∗0M + αI)(xδα − x̂) = A∗0(y
δ − y) + α(x0 − x̂).

Thus

xδα − x̂
= (A∗0A0 + αI)−1[A∗0(y

δ − y) + α(x0 − x̂) +A∗0(A0 −M)(xδα − x̂)]

= s1 + s2 + s3, (3.1)

where s1 := (A∗0A0 + αI)−1A∗0(y
δ − y), s2 := (A∗0A0 + αI)−1α(x0 − x̂) and

s3 := (A∗0A0 + αI)−1A∗0(A0 −M)(xδα − x̂). Note that

‖s1‖ ≤
δ√
α
, (3.2)

by Assumption 3.1

‖s2‖ ≤ ϕ(α)‖v‖ (3.3)

and by Assumption 2.1

‖s3‖ ≤ l0r‖xδα − x̂‖. (3.4)

The result now follows from (3.1), (3.2), (3.3) and (3.4). �

3.1. Error bounds under source conditions. Combining the estimates in
Theorem 2.3 and Theorem 3.2 we obtain the following.

Theorem 3.3. Let the assumptions in Theorem 2.3 and Theorem 3.2 hold
and let xδn,α be as in (1.12). Then

‖xδn,α − x̂‖ ≤ re−γ2
n

+
max{1, ‖v‖}

1− q

( δ√
α

+ ϕ(α)
)
.
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Further if nδ := min
{
n : e−γ2

n
< δ√

α

}
, then

‖xδnδ,α − x̂‖ ≤ C̃
( δ√

α
+ ϕ(α)

)
where C̃ := r + max{1,‖v‖}

1−q .

3.2. A priori choice of the parameter. Observe that the estimate δ√
α

+

ϕ(α) in Theorem 3.3 is of optimal order for the choice α := αδ which satisfies
δ√
αδ

= ϕ(α). Now, using the function ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ a, we have

δ =
√
αϕ(α) = ψ(ϕ(α)) so that αδ = ϕ−1[ψ−1(δ)].

Theorem 3.4. Let ψ(λ) = λ
√
ϕ−1(λ), 0 < λ ≤ a and assumptions in Theo-

rem 3.3 holds. For δ > 0, let αδ = ϕ−1[ψ−1(δ)] and let nδ be as in Theorem
3.3. Then

‖xδnδ,α − x̂‖ = O(ψ−1(δ)).

3.3. Adaptive choice of the parameter. In the balancing principle con-
sidered by Pereverzev and Schock in [15], the regularization parameter α = αi
are selected from some finite set

DN := {αi : 0 < α0 < α1 < · · · < αN}.
Let

ni = min
{
n : e−γ2

n ≤ δ
√
αi

}
and let xδαi := xδni,αi where xδni,αi be as in (1.12) with α = αi and n = ni.
Then from Theorem 3.3, we have

‖xδαi − x̂‖ ≤ C̃
( δ
√
αi

+ ϕ(αi)
)
, ∀ i = 1, 2, · · ·N.

Precisely we choose the regularization parameter α = αk from the set DN

defined by
DN := {αi = µiα0, i = 1, 2, · · ·N}

where µ > 1.
To obtain a conclusion from this parameter choice we considered all possible

functions ϕ satisfying Assumption 2.1 and ϕ(αi) ≤ δ√
αi
. Any of such functions

is called admissible for x̂ and it can be used as a measure for the convergence
of xδα → x̂ (see [16]).

The main result of this section is the following theorem, proof of which is
analogous to the proof of Theorem 4.4 in [10].
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Theorem 3.5. Assume that there exists i ∈ {0, 1, · · · , N} such that ϕ(αi) ≤
δ√
αi
. Let assumptions of Theorem 3.3 be satisfied and let

l := max
{
i : ϕ(αi) ≤

δ
√
αi

}
< N,

k = max
{
i : ∀j = 1, 2, · · · , i; ‖xδαi − x

δ
αj‖ ≤ 4C̃

δ
√
αj

}
where C̃ is as in Theorem 3.3. Then l ≤ k and

‖xδαk − x̂‖ ≤ 6C̃µψ−1(δ).

4. Implementation of the method

Finally the balancing algorithm associated with the choice of the parameter
specified in Theorem 3.5 involves the following steps:

• Choose α0 > 0 such that δ0 < ck0l0
√
α0 and µ > 1.

• ChooseN big enough but not too large and αi := µiα0, i = 0, 1, 2, · · · , N.

• Choose ρ ≤

√
1+2l0(ck0l0−

δ0√
α0

)−1

l0
where ck0l0 is as in Remark 2.4.

• Choose r ∈ (r1, r2).

4.1. Algorithm.

1. Set i = 0.
2. Choose ni = min

{
n : e−γ2

n ≤ δ√
αi

}
.

3. Solve xδni,αi = xδαi by using the iteration (1.12) with n = ni and α = αi.

4. If ‖xδαi − x
δ
αj‖ > 4C̃ δ√

αj
, j < i, then take k = i− 1 and return xδαk .

5. Else set i = i+ 1 and return to Step 2.
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