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Abstract. This paper show that every generalized area n—preserving mapping between non-
Archimedean 2—normed spaces X and Y is a generalized 2—isometry under some conditions.
In addition, we also showed the Alksandrov problem in non-Archimedean n—normed spaces

under some conditions.

1. INTRODUCTION

In 1970, Aleksandrov in [1] posed the question that: whether the exist of
the single preserved distance implies that f is an isometry from the metric
space X into itself.

Until now, the Alesandrov problem in linear normed spaces has been studied
in reference [2-6]. Recently Chu et al in [3] begin to consider the Aleksandrov
problem in linear 2—normed spaces. They introduce the concept of 2—isometry
and prove that Rassias and Semrl’s theorem holds under some conditions.
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By utilizing the idea of preserving colinear, the authors give the following
conclusion.

Theorem 1.1. ([3]) Let X and Y be 2—normed space and f: X =Y, if f is
a 2— Lipschitz mapping with the 2— Lipschitz constant K < 1, if x,y and z are
colinear implies f(x), f(y) and f(z) are colinear and if f satisfies (AOPP),
then f is a 2—isometry.

After that, Ren Weiyun in [7] proved that the theorem still hold without
the condition of preserving colinear. The author give the following conclusion.

Theorem 1.2. ([7]) Let X andY be 2—normed space and f : X — 'Y satisfies

(GAnPP) for alln € N, if [|f(z) = f(2), f(p) — (@) < [z —z,p—ql| for all
x,z,p,q € X with ||x — z,p — q|| <1, then f is a generalized 2—isometry.

A natural question is that: Whether the abover theorem still holds in the
non-Archimedean 2—normed space? In this paper, we prove that the answer
is positive if || f(x) — £(), f(p) — F(@)]| < llz — 2,p — g for all 2, 2,p,q € X.

A non-Archimedean filed [8] is a filed K equipped with a function (valuation)
| - | from K into [0, 00) such that |r| = 0 if and only if » = 0, |rs| = |r||s|, and
|r + s| < maz{|r|,|s|} for all r,s € K. Clearly |1| = | — 1| =1 and |n| < 1 for
all n € N. An example of a non-Archimedean valuation is the mapping | - |
taking everything but 0 into 1 and |0] = 0. This valuation is called trivial.

Another example of a non-Archimedean valuation is the mapping

0, if r=0,
)1 = 1 if >0,
—%, if  r<o,

for any r € K with the condition that r = r1 + ro with r1 - 7o > 0.

2. THE ALEKSANDROV PROBLEM IN NON-ARCHIMEDEAN 2—NORMED SPACES

Definition 2.1. ([9]) Let X be a vector space of dimension greater than 1 over
a filed K with a non-Archimedean valuation |- |. A function |-, : X x X —
[0,00) is said to be a non-Archimedean 2—norm if it satisfies the following
conditions:
(i) ||z, y|| = 0 if and only if x, y are linearly dependent;
(i) [l yll = 1y, 2l;
Git) [re. yll = rlllz gl (r € K.z y € X);
(iv) the strong triangle inequality

2,y + z[| < maz{[lz,yll , [z, 2]} (z,9,2 € X).
Then (z, ||+, -]|) is called a non-Archimedean 2—normed space.
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From now on, we assume that X and Y be non-Archimedean 2-normed
linear spaces over a field K with a non-Archimedean valuation |- |1, f be a
mapping from X into Y if without special statements.

Definition 2.2. Let X and Y be non-Archimedean 2—normed linear spaces
and f: X — Y a mapping. We say that f is a generalized 2-isometry if

e —w,y =zl = [If () — f(w), f(y) = (2]

for all z,w,y,z € X. In particular if w = z, then fis said to be a 2-isometry.

Definition 2.3. Let X and Y be non-Archimedean 2—normed linear spaces
and f: X — Y a mapping. We say that f is a generalized area n preserving
property (GAnPP) if
|z —w,y =z =n

implies that

1f(z) = f(w), fy) = f2)| =n
for all z,w,y,z € X. In particular if n = 1, then f is said to satisfy the
generalized area one preserving property (GAOPP).

Definition 2.4. Let X and Y be non-Archimedean 2—normed linear spaces
and f: X — Y a mapping. We say that f is 2-Lipschitz mapping if there is
a K > 0 such that

1f (@) = f(w).f(y) = f(2)]| < K|z —w,y — 2]

for all x,w,y,z € X. The smallest such K is called the Lipschitz constant.

Lemma 2.5. ([9]) Let X be non-Archimedean 2-normed linear spaces, then
|z, yl| = ||z, y + rz| for all xz,y € X and all T € K.

Lemma 2.6. Let X and Y be non-Archimedean 2—normed linear spaces and
f: X =Y satisfies GAOPP and

1f(z) = f(z)-f(p) = (@] < lz = z,p— 4
for all x,z,p,q € X with ||z — z,p — q|| < 1, then f satisfies

1f(z) = f(2).f(p) = f(@| = |l —z.p— 4|
forall x,z,p,q € X with ||z —z,p—q| < 1.

Proof. If
1f(@) = f(2).f(p) = f(@)l <z = 2zp—ql,
let
w=z—|z—-2zp—q|@-2),
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then
[w—z,p—qll =z —2p—gll(x—2),p—ql| =1
and
Jw—2,p—q|
= [z—z—[lz—2p—qll(z—2),p—ql
|z —2,p 4]
1+ [z —2,p — 4
< 1
Hence
[ f(w) = f(2), f(p) — f(@l =1
and

[ f(w) = f(z), f(p) — f(@I < [w—z,p—ql| <1
On the other hand,
1f(w) = f(2), f(p) = f(@)
< max{||f(w) — f(z), f(p) = f(@). [ f(z) = f(2).f(p) = f(a)|I}

< 1.
This contradicts the equality || f(w) — f(2).f(p) — f(¢)]| = 1. Hence
1f (@) = f(2)-f(p) = f(@Il = llz = z,p — 4l
for all x,z,p,q € X with ||z — z,p —¢| < 1. O

Theorem 2.7. Let X and Y be non-Archimedean 2—mnormed linear spaces
and f : X =Y satisfies GAnPP for allm € N, if f is a 2-Lipschitz mapping
with K =1:

1 (@) = f(2)-f(p) = f(DI <z —z,p— 4
forallx,z,p,q € X, then f is a generalized 2-isometry.
Proof. By Lemma 2.6

1f(z) = f(2), f(p) = (@Il = |z — z,p — 4l

for all z,z,p,q € X with ||z — z,p —¢| < 1.
In the following, We will show that

1f(x) = f(2).-f(p) = f(@)]| = llz — z,p —q||
if ||z — z,p — ¢|| > 1. Suppose, on the contrary, that
1f(z) = f(2)-f(p) = f(DI < llz — z,p — 4

for all x, z,p,q € X with ||z — z,p — ¢|| > 1. There exists a positive integer ny
such that ng < ||z —z.p — ¢|| <no + 1.
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bt || H
_ T—2p—¢q B
y—x+—n0+1 (x — 2),
e u H
T—zp—q
_ _ — _ — — 1
ly —z,p—ql = | p—— (x—2),p—q| =no+
and
ly — z,p— 4|
|z —2z.p—q|
= It S 1| YO _
(1 + p—— )@ —2),p—q|
1
- ot lz = 2p— g
no+ 1+ ||z —z.p—q|
< |z —zp—d|
< no+1
Hence
If(y) = f(x), f(p) = f(@)| =no+1
and

1f(y) — f(2), f(p) = f(@I < ly — 2,0 —qll <no+ 1.
On the other hand,

1f () = f(=), f(p) — F(@)]
< max{||f(y) — f(2), f(p) = F(DI I/ (=) = f(2), f(p) = f@)I}
< max{|ly—zp—qlllz—zp—ql}
< ng+1.
This contradicts the equality

1f(y) — f(2), f(p) — f(@)| = no + 1.
Hence

1f(z) = f(2), f(p) = f(@Il = |z — z,p — 4l

when ||z — z,p — ¢|| > 1. So f is a generalized 2-isometry. O

3. THE ALEKSANDROV PROBLEM IN NON-ARCHIMEDEAN n—NORMED
SPACES

Definition 3.1. ([10]) Let X be a vector space of dimension greater than n—1
over a filed I with a non-Archimedean valuation |- |. A function |-,- - -, || :
X x -+ x X —[0,00) is said to be a non-Archimedean n—norm if it satisfies
the following conditions:

(i) ||z1,- - -, zn|| = 0 if and only if |z1, - - -, 2, are linearly dependent;
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(11) |||£U1, Tt l‘nH = H‘lea Tty x]n” for every permutation (jla e 7]11) of (1’ MY n)a
(i) [|rzy, - - - znll = |7|ll21, - - o 20| (r € K21, 20 € X);
(iv) the strong triangle inequality

||$+y7$27 71"’”” S mCLCC{H$$2, 7an ) ||y7x27 "'73377,”}(1")?/)‘752) oy T S X)
Then (z,||-,- -+, -||) is called a non-Archimedean n—normed space.

From now on, we assume that X and Y be non-Archimedean n-normed
linear spaces over a field X with a non-Archimedean valuation |- |1, f be a
mapping from X into Y if without special statements.

Definition 3.2. Let X and Y be non-Archimedean n—normed linear spaces
and f: X — Y a mapping. We say that f is a generalized n-isometry if

21 =515 s @ = ynll = [[f(21) = F(y1)s oo f(@n) = Fya)

for all z1,...,xn, Y1, -, Yn € X. In particular if y; = yo = ... = y,, then f is
said to be a n-isometry.

Definition 3.3. Let X and Y be non-Archimedean n—normed linear spaces
and f : X — Y a mapping. We say that f is a generalized distance n
preserving property (GDnPP) if

|1 — Y1,y T — Ynl| =1
implies that
| f(x1) = f(y1), s f(2n) — flym)l = n

for all x1, ..., Tn, Y1, ---, Yn € X. In particular if n = 1, then f is said to satisfy
the generalized distance one preserving property (GDOPP).

Definition 3.4. Let X and Y be non-Archimedean n—normed linear spaces
and f: X — Y a mapping. We say that f is n-Lipschitz mapping if there is
a K > 0 such that

1f(z1) = f(y)soes f@n) = Fyn) | < K2y = y1, o 20 = ynl

for all z1,...,xn, Y1, ..., Yn € X. The smallest such K is called the n-Lipschitz
constant.

Lemma 3.5. ([10]) Let X be non-Archimedean n-normed linear spaces, x; be
an element of a non-Archimedean n-normed spaces X, for everyi € {1,...,n}
and r € K, then ||z, ..., i, ..., Tj, ooy T || = [|T1, 0y @iy oo, T + 724, .0y Ty || for
all x1,...,xp € X and all 1 < i # j < n.
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Lemma 3.6. Let X and Y be non-Archimedean n—normed linear spaces and

f: X =Y satisfies GDOPP and

[f(@1) = f(y1), oo f(@n) = Fyn)ll < llz1 =91, s 20 — va|
for all x1,....;®p, Y1, ooy Yn € X with ||x1 — Y1, ..oy T — yn|| < 1, then f satisfies

1f(@1) = fQy)s s f@n) = fyn)ll = llz1 — y1s s 20— ynl|
forall x1,...;xp, Y1, .oy Y € X with ||x1 — y1, .oy Tn — Y| < 1.

Proof. 1If
£ (1) = F(y1), s f(@n) = flyn)l| < llzr — w1, 20—yl

let
Yo =uy1 — |T1 — Y1, s T — Ynll(z1 — ¥1),
then
Yo = Y15 oy @n — ynll = @1 — Y15 s @ — ynll(@1 — 91), s 2 — Yl = 1
and
HyO — L1y -y Ty _ynH
= |ly1 — 21— |21 — Y1, s T — Ynll(Z1 — Y1), s Tro — Y|
H(‘Tl —yl),..-,&?n _yn”
1+ H(xl - yl)a vy Iy — yn“
< 1.
Hence
£ (o) = f(y1)s - f(@n) = flyn)] =1
and

1f(yo) = f@1), s flan) = f(yn)
< lyo — @1, Zn — Yl
< 1.
On the other hand
1£ o) = Fun)s s F(n) = Flya)
< max{||f(yo) — f(@1), ., flzn) — f(yn)l,
[ f(z1) = f(y1),es flan) = fyn) I}

< 1.
This contradicts the equality

1 (o) = f(y1), oo f(@n) = fyn) |l = 1.

Hence

1 (1) = F(1)s oo f ) = F(n)l| = 121 = 15 o0 20 =y
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for all x1,...,xn, Y1, ..., yn € X with ||x1 —y1,...,zn —ynl| < 1. O

Theorem 3.7. Let X and Y be non-Arichimedean n-normed spaces and f :
X — Y satisfies GDnPP for all n € N, if f is a n-Lipschitz mapping with
K=1:

1f(@1) = f(y1), s f(@n) = Flyn) | < N2 = Y15y 20—y
forallxy,...,xn,y1,....;yn € X, then f is a generalized n-isometry.

Proof. By Lemma 3.6

for all x1,...,xn, Y1, ..., yn € X with ||x1 —y1,...,zn —ynl| < 1.
In the following, We will show that

1f(@1) = fQy)s - f@n) = Fyn)ll = llzr — Y15 @ — Y|
if ||z1 — y1, ..., Tn — yn|| > 1. Suppose, on the contrary, that
1f (@) = fQy)s - f@n) = fyn)ll <llzr —y15 e @ — Ynl|

for all z1,...,zn, Y1, .., Yo € X with ||z1 — y1, ..., 2y — yn|| > 1. There exists a
positive integer ng such that ng < ||x1 — y1, ..., Tn — Ynl| < no + 1. Let

Hxl — Y,y Tp — ynH

Yo = Y1 — no + 1 (xl_yl)a
then
||y0_y1a"'7$n_yn||
|21 = Y1, s Tn — Ya|
= H - TL’()—I:ln = (ml_yl)v“-axn_ynH
= n0+1,
and
||y0_$1a"'axn_yn||
lz1 = Y1, -oos n — Ya|
= H - (1+ leo—}jln = )(xl _yl)’--'axn_ynH
fot ] H H
= L1 — Ylyeeey Ty —
0+ L+ [ 21— Y1y oes i — gl S T
< ||$1 — Y1,y Tn _Z/nH
< ng—+1.
Hence

1F(w0) = F (Y1), s f(n) = f(yn)ll =m0 + 1
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1f(mo) = f(@1), s f@n) — f ()|
S ||Z/0—$17--->33n—yn||
< ng+1.

On the other hand,

Hf(y()) - f(yl)a 7f<xn) - f(.%z)”
< max{[|f(yo) = f(@1), -, f(@n) = fyn)l,
£ (1) = f(yr)s e f(2n) — fyn)}

< ng+1.

This contradicts the equality

£ (o) = F(n)s oo f(@n) — fyn)]| = no + 1.

Hence

1 (1) = (Y1) o f@n) = Fyn)ll = 1210 = w1, s 20—yl

when ||x1 —y1,...,2n — ynl| > 1. So f is a generalized n-isometry. O
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