Nonlinear Functional Analysis and Applications Vol. 30, No. 4 (2025), pp. 1027-1036

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2025.30.04.03 http://nfaa.kyungnam.ac.kr/journal-nfaa

STABILITY ANALYSIS OF ADDITIVE FUNCTIONAL EQUATIONS IN INTUITIONISTIC FUZZY FRAMEWORKS

S. Ramarao¹, Siriluk Donganont², V. J. Sudhakar³, Choonkil Park⁴ and Mana Donganont⁵

¹Department of Mathematics, Government Arts and Science College, Tirupattur-635 901, Tamil Nadu, India e-mail: svmramarao1990@gmail.com

²School of Science, University of Phayao, Phayao 56000, Thailand e-mail: siriluk.pa@up.ac.th

³Department of Mathematics, Islamiah College(Autonomous), Vaniyambadi-632 752, Tamil Nadu, India e-mail: vjsvec1@gmail.com

⁴Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea e-mail: baak@hanyang.ac.kr

⁵School of Science, University of Phayao, Phayao 56000, Thailand e-mail: mana.do@up.ac.th

Abstract. In this paper, we investigate the Hyers-Ulam stability of the following additive functional equation

$$f(kx+y) + f(x+ky) = (k+1)f(x) + (k+1)f(y), (k=1,2,3,\dots),$$

in intuitionistic fuzzy normed spaces.

⁰Received August 6, 2024. Revised December 29, 2024. Accepted December 31, 2024.

⁰2020 Mathematics Subject Classification: 47H10, 39B72, 39A30.

⁰Keywords: Additive functional equation, intuitionistic fuzzy normed space, Hyers-Ulam stability.

⁰Corresponding author: Mana Donganont(mana.pa@up.ac.th).

1. Introduction and preliminaries

In 1940, Ulam [19] raised the following question. Under what conditions does there exists an additive mapping near an approximately addition mapping? The case of approximately additive functions was solved by Hyers [6] under certain assumption. In 1978, a generalized version of the theorem of Hyers for approximately linear mapping was given by Rassias [13]. The stability concept that was introduced and investigated by Rassias is called the Hyers-Ulam-Rassias stability. During the last decades, the stability problems of several functional equations have been extensively investigated by a number of authors [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 16, 18] and references therein.

In the present paper, we determine the stability results concerning the following additive functional equation

$$f(kx+y)+f(x+ky)=(k+1)f(x)+(k+1)f(y), \ (k=1,2,3,\cdots)$$
 in intuitionistic fuzzy normed spaces (IFNS).

Here we recall some notations and basic definitions.

Definition 1.1. ([17]) A binary operation $*: [0,1] \times [0,1] \to [0,1]$ is said to be a continuous t-norm if it satisfies the following conditions:

- (i) * is associative and commutative;
- (ii) * is continuous;
- (iii) a * 1 = a for all $a \in [0, 1]$;
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Definition 1.2. ([17]) A binary operation $\diamond : [0,1] \times [0,1] \to [0,1]$ is said to be a continuous *t*-conorm if it satisfies the following conditions:

- (i) ⋄ is associative and commutative;
- (ii) ♦ is continuous;
- (iii) $a \diamond 0 = a$ for all $a \in [0, 1]$;
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Using the above two definitions, Saadati and Park [17] introduced the concept of intuitionistic fuzzy normed spaces as follows:

Definition 1.3. ([17]) The five-tuple $(X, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy normed space (IFNS) if X is a vector space, * is continuous t-norm, \diamond is a continuous t-conorm and μ, ν are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions: For all $x, y \in X$ and s, t > 0,

- (i) $\mu(x,t) + \nu(x,t) \le 1$;
- (ii) $\mu(x,t) > 0$;
- (iii) $\mu(x,t) = 1$ iff x = 0;
- (iv) $\mu(\alpha x, t) = \mu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;

- (v) $\mu(x,t) * \mu(y,s) \le \mu(x+y,t+s);$
- (vi) $\mu(x,.):(0,\infty)\to[0,1]$ is continuous;
- (vii) $\lim_{t\to\infty} \mu(x,t) = 1$ and $\lim_{t\to 0} \mu(x,t) = 0$;
- (viii) $\nu(x,t) < 1$;
- (ix) $\nu(x,t) = 0$ iff x = 0;
- (x) $\nu(\alpha x, t) = \nu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
- (xi) $\nu(x,t) \diamond \nu(y,s) \geq \nu(x+y,t+s);$
- (xii) $\nu(x,.):(0,\infty)\to[0,1]$ is continuous;
- (xiii) $\lim_{t\to\infty} \nu(x,t) = 0$ and $\lim_{t\to0} \nu(x,t) = 1$.

In this case (μ, ν) is called an intuitionistic fuzzy norm.

Definition 1.4. ([12, 20]) Let $(X, \mu, \nu, *, \diamond)$ be an IFNS. Then a sequence (x_n) is said to be intuitionistic fuzzy convergent to $L \in X$ if $\lim \mu(x_n - L, t) = 1$ and $\lim \nu(x_n - L, t) = 0$ for all t > 0. In this case, we write $x_n \stackrel{IF}{\to} L$ as $n \to \infty$.

Definition 1.5. ([12, 20]) Let $(X, \mu, \nu, *, \diamond)$ be an IFNS. Then a sequence (x_n) is said to be an intuitionistic fuzzy Cauchy sequence, if $\lim \mu(x_{n+p} - x_n, t) = 1$ and $\lim \nu(x_{n+p} - x_n, t) = 0$ for all t > 0 and $p = 1, 2, \cdots$.

Definition 1.6. ([12, 20]) Let $(X, \mu, \nu, *, \diamond)$ be an IFNS. Then $(X, \mu, \nu, *, \diamond)$ is said to be complete, if every intuitionstic fuzzy Cauchy sequence in $(X, \mu, \nu, *, \diamond)$ is intuitionistic fuzzy convergent in $(X, \mu, \nu, *, \diamond)$.

2. Intuitionistic fuzzy stability

Let k be a finite positive integer. The functional equation

$$f(kx+y) + f(x+ky) = (k+1)f(x) + (k+1)f(y)$$
(2.1)

is called an additive functional equation, since the function f(x) = cx is its solution. Every solution of the additive functional equation is said to be an additive mapping.

We start with a Hyers-Ulam type theorem in IFNSs for the additive functional equation.

Theorem 2.1. Let X be a linear space and let $(Z, \mu', \nu', *', \diamond')$ be an IFNS. Let $\varphi : X \times X \to Z$ be a mapping such that for some $\alpha > k$

$$\mu'\left(\varphi\left(\frac{x}{k},0\right),t\right) \ge \mu'\left(\varphi(x,0),\alpha t\right),$$

$$\nu'\left(\varphi\left(\frac{x}{k},0\right),t\right) \ge \nu'\left(\varphi(x,0),\alpha t\right),$$

$$\lim_{n\to\infty}\mu'\left(k^n\varphi\left(\frac{x}{k^n},\frac{y}{k^n}\right),t\right) = 1,$$

$$\lim_{n\to\infty}\nu'\left(k^n\varphi\left(\frac{x}{k^n},\frac{y}{k^n}\right),t\right) = 0$$

1030

for all $x, y \in X$ and t > 0. Let $(Y, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy Banach space and $f: X \to Y$ be a φ -approximately additive mapping such that

$$\mu k f(kx+y) + f(x+ky) - (k+1)f(x) - (k+1)f(y) \ge \mu'(\varphi(x,y),t), \nu k f(kx+y) + f(x+ky) - (k+1)f(x) - (k+1)f(y) \le \nu'(\varphi(x,y),t)$$
 (2.2)

for all t > 0 and all $x, y \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$\mu(A(x) - f(x), t) \geq \mu'\left(\varphi(x, 0), \frac{(\alpha - k)t}{2}\right),$$

$$\nu(A(x) - f(x), t) \leq \nu'\left(\varphi(x, 0), \frac{(\alpha - k)t}{2}\right)$$
(2.3)

for all $x \in X$ and all t > 0.

Proof. Put y = 0 in (2.2). For all $x \in X$ and t > 0,

$$\mu(f(kx) - kf(x), t) \geq \mu'(\varphi(x, 0), t),$$

$$\nu(f(kx) - kf(x), t) \leq \nu'(\varphi(x, 0), t).$$

Thus

$$\mu\left(kf\left(\frac{x}{k}\right) - f(x), t\right) \geq \mu'\left(\varphi\left(\frac{x}{k}, 0\right), t\right) \geq \mu'\left(\varphi(x, 0), \alpha t\right),$$

$$\nu\left(kf\left(\frac{x}{k}\right) - f(x), t\right) \leq \nu'\left(\varphi\left(\frac{x}{k}, 0\right), t\right) \leq \nu'\left(\varphi(x, 0), \alpha t\right).$$

Replacing x by $\frac{x}{k^n}$ in (2.2), we get

$$\mu\left(k^{n+1}f\left(\frac{x}{k^{n+1}}\right) - k^{n}f\left(\frac{x}{k^{n}}\right), k^{n}t\right) \geq \mu'\left(\varphi\left(\frac{x}{k^{n}}, 0\right), \alpha t\right)$$

$$\geq \mu'\left(\varphi(x, 0), \alpha^{n+1}t\right), \qquad (2.4)$$

$$\nu\left(k^{n+1}f\left(\frac{x}{k^{n+1}}\right) - k^{n}f\left(\frac{x}{k^{n}}\right), k^{n}t\right) \leq \nu'\left(\varphi\left(\frac{x}{k^{n}}, 0\right), \alpha t\right)$$

$$\leq \nu'\left(\varphi(x, 0), \alpha^{n+1}t\right).$$

Replacing t by $\frac{t}{\alpha^{n+1}}$ in (2.4), we get

$$\mu\left(k^{n+1}f\left(\frac{x}{k^{n+1}}\right) - k^n f\left(\frac{x}{k^n}\right), \frac{k^n t}{\alpha^{n+1}}\right) \ge \mu'\left(\varphi(x,0), t\right),$$

$$\nu\left(k^{n+1}f\left(\frac{x}{k^{n+1}}\right) - k^n f\left(\frac{x}{k^n}\right), \frac{k^n t}{\alpha^{n+1}}\right) \le \nu'\left(\varphi(x,0), t\right). \tag{2.5}$$

It follows from $k^n f\left(\frac{x}{k^n}\right) - f(x) = \sum_{j=0}^{n-1} \left(k^{j+1} f\left(\frac{x}{k^{j+1}}\right) - k^j f\left(\frac{x}{k^j}\right)\right)$ and (2.5) that

$$\mu\left(k^{n}f\left(\frac{x}{k^{n}}\right)-f(x),\sum_{j=0}^{n-1}\frac{k^{j}t}{\alpha^{j+1}}\right)$$

$$\geq \prod_{j=0}^{n-1}\mu\left(k^{j+1}f\left(\frac{x}{k^{j+1}}\right)-k^{j}f\left(\frac{x}{k^{j}}\right),\frac{k^{j}t}{\alpha^{j+1}}\right)\geq \mu'\left(\varphi(x,0),t\right),$$

$$\nu\left(k^{n}f\left(\frac{x}{k^{n}}\right)-f(x),\sum_{j=0}^{n-1}\frac{k^{j}t}{\alpha^{j+1}}\right)$$

$$\leq \prod_{j=0}^{n-1}\nu\left(k^{j+1}f\left(\frac{x}{k^{j+1}}\right)-k^{j}f\left(\frac{x}{k^{j}}\right),\frac{k^{j}t}{\alpha^{j+1}}\right)\leq \nu'\left(\varphi(x,0),t\right)$$

for all $x \in X, t > 0$ and n > 0, where $\prod_{j=0}^{n-1} a_j = a_1 * a_2 * ... * a_n, \coprod_{j=0}^{n-1} b_j = b_1 \diamond b_2 \diamond ... \diamond b_n$.

Replacing x with $\frac{x}{k^m}$ in (2.6), we obtain

$$\mu\left(k^{n+m}f\left(\frac{x}{k^{n+m}}\right) - k^m f\left(\frac{x}{k^m}\right), \sum_{j=0}^{n-1} \frac{k^{j+m}t}{\alpha^{j+m+1}}\right)$$

$$\geq \mu'\left(\varphi\left(\frac{x}{k^m},0\right),t\right) \geq \mu'\left(\varphi(x,0),t\right),$$

$$\nu\left(k^{n+m}f\left(\frac{x}{k^{n+m}}\right) - k^m f\left(\frac{x}{k^m}\right), \sum_{j=0}^{n-1} \frac{k^{j+m}t}{\alpha^{j+m+1}}\right)$$

$$\leq \nu'\left(\varphi\left(\frac{x}{k^m},0\right),t\right) \leq \nu'\left(\varphi(x,0),t\right).$$

Thus

$$\mu\left(k^{n+m}f\left(\frac{x}{k^{n+m}}\right) - k^m f\left(\frac{x}{k^m}\right), \sum_{j=m}^{n+m-1} \frac{k^j t}{\alpha^{j+1}}\right) \ge \mu'\left(\varphi(x,0),t\right),$$

$$\nu\left(k^{n+m}f\left(\frac{x}{3^{n+m}}\right) - k^m f\left(\frac{x}{k^m}\right), \sum_{j=m}^{n+m-1} \frac{k^j t}{\alpha^{j+1}}\right) \le \nu'\left(\varphi(x,0),t\right)$$

1032

for all $x \in X, t > 0, m \ge 0$ and $n \ge 0$. Hence

$$\mu\left(k^{n+m}f\left(\frac{x}{k^{n+m}}\right) - k^{m}f\left(\frac{x}{k^{m}}\right),t\right)$$

$$\geq \mu'\left(\varphi(x,0), \frac{t}{\sum_{j=m}^{n+m-1} \frac{k^{j}t}{\alpha^{j+1}}}\right),$$

$$\nu\left(k^{n+m}f\left(\frac{x}{k^{n+m}}\right) - k^{m}f\left(\frac{x}{k^{m}}\right),t\right)$$

$$\leq \nu'\left(\varphi(x,0), \frac{t}{\sum_{j=m}^{n+m-1} \frac{k^{j}t}{\alpha^{j+1}}}\right)$$
(2.7)

for all $x \in X$, t > 0, $m \ge 0$ and $n \ge 0$. Since $\alpha > k$ and $\sum_{j=0}^{\infty} \left(\frac{k}{\alpha}\right) < \infty$, the Cauchy criterion for convergence in IFNSs shows that $k^n f\left(\frac{x}{k^n}\right)$ is an intuitionistic fuzzy Cauchy sequence in $(Y, \mu, \nu, *, \diamond)$. Since $(Y, \mu, \nu, *, \diamond)$ is complete, this sequence is intuitionistic fuzzy convergent to some point $A(x) \in Y$. Fix $x \in X$ and m = 0 in (2.7). Then we obtain

$$\mu\left(k^n f\left(\frac{x}{k^n}\right) - f(x), t\right) \ge \mu'\left(\varphi(x, 0), \frac{t}{\sum_{j=0}^{n-1} \frac{k^j}{\alpha^{j+1}}}\right),$$

$$\nu\left(k^n f\left(\frac{x}{k^n}\right) - f(x), t\right) \le \nu'\left(\varphi(x, 0), \frac{t}{\sum_{j=0}^{n-1} \frac{k^j}{\alpha^{j+1}}}\right)$$

for all t > 0 and n > 0. Thus we obtain

$$\mu\left(A(x) - f(x), t\right) \ge \mu\left(A(x) - k^n f\left(\frac{x}{k^n}\right), \frac{t}{2}\right) * \mu\left(k^n f\left(\frac{x}{k^n} - f(x)\right), \frac{t}{2}\right)$$

$$\ge \mu'\left(\varphi(x, 0), \frac{t}{2\sum_{j=0}^{n-1} \frac{k^j}{\alpha^{j+1}}}\right),$$

$$\nu\left(A(x) - f(x), t\right) \le \nu\left(A(x) - k^n f\left(\frac{x}{k^n}\right), \frac{t}{2}\right) \diamond \nu\left(k^n f\left(\frac{x}{k^n} - f(x)\right), \frac{t}{2}\right)$$

$$\le \nu'\left(\varphi(x, 0), \frac{t}{2\sum_{j=0}^{n-1} \frac{k^j}{\alpha^{j+1}}}\right)$$

for large n. Taking the limit as $n \to \infty$ and using the definition of IFNS, we get

$$\mu(A(x) - f(x), t) \ge \mu'\left(\varphi(x, 0), \frac{(\alpha - k)t}{2}\right),$$

$$\nu(A(x) - f(x), t) \le \nu'\left(\varphi(x, 0), \frac{(\alpha - k)t}{2}\right)$$

for all $x \in X$, t > 0. Replacing x and y by $\frac{x}{k^n}$ and $\frac{y}{k^n}$ in (2.2), we have

$$\mu\left(k^n f\left(\frac{kx+y}{k^n}\right) + k^n f\left(\frac{x+ky}{k^n}\right) - k^n f\left(\frac{(k+1)x}{k^n}\right) - k^n f\left(\frac{(k+1)y}{k^n}\right)\right) \ge \mu'\left(\varphi\left(\frac{x}{k^n}, \frac{y}{k^n}\right), \frac{t}{k^n}\right),$$

$$\nu\left(k^n f\left(\frac{kx+y}{k^n}\right) + k^n f\left(\frac{x+ky}{k^n}\right) - k^n f\left(\frac{(k+1)x}{k^n}\right) - k^n f\left(\frac{(k+1)y}{k^n}\right)\right) \le \nu'\left(\varphi\left(\frac{x}{k^n}, \frac{y}{k^n}\right), \frac{t}{k^n}\right)$$

for all $x, y \in X$, t > 0. Since

$$\lim_{n \to \infty} \mu' \left(k^n \varphi \left(\frac{x}{k^n}, \frac{y}{k^n} \right), t \right) = 1,$$

$$\lim_{n \to \infty} \nu' \left(k^n \varphi \left(\frac{x}{k^n}, \frac{y}{k^n} \right), t \right) = 0$$

for all $x, y \in X$, t > 0, A satisfies (2.1). Therefore, A is an additive mapping. To prove the uniqueness of the additive mapping A, assume that there exists another additive mapping $A': X \to Y$ which satisfies (2.3). For each $x \in X$, we have $k^n A\left(\frac{x}{k^n}\right) = A(x)$ and $k^n A'\left(\frac{x}{k^n}\right) = A'(x)$ for all $n \in N$. It follows from (2.3) that

$$\mu\left(A(x) - A'(x), t\right) = \mu\left(k^n A\left(\frac{x}{k^n}\right) - k^n A'\left(\frac{x}{k^n}\right), t\right)$$

$$\geq \mu\left(k^n A\left(\frac{x}{k^n}\right) - k^n f\left(\frac{x}{k^n}\right), \frac{t}{2}\right)$$

$$*\mu\left(k^n f\left(\frac{x}{k^n}\right) - k^n A'\left(\frac{x}{k^n}\right), \frac{t}{2}\right)$$

$$\geq \mu'\left(\varphi\left(\frac{x}{k^n}, 0\right), \frac{(\alpha - k)t}{2 \cdot k^n}\right)$$

$$\geq \mu'\left(\varphi\left(x, 0\right), \frac{\alpha^n(\alpha - k)t}{2 \cdot k^n}\right)$$

and similarly

$$\nu\left(A(x) - A'(x), t\right) \le \nu'\left(\varphi\left(x, 0\right), \frac{\alpha^n(\alpha - k)t}{2 \cdot k^n}\right).$$

Since $\lim_{n\to\infty}\frac{\alpha^n(\alpha-k)}{2\cdot k^n}=\infty$ as $\alpha>k$, we get $\lim_{n\to\infty}\mu'\left(\varphi\left(x,0\right),\frac{\alpha^n(\alpha-k)t}{2\cdot k^n}\right)=1$, and $\lim_{n\to\infty}\nu'\left(\varphi\left(x,0\right),\frac{\alpha^n(\alpha-k)t}{2\cdot k^n}\right)=0$. Therefore, $\mu\left(A(x)-A'(x),t\right)=1$ and $\nu\left(A(x)-A'(x),t\right)=0$ for all t>0. Hence, A(x)=A'(x). This completes the proof.

In the following theorem, we consider $0 < \alpha < k$.

Theorem 2.2. Let X be a linear space and $(Z, \mu', \nu', *', \diamond')$ be an IFNS. Let $\varphi: X \times X \to Z$ be a mapping such that for some $0 < \alpha < k$

$$\mu'(\varphi(kx,0),t) \ge \mu'(\alpha\varphi(x,0),t),$$

$$\nu'(\varphi(kx,0),t) \le \nu'(\alpha\varphi(x,0),t),$$

 $\lim_{n\to\infty} \mu'\left(\varphi(k^nx,k^ny),k^nt\right)=1$ and $\lim_{n\to\infty} \nu'\left(\varphi(k^nx,k^ny),k^nt\right)=0$ for all $x,y\in X$ and t>0. Let $(Y,\mu,\nu,*,\diamond)$ be an intuitionistic fuzzy Banach space and $f:X\to Y$ be a φ -approximately additive mapping in the sense that

$$\mu \left(kf(kx+y) + f(x+ky) - (k+1)f(x) - (k+1)f(y), t \right)
\ge \mu' \left(\varphi(x,y), t \right),$$

$$\nu \left(kf(kx+y) + f(x+ky) - (k+1)f(x) - (k+1)f(y), t \right)
\le \nu' \left(\varphi(x,y), t \right)$$
(2.8)

for all $x, y \in X$ and t > 0. Then there exists a unique additive mapping $A: X \to Y$ such that

$$\mu\left(A(x) - f(x), t\right) \ge \mu'\left(\varphi\left(x, 0\right), \frac{(k - \alpha)t}{2}\right),$$

$$\nu\left(A(x) - f(x), t\right) \le \nu'\left(\varphi\left(x, 0\right), \frac{(k - \alpha)t}{2}\right)$$

for all $x \in X$ and t > 0.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1. Here we represent the sketch of proof. Putting y = 0 in (2.8), we get

$$\mu\left(\frac{f(kx)}{k} - f(x), t\right) \ge \mu'(\varphi(x, 0), t),$$

$$\nu\left(\frac{f(kx)}{k} - f(x), t\right) \le \nu'(\varphi(x, 0), t)$$

for all $x \in X$ and t > 0. So

$$\mu\left(\frac{f(k^{n+1}x)}{k} - f(k^nx), t\right) \ge \mu'\left(\varphi(x,0), \frac{t}{\alpha^n}\right),$$

$$\nu\left(\frac{f(k^{n+1}x)}{k} - f(k^nx), t\right) \le \nu'\left(\varphi(x,0), \frac{t}{\alpha^n}\right)$$

for all $x \in X$ and t > 0. For each $x \in X, n \ge 0, m \ge 0$ and t > 0, we deduce that

$$\mu\left(\frac{f(k^{n+m}x)}{k^{n+m}} - \frac{f(k^mx)}{k^m}, t\right) \geq \mu'\left(\varphi(x,0), \frac{t}{\sum_{j=m}^{n+m-1} \frac{\alpha^j}{k^{j+1}}}\right),$$

$$\nu\left(\frac{f(k^{n+m}x)}{k^{n+m}} - \frac{f(k^mx)}{k^m}, t\right) \leq \nu'\left(\varphi(x,0), \frac{t}{\sum_{j=m}^{n+m-1} \frac{\alpha^j}{k^{j+1}}}\right) \tag{2.9}$$

for all $x \in X$, t > 0 and $m, n \ge 0$. Thus $\left\{\frac{f(k^n x)}{kn}\right\}$ is an intuitionistic fuzzy Cauchy sequence in the intuitionistic fuzzy Banach space. So there exists a mapping $A: X \to Y$ defined by $A(x) = \lim_{n \to \infty} \frac{f(k^n x)}{kn}$ and putting m = 0 in (2.9), we obtain

$$\mu\left(A(x) - f(x), t\right) \ge \mu'\left(\varphi\left(x, 0\right), \frac{(k - \alpha)t}{2}\right),$$

$$\nu\left(A(x) - f(x), t\right) \le \nu'\left(\varphi\left(x, 0\right), \frac{(k - \alpha)t}{2}\right)$$

for all $x \in X$ and t > 0. This completes the proof.

Acknowledgments: This paper was supported by the University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund (UoE) 2026).

References

- [1] A. Alotaibi and S.A. Mohiuddine, On the stability of a cubic functional equation in random 2-normed spaces, Adv. Difference Equ., 2012 (2012), Paper No. 39.
- [2] M. Arun Kumar, V. Arasu and N. Balaji, Fuzzy stability of a two variable quadratic functional equation, Int. J. Math. Sci. Eng. Appl., 5(4) (2011), 331–341.
- [3] S. Bowmiya, G. Balasubramanian, V. Govindan, M. Donganont and H. Byeon, Generalized linear differential equation using Hyers-Ulam stability approach, Eur. J. Pure Appl. Math., 17(4) (2024), 3415–3435.
- [4] S. Bowmiya, G. Balasubramanian, V. Govindan, M. Donganont and H. Byeon, Hyers-Ulam stability of fifth order linear differential equations, Eur. J. Pure Appl. Math., 17(4) (2024), 3585–3609.
- [5] J. Gao, On the stability of functional equations in 2-normed spaces, Nonlinear Funct. Anal. Appl., 15(4) (2010), 635-645.
- [6] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [7] Y. Manar, E. Elqorachi and Th.M. Rassias, Hyers-Ulam stability of the Jensen functional equations in quasi-Banach spaces, Nonlinear Funct. Anal. Appl., 15(4) (2010), 581–603.

- Y. Manar, E. Elqorachi and Th.M. Rassias, On the Hyers-Ulam stability of the quadratic functional equations on a restricted domain, Nonlinear Funct. Anal. Appl., 15(4) (2010), 647–655.
- [9] S.A. Mohiuddine and H. Selvi, Stability of Pexiderized quadratic functional equation in intuitionstic fuzzy normed space, J. Comput. Appl. Math., 235 (2011), 2137–2146.
- [10] M. Mursaleen and S.A. Mohiuddine, On the stability of cubic functional equations in intuitionstic fuzzy normed spaces, Chaos Solitons Fract. 42 (2009), 2997–3005.
- [11] C. Park and D.Y. Shin, Functional equations in paranormed spaces, Adv. Difference Equ., 2012 (2012), Paper No. 123.
- [12] E. Ramzanpour, A. Bodaghi and A. Gilani, Stability and hyperstability of multi-additivecubic mappings in intuitionistic fuzzy normed spaces, Honam Math. J., 42(2) (2020), 391–409.
- [13] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
- [14] K. Ravi, S. Kandasamy and V. Arasu, Fuzzy versions of Hyes-Ulam-Rassias theorem of quadratic functional equation, Adv. Fuzzy Sets Syst., 8(2) (2011), 97–114.
- [15] K. Ravi, J.M. Rassias and P. Narasimman, Stability of cubic functional equations in fuzzy normed space, J. Appl. Anal. Comput., 1 (2011), 411–425.
- [16] K. Ravi and B.V. Senthil Kumar, Generalized Hyers-Ulam-Rassias stability of a system of bi-reciprocal functional equations, Eur. J. Pure Appl. Math., 8(2) (2015), 283–293.
- [17] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fract. **27**(2) (2006), 331–344.
- [18] B.V. Senthil Kumar, H. Dutta and S. Sabarinathan, Modular stabilities of a reciprocal second power functional equation, Eur. J. Pure Appl. Math., 13(5) (2020), 1162–1175.
- [19] S.M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, 1940.
- [20] Z. Wang, Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces, AIMS Math., 8(11) (2023), 25422–25442.