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Abstract. We present some nonumique random fixed point theorems for random mappings

in separable complete metric spaces. The present study includes the different categories of

orbitally complete metric spaces, ordered metric spaces, metric space with two metrics and

metric spaces satisfying the minimal class condition. Our results include the some recent

random fixed point theorems of Dhage et al. (2013) as special cases.

1. Introduction

Throughout the rest of the paper, let X denote a polish space, i.e., a com-
plete, separable metric space with a metric d. Let (Ω,A) denote a measurable
space with σ-algebra A. A function x : Ω→ X is said to be a random variable
if it is measurable in ω. A mapping T : Ω×X → X is called random mapping
if T (., x) is measurable for each x ∈ X. A random mapping on a metric space
X is denoted by T (ω, x) or simply T (ω)x for ω ∈ Ω and x ∈ X. A random
mapping T (ω) is said to be continuous on X into itself if the mapping T (ω, ·)
is continuous on X for each ω ∈ Ω. A measurable function x : Ω→ X is called
a random fixed point of the random mappings T (ω) if T (ω)x(ω) = x(ω) for
all ω ∈ Ω. The study of random fixed point theorems is initiated by Spacek
[15] and Hans [10], however it is the articles published by Bharucha-Reid [2, 3]
which are responsible the multitude development of random fixed point theory.

The following result is useful in the random fixed point theory in Polish
spaces.
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Lemma 1.1. Let X be a Polish space. Then, following statements hold in X.

(a) If {xn(ω)} is a sequence of random variables converging to x(ω) for
all ω ∈ Ω, then x(ω) is also a random variable.

(b) If T (ω, ·) is continuous or each ω ∈ Ω and x : Ω → X is a random
variable, then T (ω)x is also a random variable.

The purpose of the present paper is to extend the nonunique fixed point
theorems of Ćirić [6] type to random mappings in polish space in different
direction. We give our main results in the following section.

2. Nonunique Random Fixed Point Theory

Our first nonunique random fixed point theorem is as follows.

Theorem 2.1. Let T (ω) be a continuous random mapping on a complete and
separable metric space X into itself satisfying for each ω ∈ Ω,

0 ≤ min

{
d(T (ω)x, T (ω)y), d(x, T (ω)x), d(y, T (ω)y),

d(x, T (ω)x)[1 + d(y, T (ω)y)]

1 + d(x, y)
,
d(y, T (ω)y)[1 + d(x, T (ω)x)]

1 + d(x, y)

}
+ b(ω) min

{
d(x, T (ω)y), d(y, T (ω)x)

}
≤ q(ω) max

{
d(x, y), [min{d(x, T (ω)x), d(y, T (ω)y)}]

}
(2.1)

for all x, y ∈ X, where b : Ω→ R, q : Ω→ R+ are measurable functions such
that 0 ≤ q(ω) < 1 for all ω ∈ Ω. Then T (ω) has a random fixed point and
which is unique if b > q on Ω.

Proof. Let x : Ω → X be an arbitrary measurable function and consider the
sequence of successive iterates of T (ω) at x defined by

x0 = x, x1 = T (ω)x0, · · · , xn = T (ω)xn−1 (2.2)

for each n ∈ N. Clearly,
{
xn

}
is a sequence of measurable functions on Ω into

X. We shall show that
{
xn

}
is Cauchy sequence in X. Taking x = x0 and

y = x1 in (2.2), we obtain

0 ≤min

{
d(T (ω)x0, T (ω)x1), d(x0, T (ω)x0), d(x1, T (ω)x1),

d(x0, T (ω)x0)[1 + d(x1, T (ω)x1)]

1 + d(x0, x1)
,

d(x1, T (ω)x1)[1 + d(x0, T (ω)x0)]

1 + d(x0, x1)

}
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+ b(ω) min
{
d(x0, T (ω)x1), d(x1, T (ω)x0)

}
≤ q(ω) max

{
d(x0, x1), [min{d(x0, T (ω)x0), d(x1, T (ω)x1)}]

}
which further gives

0 ≤ min

{
d(x1, x2), d(x0, x1), d(x1, x2),

d(x0, x1)[1 + d(x1, x2)]

1 + d(x0, x1)
,
d(x1, x2)[1 + d(x0, x1)]

1 + d(x0, x1)

}
+ b(ω) min

{
d(x0, x2), d(x1, x1)

}
≤ q(ω) max

{
d(x0, x1), [min{d(x0, x1), d(x1, x2)}]

}
,

or,

0 ≤ min

{
d(x1, x2), d(x0, x1),

d(x0, x1)[1 + d(x1, x2)]

1 + d(x0, x1)

}
+ b(ω) min

{
d(x0, x2), 0

}
≤ q(ω) max

{
d(x0, x1), [min{d(x0, x1), d(x1, x2)}]

}
.

This further gives

min

{
d(x1, x2), d(x0, x1),

d(x0, x1)[1 + d(x1, x2)]

1 + d(x0, x1)

}
≤ q(ω) max

{
d(x0, x1), [min{d(x0, x1), d(x1, x2)}]

}
. (2.3)

If
min{d(x1, x2), d(x0, x1)} = d(x0, x1),

then

d(x0, x1) ≤
d(x0, x1)[1 + d(x1, x2)]

1 + d(x0, x1)
.

Hence, from (2.3) it follows that

d(x0, x1) ≤ qd(x0, x1)

which is a contraction since q = q(ω) < 1 for all ω ∈ Ω. So

min{d(x1, x2), d(x0, x1)} = d(x0, x1).

Now there are two cases. In the first case we have

d(x1, x2) ≤ q d(x0, x1).

In the second case we have

d(x0, x1)[1 + d(x1, x2)]

1 + d(x0, x1)
≤ q d(x0, x1),

which further gives
d(x1, x2) ≤ q d(x0, x1).
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Proceeding in this way, by induction, it follows that

d(xn, xn+1) ≤ qd(xn−1, xn)

for each n ∈ N. From (2.3) it follows that

d(xn, xn+1) ≤ qd(xn−1, xn)

≤ q2d(xn−2, xn−1)

...

≤ qnd(x0, x1). (2.4)

Now for any positive integer p, we obtain by triangle inequality,

d(xn, xn+p) ≤ d(xn, xn+1) + ...+ d(xn+p−1, xn+p)

≤ qnd(x0, x1) + ...+ qn+p−1d(x0, x1)

≤
[
qn + qn+1 + ...+ qn+p−1

]
d(x0, x1)

≤ qn(1− qp−1)
1− q

≤ qn

1− q
→ 0 as n→∞. (2.5)

This shows that
{
xn

}
is a Cauchy sequence in X. The metric space X being

T (ω)-orbitally complete, there is a measurable function x∗ : Ω→ X such that
limn→∞ xn = x∗. Again as T (ω) is T (ω)-orbitally continuous, we have

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping
T (ω) on Ω × X into X. To prove uniqueness, assume that b(ω) > q(ω) for
each ω ∈ Ω. If y∗( 6= x∗) is another random fixed point of T (ω), then from
condition (2.1) we obtain a contradiction. Hence T (ω) has a unique random
fixed point. This completes the proof. �
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Corollary 2.2. Let T be a continuous mapping on a complete metric space
X into itself satisfying

0 ≤ min

{
d(Tx, Ty), d(x, Tx), d(y, Ty),

d(x, Tx)[1 + d(y, Ty)]

1 + d(x, y)
,
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

}
+ b min

{
d(x, Ty), d(y, Tx)

}
≤ q max

{
d(x, y), [min{d(x, Tx), d(y, Ty)}]

}
(2.6)

for all x, y ∈ X, where b ∈ R and q ∈ R+ is such that 0 ≤ q < 1. Then T has
a fixed point and which is unique if b > q.

Corollary 2.2 includes several known fixed point results in the literature in-
cluding those of Ćirić [6] and Dhage [7] as special cases. Sometimes it possible
that a metric space may be complete w.r.t. a metric but may not be complete
w.r.t. another metric defined on it. Therefore, it is interesting to obtain the
fixed point theorems in such situation. Next we prove a nonunique random
fixed point theorem in a metric space with two metrics defined on it.

Theorem 2.3. Let X be a metric space with two metrics d1 and d2. Let
(Ω,A) be a measurable space and let T : Ω × X → X be a random mapping
satisfying the condition (2.1) w.r.t. d2 for each ω ∈ Ω. Further suppose that

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X,
(ii) T (ω) is a continuous w.r.t. d1,

(iii) X is complete w.r.t. d1, and
(iv) X is separable metric space.

Then T (ω) has a random fixed point and which is unique if b > q on Ω.

Proof. Let x ∈ X be arbitrary and consider the sequence
{
xn

}
of successive

iterations of T (ω) defined by (2.2). Then,
{
xn

}
is a sequence of measurable

functions from Ω into X. Now proceeding as in the proof of Theorem 2.1, we
obtain,

d2(xn, xn+p) ≤
qn

(1− q)
for some positive integer p. By hypothesis,

d1(xn, xn+p) ≤ d2(xn, xn+p)

≤ qn

(1− q)
d2(x0, x1)

→ 0 as n→∞. (2.7)
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This shows that
{
xn

}
is a Cauchy sequence w.r.t. the metric d1. The metric

space (X, d1) being T (ω)-orbitally complete, there is a measurable function
x∗ : Ω→ X such that

lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. From the above limit, it follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. Thus T (ω) has a random fixed point. If b(ω) > q(ω) for all
ω ∈ Ω, then the unicity of random fixed point x∗ follows very easily and the
proof of Theorem 2.3 is complete. �

3. Random Fixed Points Mappings in Ordered Metric Spaces

We equip the metric space X with an order relation ≤ which is a reflexive,
antisymmetric and transitive relation in X. The metric space X together with
the order relation ≤ is called an ordered metric space. A random mapping
T : Ω×X → X is called nondecreasing if for any x, y ∈ X with x ≤ y we have
that T (ω)x ≤ T (ω)y for all ω ∈ Ω. Similarly random mapping T : Ω×X → X
is called non increasing if for any x, y ∈ X, x ≤ y implies T (ω)x ≤ T (ω)y
for all ω ∈ Ω. A monotone random mapping which is either nondecreasing or
nonincreasing on X.

The investigation of the existence of fixed points in partially ordered sets
was first considered in Ram and Reuriungs [12]. This study was continued
in Nieto and Rodriguer-Lopez [14] by assuming the existence of only lower
solution instead of usual approach where both the lower and upper solutions
are assumed to exist. These fixed point theorems are then applied to obtain
existence and uniqueness results for nonlinear ordinary differential equations
in the same paper. A further extension of this idea was considered in Bhaskar
and Lakshmikanthan [5]. Below we prove some nonunique random fixed point
theorems for monotone random mappings in separable and complete metric
spaces.

Theorem 3.1. Let (Ω,A) be a measurable space and let X be a partially or-
dered separable and complete metric space. Let T : Ω×X → X be a monotone
nondecreasing random mapping satisfying the contraction condition (2.1). Fur-
ther if T (ω) is continuous and if there exists a measurable function x0 : Ω→ X
such that x0 ≤ T (ω)x0 for all ω ∈ Ω, then the random mapping T (ω) has a
random fixed point and which is unique if every pair of elements of X has a
lower and an upper bound in X and b > q on Ω.
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Proof. Define a sequence
{
xn

}
of successive approximations of T (ω) by

xn+1 = T (ω)xn, n = 0, 1, 2, ...

Clearly {xn} is a sequence of measurable functions from Ω into X such that

x0 ≤ x1 ≤ ... ≤ xn ≤ ...

We show that xn is a Cauchy sequence in X. Taking x = x0 and y = x1 in
(2.1) we obtain

d(x1, x2) ≤ qd(x0, x1).

Processing in this way, by induction,

d(xn, xn+1) ≤ qd(xn−1), xn)

for each n = 1, 2, .... Then by repeated applications of the above inequality,
we obtain

d(xn, xn+1) ≤ qnd(x0, x1).

Now for any positive integer m > n, by triangle inequality, we get

d(xm, xn) = d(xn, xm)

≤ d(x− n, xn+1) + ..+ d(xm−1, xm)

≤ (qn + qn+1...+ qm−n)d(x0, x1)

≤ qn(1− qm−n)

1− q
d(x0, x1)

≤ qn

1− q
d(x0, x1)

→ 0 as n→∞. (3.1)

This shows that
{
xn

}
is Cauchy sequence in X. The ordered metric space

X being complete, there is a measurable function x∗ : Ω → X such that
limn→∞ xn = x∗. From the continuity of the random mapping T (ω) it follows
that

x∗(ω) = lim
n→∞

xn+1(ω) = lim
n→∞

T (ω)xn(ω) = T (ω) lim
n→∞

xn(ω)

= T (ω)x∗(ω) (3.2)

for all ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping T (ω) on
X. Further if every pair o elements x, y ∈ X has a ower and an upper bound,
then it can be shown as in the proof of Theorem 2.1 given in Ran and Reurings
[12] that lim

n→∞
Tn(ω)x(ω) = x∗(ω) for all measurable unctions x : Ω → X.

Hence T (ω) has a unique fixed point. This completes the proof. �
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Next, we deal with the case of metric space X with two metrics d1 and d2
is defined on it and prove some nonunique random fixed point theorems on
separable ordered metric spaces.

Corollary 3.2. Let X be a partially ordered set and let there exist a metric
d such that (X, d) is complete metric space. Let T : X → X be a monotone
nondecreasing mapping satisfying the contraction condition (2.6). Further if T
is continuous and if there exists an element x0 ∈ X such that x0 ≤ Tx0, then
the mapping T has a fixed point and which is unique if every pair of elements
of X has a lower and an upper bound in X and b > q.

Corollary 3.2 is new to the literature on fixed point theory on ordered metric
spaces and includes a basic fixed point theorem of Nieto and Rodriguez-Lopez
[14] as special case under weaker continuity condition.

Theorem 3.3. Let (Ω, A) be a measurable space and let X be an ordered met-
ric space with two metrics d1 and d2. Let T : Ω×X → X be a nondecreasing
random mapping satisfying the condition on (2.1). Suppose that the following
conditions hold in X.

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X.
(ii) T (ω) is continuous w.r.t. d2.

(iii) X is Polish space w.r.t. d1.

Further if there exists a measurable function x0 : Ω → X such that x0 ≤
T (ω)x0 for all ω ∈ Ω, then T (ω) has a random fixed point and which is unique
if every pair of elements of X has a lower and an upper bound in X and b > q
on Ω.

Proof. Consider the sequence
{
xn

}
of successive iterations of T (ω) at x0 de-

fined by

xn+1 = T (ω)xn, n = 0, 1, 2, ..

Clearly,
{
xn

}
is a sequence of measurable functions from Ω into X w.r.t. the

metric d1 such that

x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . .
Then it can be shown as in the proof of Theorem 3.1 that

{
xn

}
is Cauchy

sequence in X w.r.t. the metric d, that is, for any positive integer m > n,

d2(xm, xn) ≤ qn

1− q
d2(x0, x1).

From hypothesis it follows that

d1(xm, xn) ≤ qn

1− q
d2(x0, x1)→ 0 as n→∞.
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This shows that
{
xn

}
is a Cauchy sequence w.r.t. the metric d1. The metric

space (X, d1) being complete and separable, there exists a measurable function
x∗ : Ω → X such that limn→∞ xn = x∗. From the continuity of T (ω) w.r.t.
d1, it follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn+1(ω) = x∗(ω)

for all ω ∈ Ω. This proves that T (ω) has a random fixed point in X. If every
pair of elements of X has a lower and an upper bound in X and b > q on Ω,
then the uniqueness follows very easily. This completes the proof. �

4. Nonunique PPF Dependant Random Fixed Point Theory

A fixed point theory of nonlinear operations which are PPF dependent, the-
ory is depending on past, present and future data was developed in Bernfield
et.al. [1]. The domain space of the nonlinear operator was taken as C(I, E),
I = [a, b] ⊂ R and the range space as E, a Banach space. An important ex-
ample of such a nonlinear operator is a delay differential equation. The PPF
fixed point theorems are applied to ordinary nonlinear functional differential
equations for proving the existence of solutions. Random fixed point theory
for random operator in separable Banach spaces is initiates by Hans [10] and
Spacek [15] and further developed by several authors in the literature. A brief
survey of such random fixed point theorems appears in Joshi and Bose [11].

In the present section we obtain a successful fusion of above two ideas and
prove some nonunique PPF dependent random fixed point theorems for ran-
dom mappings in separable metric spaces. In the PPF dependent classical
fixed point theory, the Razumikkin or minimal class of functions plays a sig-
nificant role both in proving existence as well as uniqueness of PPF dependent
fixed points of the mappings under consideration. Let E be a metric space
and let I be a given closed and bounced interval in R, the set of real numbers.
Let E0 = C(I,R) denote the class of continuous mappings from I to E. We
equip the class C(J,E) with metric d0 defined by

d0(x, y) = sup
t∈J

d(x(t), y(t)).

The following result is obvious.

Lemma 4.1. If (E, d) is complete then the metric space (E0, d0) is also com-
plete.

When E is a Banach space and let E0 = C(J,E) be a space of continuous
E -valued function defined on J Then minimal class of functions related to a
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fixed c ∈ J is defined as

Mc =
{
φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E}.

Now we are in a position to state our fixed point results concerning the exis-
tence of fixed points with PPF dependence. In a metric space X, we define
the minimal class Mc as

Mc =
{
φ, ψ ∈ E0 | d0(φ, ψ) = d(φ(c), ψ(c))}.

Now we are in a position to state our main result of this section.

Theorem 4.2. Let (Ω,A) be a measurable space and E, a separable complete
metric space. Let T : Ω×E0 → E be a continuous random mapping satisfying
for each ω ∈ Ω,

0 ≤ min

{
d(T (ω)φ, T (ω)ψ), d(φ(c, ω), T (ω)φ), d(ψ(c, ω), T (ω)ψ),

d(φ(c, ω), T (ω)φ)[1 + d(ψ(c, ω), T (ω)ψ)]

1 + d0(φ, ψ)
,

d(ψ(c, ω), T (ω)ψ)[1 + d(φ(c, ω), T (ω)φ)]

1 + d0(φ, ψ)

}
+ b(ω) min

{
d(φ(c, ω), T (ω)ψ), d(ψ(c, ω), T (ω)φ)

}
≤ q(ω) max

{
d0(φ, ψ), [min{d(φ(c, ω), T (ω)φ), d(ψ(c, ω), T (ω)ψ)}]

}
(4.1)

for all φ, ψ ∈ E0, where b : Ω → R and q : Ω → R+ are measurable functions
satisfying 0 ≤ q(ω) < 1 for all ω ∈ Ω and c ∈ I is a fixed point. Then T (ω)
has a random fixed point with PPF dependence and which is unique if Mc is
closed and b > q on Ω.

Proof. Let φ0 : Ω → E0 be an arbitrary measurable function and define a
sequence

{
xn

}
in E0 as follows. Suppose that T (ω)φ0 = x1 for some x1 ∈ E

Then choose φ1 ∈ E0 such that φ1(c, ω) = x1 for some fixed c ∈ I and

d0(φ0, φ1) = d(φ0(c, ω), φ1(c, ω))

for all ω ∈ Ω. Again let T (ω)φ1 = x2 for some x2 ∈ E. Then choose φ2(c, ω) =
x2 for each fixed c ∈ I and

d0(φ1, φ2) = d(φ1(c, ω), φ2(c, ω))

for all ω ∈ Ω. Proceeding in this way, we obtain

T (ω)φn−1 = xn = φn(c, ω)

with

d0(φn−1, φn) = d(φn−1(c, ω), φn(c, ω), n ∈ N, (4.2)
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for all ω ∈ Ω. Clearly,
{
φn

}
and consequently

{
φn(c)

}
is a sequence of mea-

surable functions from Ω into E0. Consequently
{
φn(c)

}
is a sequence of

measurable functions from Ω into E. We show that φn(c, ω) is a Cauchy
sequence in E. Taking φ = φ0 and ψ = φ1 in the inequality (4.1) we obtain

0 ≤ min

{
d(T (ω)φ0, T (ω)φ1), d(φ0(c, ω), T (ω)φ0), d(φ1(c, ω), T (ω)φ1),

d(φ0(c, ω), T (ω)φ0)[1 + d(φ1(c, ω), T (ω)φ1)]

1 + d0(φ0, φ1)
,

d(φ1(c, ω), T (ω)φ1)[1 + d(φ0(c, ω), T (ω)φ0)]

1 + d0(φ0, φ1)

}
+ b(ω) min

{
d(φ0(c, ω), T (ω)φ1), d(φ1(c, ω), T (ω)φ0)

}
(4.3)

≤ q(ω) max
{
d0(φ0, ψ1), [min{d(φ0(c, ω), T (ω)φ0), d(φ1(c, ω), T (ω)φ1)}]

}
which further gives

0 ≤ min

{
d(φ1(c, ω), φ2(c, ω)), d(φ0(c, ω), φ1(c, ω)), d(φ1(c, ω), φ2(c, ω)),

d(φ0(c, ω), φ1(c, ω))[1 + d(φ1(c, ω), φ2(c, ω))]

1 + d0(φ0, φ1)
,

d(φ1(c, ω), φ2(c, ω))[1 + d(φ0(c, ω), φ1(c, ω))]

1 + d0(φ0, φ1)

}
+ b(ω) min

{
d(φ0(c, ω), φ2(c, ω)), d(φ1(c, ω), φ1(c, ω))

}
(4.4)

≤ q(ω) max
{
d0(φ0, φ1), [min{d(φ0(c, ω), φ1(c, ω)), d(φ1(c, ω), φ2(c, ω))}]

}
.

From expressions (4.2) and (4.4) it follows that

0 ≤ min

{
d0(φ1, φ2), d0(φ0, φ1), d0(φ1, φ2),

d0(φ0, φ1)[1 + d0(φ1, φ2)]

1 + d0(φ0, φ1)
,
d0(φ1, φ2)[1 + d0(φ0, φ1)]

1 + d0(φ0, φ1)

}
+ b(ω) min

{
d0(φ0, φ2), d0(φ1, φ1)

}
≤ q(ω) max

{
d0(φ0, φ1), [min{d0(φ0, φ1), d0(φ1, φ2)}]

}
. (4.5)

Now proceeding as in the poof of Theorem 2.1, it can be proved that

d0(φ1, φ2) ≤ qd0(φ0, φ1).

Proceeding in this way, by induction,

d0(φn, φn+1) ≤ qd0(φn−1, φn) (4.6)
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for each n, n = 1, 2, . . . . By a repeated application of the inequality (4.6), we
obtain

d0(φn, φn+1) ≤ qd0(φn−1, φn)

...

≤ qnd0(φ0, φ1). (4.7)

Now for any positive integer p, by triangle inequality,

d0(φn, φn+p) ≤ d0(φn, φn+1) + · · ·+ d0(φn+p−1, φn+p)

≤ qn
(
1 + q + · · ·+ qp−1

)
d0(φ0, φ1)

≤ qn

(1− q)
d0(φ0, φ1)

→ 0 as n→∞. (4.8)

Since

d(φn(c, ω), φn+p(c, ω)) = d0(φn, φn+1)

for all ω ∈ Ω, we have that
{
T (ω)φn

}
is also Cauchy sequence in E. As E is

a complete metric space, there exists a measurable function φ∗ : Ω→ E0 such
that φn → φ∗ and

T (ω)φn = φn+1(c, ω)→ φ∗(c, ω)

as n→∞. To prove that φ∗ is a PPF dependent random fixed point of T (ω),
we first observe that since T (ω) is continuous on E0, T (ω) is a continuous at
φ∗. Hence for ε > 0, there exists a δ > 0 such that

d0(φn+1, φ
∗) < δ =⇒ d(Tφn+1, Tφ

∗) <
ε

2
.

Also since T (ω)φn → φ∗(c, ω), for γ = min
{
ε
2 , δ

}
there exists n0 ∈ N such

that

d(T (ω)φn, φ
∗(c, ω)) < γ

for n ≥ no. Thus,

d(T (ω)φ∗, φ∗(c, ω)) ≤ d(T (ω)φ∗, T (ω)φn) + d(T (ω)φn, φ
∗(c, ω))

<
ε

2
+ γ < ε. (4.9)

Since ε is arbitrary, we have

T (ω)φ∗(ω) = φ∗(c, ω)

for all ω ∈ Ω. To prove the uniqueness, assume that Mc is closed in E0 and
b > q on Ω. Then φ∗ ∈Mc. Let ψ∗ be another PPF dependent fixed point of
T (ω) in Mc . Now by virtue of Mc, we obtain

d0(φ
∗(ω), ψ∗(ω)) = d(T (ω)φ∗(ω), T (ω)ψ∗(ω)) = d(φ∗(c, ω), ψ∗(c, ω))
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for all ω ∈ Ω. If we substitute x = φ∗ and y = ψ∗ in (4.1), then we get
a contradiction. Hence, φ∗(ω) = ψ∗(ω) for all ω ∈ Ω. This completes the
proof. �

Corollary 4.3. Let E be complete metric space and let T : E0 → E be a
continuous mapping satisfying for some b ∈ R,

0 ≤ min

{
d(Tφ, Tψ), d(φ(c), Tφ), d(ψ(c), Tψ),

d(φ(c), Tφ)[1 + d(ψ(c), Tψ)]

1 + d0(φ, ψ)
,
d(ψ(c), Tψ)[1 + d(φ(c), Tφ)]

1 + d0(φ, ψ)

}
+ bmin

{
d(φ(c), Tψ), d(ψ(c), Tφ)

}
≤ q max

{
d0(φ, ψ), [min{d(φ(c), Tφ), d(ψ(c), Tψ)}]

}
(4.10)

for all φ, ψ ∈ E0, where c ∈ I is a fixed point and q ∈ R+ is a number such
that 0 ≤ q < 1 . Then T has a fixed point with PPF dependence and which is
unique if Mc is closed and b > q.

Notice that Corollary 4.3 generalizes PPF dependent fixed point result of
Bernfeld et al. [1] for the mappings satisfying standard Banach type contrac-
tion condition and generalize several other classical PPF dependent fixed point
theorems on the lines of Ćirić [6].

5. Conclusion

Finally, while concluding this paper we mention that the random fixed point
results of this paper are for only linear contraction which may be generalized
to nonlinear contraction on the lines of Boyed and Wong [4]. The contraction
condition that has been considered in this paper is the only condition in the
literature on metric fixed point theory which generalizes the Banach contrac-
tion condition in the both left and right direction. Furthermore, our fixed
point theorems may be extended to two, three and four random mappings in
Polish spaces to prove the random common fixed point theorems along the
similar lines with appropriate modifications. Some of the results along this
line will be reported elsewhere.
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