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Abstract. In this paper we study some fixed point theorems for self-mappings satisfying
certain contraction principles on a convex complete metric space. In addition, we also

improve and extend some very recently results in [9].

1. INTRODUCTION AND PRELIMINARY

In 1970, Takahashi [11] introduced the notion of convexity in metric spaces
and studied some fixed point theorems for nonexpansive mappings in such
spaces. A convex metric space is a generalized space. For example, every
normed space and cone Banach space is a convex metric space and convex
complete metric space, respectively. Subsequently, many mathematicians in
[2]-[7], [10, 12] and recently, Moosaei [9] studied fixed point theorems in convex
metric spaces.

Our results improve and extend some of Moosaei’s results in [9] and Kara-
pinar’s results in [8] from a cone Banach space to a convex complete metric
space. For instance, Karapinar proved that

Theorem 1.1. ([8, Theorem 2.4]) Let C be a closed and convex subset of a
cone Banach space X with the norm |z||, = d(x,0), and T : C — C be a
mapping which satisfies the condition

dq€(2,4), Va,yel, dx Tz)+d(y Ty) < qd(z,y).
Then T has at least one fized point.
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Letting x = y in the above inequality, it is easy to see that T is an identity
mapping. In this paper, results in [8, 9] is improved and extended to a convex
complete metric space.

Theorem 1.2. ([8, Theorem 2.6]) Let C' be a closed and convexr subset of a
cone Banach space X with the norm |z||, = d(x,0), and T : C — C be a
mapping which satisfies the condition

dre2,5), Vayel, d(TzTy)+d(x Tr)+d(y Ty)<rd(z,y).

Then T has at least one fixed point.

Definition 1.3. ([1]) Let (X, d) be a metric space and I = [0,1]. A mapping
W : X x X xI — X is said to be a convex structure on X if for each
(x,y,\) e X x X x I and u € X,

d(u, W(z,y,\)) < Md(u,z) + (1 = N)d(u,y).

A metric space (X, d) together with a convex structure W is called a convex
metric space, which is denoted by (X, d, W).

Example 1.4. Let (X, d, ||.||) be a normed space. The mapping W : X x X x
I — X defined by W(z,y,\) = Az + (1 — N)y for each z,y € X, A € I is a
convex structure on X.

Definition 1.5. ([1]) Let (X,d, W) be a convex metric space. A nonempty
subset C' of X is said to be convex if W(z,y,\) € C whenever (z,y,\) €
CxCxlI.

Lemma 1.6. ([9]) Let (X,d, W) be a convex metric space, then the following
statements hold:

(i) d(z,y) = d(z, W(z,y,A))+d(y, W(z,y,A)) for all (z,y,A) € Xx X xI.
(i) d(x, W(z,y,A)) = (1 = N)d(x,y) for all z,y € X.
(iii) d(y, W(z,y,A)) = Ad(z,y) for all x,y € X.
Proof. To prove (i) see [9, Lemma 3.1].
By definition, we have

d(z, W(z,y,\)) < (1= Nd(z,y)
and on the other hand
(1= Nd(z,y) = d(z,y) — Ad(z,y)
= [d(z, W(z,y,\)) + d(y, W(z,y, A)] — Ad(z,y)

but
d(y, W(z,y,\)) < Xd(z,y).
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Therefore
Thus d(z, W(z,y,\)) = (1 — N)d(z,y) for all z,y € X. This completes proof
of (ii).
For (iii), by (i) and (ii), we have
d(z,y) = d(z, W(z,y, ) + d(y, W(z,y,\))

So d(y, W(z,y,\)) = Ad(x,y) for all z,y € X. g

2. MAIN RESULTS

Theorem 2.1. Let C be a nonempty closed convex subset of a conver complete
metric space (X,d, W) and T be a self-mapping of C. If there exist a,b,c,e, f,
and k such that
b+e—|fl[(1=X) —|cA a+bt+ct+e+ f—lc]A=|fl(1=2X)
<k<
1-—A 1—A
ad(z, Tx) + bd(y, Ty) + cd(Tz, Ty) + ed(z, Ty) + fd(y,Tx) < kd(z,y) (2.2)
for all xz,y € C, then T has at least one fixed point.

(2.1)

Proof. Fix A € (0,1). Suppose xg € C is arbitrary. We define a sequence
{Zp}n=1 in the following way:

Tn = W(xp_1,T(xp-1,A)), n=1,23---.

As C is convex, x,, € C for all n € N. By Lemma 1.6 and above relation, we
have

d(xpi1,2n) = (1 = Nd(xp, Txy), (2.3)
A
d(xp, Txp_1) = M(xp—1,TTHn_1) = ﬁd(xn,:rn_l). (2.4)
By relation (2.3)
1
ﬁd(xnﬂ,xn) = d(zp,Txy) (2.5)
< d(xn, Trp—1) +d(Tap—1,Tz)) (2.6)
and
gy y— e g ) < cd(Ton,Trn).  (27)
- Tn+1,Tn 1—\ Tny,Tpn-1) = C Tn—1,1L Tn)- .
And also by relation (2.3) and triangle inequality we have
1
ﬁd(fl:n—&-luxn) = d(xn,Txy) (2.8)

< d(zp, Tn-1) + d(@n-1,Txy) (2.9)
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and

ﬁd((]?n_i_l,l'n) — | fld(xp, xn—1) < fd(Txp—1,Txy) (2.10)

for all n € N. Now, by substituting x with z,, and y with x,_; in (2.2), we
get
ad(xp, Txy) + bd(xp—1,Txn—1) + cd(Txp, Trp_1)
+ ed(xrw Txn—l) + fd<xn—17 Txn—l)
S kd(xrw xn—l)
so by the relations (2.3),(2.4),(2.7) and (2.10), we obtain
a+c+ f b— |c| A+ e
<1_)\> d(Tni1,Tn) + <‘1’_)\ - ‘f|) d(Tn—1,Zn)
< kd(zp, Tn-1)-

Thus
d(Tp, Tni1) < (k(l — A+ ’fl(j_;i)f_ bet ‘c’)\) d(zp, Tn-1)

for all n € N. By the relation (2.1) k(l_’\)ﬂf(ll(ic_ﬁ}_b_%'c"\ € [0,1) and hence,

{z,} C C is a contraction sequence. Therefore, it is a Cauchy sequence. Since
(' is a closed subset of a complete space, so lim,,_, =, = z* for some z* € C.
Now by relation (2.3)

1
ﬁd(an,xn) =d(zp, Try) < d(xp,2") + d(z*, Txy,)

we obtain lim,_,~ d(xy,, Tx,) = 0 and by
d(z*,Txy) < d(z*,zpn) + d(xn, Txy)

we get limy, o0 Tx, = x*.
Now, by substituting x with 2* and y with z,, in relation (2.2), we obtain

ad(z*, Tx*) + bd(xp, Txy) + cd(Tx*, Txy) + ed(z*, Txy) + fd(zyn, Tz™)

< kd(z*, xy).
So

(a+c+ f)d(z*,Tz*) <O0.

But by relation (2.1) a +c+ f > 0 thus Tz* = z*. O

The following corollary improves and extends [9, Theorem 3.2].

Corollary 2.2. Let C be a nonempty closed convex subset of a convex complete
metric space (X,d,W) and T be a self-mapping of C. If there exist a,b,c and
k such that

20— |e| <k <2(a+b+c)—|c, (2.11)
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ad(z,Tz) + bd(y, Ty) + cd(Tz, Ty) < kd(z,y) (2.12)

for all x,y € C, then T has at least one fixed point.
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