Nonlinear Functional Analysis and Applications Vol. 17, No. 2 (2012), pp. 177-185

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2012 Kyungnam University Press

ON THE ALEKSANDROV PROBLEM IN NON-ARCHIMEDEAN 2-NORMED SPACES

Danping $\mathrm{Wang}^1,$ Yubo Liu 2 and Meimei Song^3

¹Department of Mathematics, Science of College, Tianjin University of Technology Tianjin, 300384, China e-mail: wangdanping2011@126.com

²Department of Mathematics, Science of College, Tianjin University of Technology Tianjin, 300384, China

³Department of Mathematics, Science of College, Tianjin University of Technology Tianiin, 300384, China

Abstract. This paper show that every generalized area n – preserving mapping between non-Archimedean 2−normed spaces X and Y is a generalized 2−isometry under some conditions. In addition, we also showed the Alksandrov problem in non-Archimedean n−normed spaces under some conditions.

1. INTRODUCTION

In 1970, Aleksandrov in [1] posed the question that: whether the exist of the single preserved distance implies that f is an isometry from the metric space X into itself.

Until now, the Alesandrov problem in linear normed spaces has been studied in reference [2-6]. Recently Chu et al in [3] begin to consider the Aleksandrov problem in linear 2−normed spaces. They introduce the concept of 2−isometry and prove that Rassias and Semrl's theorem holds under some conditions.

⁰Received September 20, 2011. Revised April 25, 2012.

⁰ 2000 Mathematics Subject Classification: 47H10, 46B20, 46B04.

⁰Keywords: Generalized 2−isometry, non-Archimedean 2−normed space, GAnPP, generalized n−isometry, non-Archimedean n−normed space, GDnPP.

By utilizing the idea of preserving colinear, the authors give the following conclusion.

Theorem 1.1. ([3]) Let X and Y be 2-normed space and $f: X \to Y$, if f is a 2−Lipschitz mapping with the 2−Lipschitz constant $K \leq 1$, if x, y and z are colinear implies $f(x)$, $f(y)$ and $f(z)$ are colinear and if f satisfies (AOPP), then f is a $2-i$ sometry.

After that, Ren Weiyun in [7] proved that the theorem still hold without the condition of preserving colinear. The author give the following conclusion.

Theorem 1.2. ([7]) Let X and Y be 2-normed space and $f: X \to Y$ satisfies (GAnPP) for all $n \in N$, if $|| f(x) - f(z), f(p) - f(q)|| \le ||x - z, p - q||$ for all $x, z, p, q \in X$ with $||x - z, p - q|| \leq 1$, then f is a generalized 2-isometry.

A natural question is that: Whether the abover theorem still holds in the non-Archimedean 2−normed space? In this paper, we prove that the answer is positive if $|| f(x) - f(z), f(p) - f(q)|| \le ||x - z, p - q||$ for all $x, z, p, q \in X$.

A non-Archimedean filed $[8]$ is a filed K equipped with a function (valuation) $|\cdot|$ from K into $[0,\infty)$ such that $|r|=0$ if and only if $r=0, |rs|=|r||s|$, and $|r + s| \leq max\{|r|, |s|\}$ for all $r, s \in \mathcal{K}$. Clearly $|1| = |-1| = 1$ and $|n| \leq 1$ for all $n \in N$. An example of a non-Archimedean valuation is the mapping $|\cdot|$ taking everything but 0 into 1 and $|0| = 0$. This valuation is called trivial.

Another example of a non-Archimedean valuation is the mapping

$$
|r|_1 = \begin{cases} 0, & \text{if } r = 0, \\ \frac{1}{r}, & \text{if } r > 0, \\ -\frac{1}{r}, & \text{if } r < 0, \end{cases}
$$

for any $r \in \mathcal{K}$ with the condition that $r = r_1 + r_2$ with $r_1 \cdot r_2 > 0$.

2. The aleksandrov problem in non-archimedean 2−normed spaces

Definition 2.1. ([9]) Let X be a vector space of dimension greater than 1 over a filed K with a non-Archimedean valuation $|\cdot|$. A function $\|\cdot,\cdot\|: X \times X \to$ $[0, \infty)$ is said to be a non-Archimedean 2–norm if it satisfies the following conditions:

(i) $||x, y|| = 0$ if and only if x, y are linearly dependent;

(ii) $||x, y|| = ||y, x||;$

 (iii) || rx, y || = $|r| ||x, y||$ ($r \in \mathcal{K}, x, y \in X$);

(iv) the strong triangle inequality

 $||x, y + z|| \leq max{||x, y||, ||x, z||}$ $(x, y, z \in X).$

Then $(x, \|\cdot, \cdot\|)$ is called a non-Archimedean 2–normed space.

From now on, we assume that X and Y be non-Archimedean 2-normed linear spaces over a field K with a non-Archimedean valuation $|\cdot|_1$, f be a mapping from X into Y if without special statements.

Definition 2.2. Let X and Y be non-Archimedean 2–normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized 2-isometry if

$$
||x - w, y - z|| = ||f(x) - f(w), f(y) - f(z)||
$$

for all $x, w, y, z \in X$. In particular if $w = z$, then f is said to be a 2-isometry.

Definition 2.3. Let X and Y be non-Archimedean 2–normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized area n preserving property (GAnPP) if

$$
||x - w, y - z|| = n
$$

implies that

$$
||f(x) - f(w), f(y) - f(z)|| = n
$$

for all $x, w, y, z \in X$. In particular if $n = 1$, then f is said to satisfy the generalized area one preserving property (GAOPP).

Definition 2.4. Let X and Y be non-Archimedean 2−normed linear spaces and $f: X \to Y$ a mapping. We say that f is 2-Lipschitz mapping if there is a $K > 0$ such that

$$
||f(x) - f(w) \cdot f(y) - f(z)|| \le K||x - w, y - z||
$$

for all $x, w, y, z \in X$. The smallest such K is called the Lipschitz constant.

Lemma 2.5. ([9]) Let X be non-Archimedean 2-normed linear spaces, then $||x, y|| = ||x, y + rx||$ for all $x, y \in X$ and all $r \in \mathcal{K}$.

Lemma 2.6. Let X and Y be non-Archimedean 2–normed linear spaces and $f: X \rightarrow Y$ satisfies GAOPP and

 $|| f(x) - f(z) \cdot f(p) - f(q)|| \le ||x - z, p - q||$ for all $x, z, p, q \in X$ with $||x - z, p - q|| \leq 1$, then f satisfies $|| f(x) - f(z) \cdot f(p) - f(q)|| = ||x - z, p - q||$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \leq 1$.

Proof. If

$$
||f(x) - f(z) \cdot f(p) - f(q)|| < ||x - z, p - q||,
$$

let

$$
w = z - ||x - z, p - q|| (x - z),
$$

then

$$
||w - z, p - q|| = |||x - z, p - q||(x - z), p - q|| = 1
$$

and

$$
||w - x, p - q||
$$

= $||z - x - ||x - z, p - q|| (x - z), p - q||$
= $\frac{||x - z, p - q||}{1 + ||x - z, p - q||}$
< 1.

Hence

$$
||f(w) - f(z), f(p) - f(q)|| = 1
$$

and

$$
||f(w) - f(x), f(p) - f(q)|| \le ||w - x, p - q|| < 1.
$$

On the other hand,

$$
|| f(w) - f(z), f(p) - f(q)||
$$

\n
$$
\leq \max{|| f(w) - f(x), f(p) - f(q)||, ||f(x) - f(z).f(p) - f(q)||}
$$

\n
$$
< 1.
$$

This contradicts the equality $|| f(w) - f(z) \cdot f(p) - f(q)|| = 1$. Hence

$$
||f(x) - f(z).f(p) - f(q)|| = ||x - z, p - q||
$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$.

Theorem 2.7. Let X and Y be non-Archimedean 2−normed linear spaces and $f: X \to Y$ satisfies GAnPP for all $n \in N$, if f is a 2-Lipschitz mapping with $K = 1$:

$$
||f(x) - f(z) \cdot f(p) - f(q)|| < ||x - z, p - q||
$$

for all $x, z, p, q \in X$, then f is a generalized 2-isometry.

Proof. By Lemma 2.6

$$
|| f(x) - f(z), f(p) - f(q)|| = ||x - z, p - q||
$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \leq 1$. In the following, We will show that

$$
||f(x) - f(z) \cdot f(p) - f(q)|| = ||x - z, p - q||
$$

if $||x - z, p - q|| > 1$. Suppose, on the contrary, that

$$
||f(x) - f(z) \cdot f(p) - f(q)|| < ||x - z, p - q||
$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| > 1$. There exists a positive integer n_0 such that $n_0 \le ||x - z.p - q|| < n_0 + 1$.

Let

$$
y = x + \frac{\|x - z.p - q\|}{n_0 + 1}(x - z),
$$

then

$$
||y - x, p - q|| = ||\frac{||x - zp - q||}{n_0 + 1}(x - z), p - q|| = n_0 + 1
$$

and

$$
||y - z, p - q||
$$

= $||(1 + \frac{||x - z.p - q||}{n_0 + 1})(x - z), p - q||$
= $\frac{n_0 + 1}{n_0 + 1 + ||x - z.p - q||} ||x - z.p - q||$
< $||x - z.p - q||$
< $n_0 + 1$.

Hence

$$
|| f(y) - f(x), f(p) - f(q)|| = n_0 + 1
$$

and

$$
||f(y) - f(z), f(p) - f(q)|| \le ||y - z, p - q|| < n_0 + 1.
$$

On the other hand,

$$
|| f(y) - f(x), f(p) - f(q)||
$$

\n
$$
\leq \max{|| f(y) - f(z), f(p) - f(q)||, ||f(x) - f(z), f(p) - f(q)||}
$$

\n
$$
\leq \max{||y - z, p - q||, ||x - z, p - q||}
$$

\n
$$
< n_0 + 1.
$$

This contradicts the equality

$$
|| f(y) - f(x), f(p) - f(q)|| = n_0 + 1.
$$

Hence

$$
||f(x) - f(z), f(p) - f(q)|| = ||x - z, p - q||
$$

when $||x - z, p - q|| > 1$. So f is a generalized 2-isometry.

3. The aleksandrov problem in non-Archimedean n−normed **SPACES**

Definition 3.1. ([10]) Let X be a vector space of dimension greater than $n-1$ over a filed K with a non-Archimedean valuation $\|\cdot\|$. A function $\|\cdot,\cdot\cdot\cdot,\cdot\|$: $X \times \cdots \times X \to [0, \infty)$ is said to be a non-Archimedean n–norm if it satisfies the following conditions:

(i) $||x_1, \dots, x_n|| = 0$ if and only if $|x_1, \dots, x_n$ are linearly dependent;

(ii) $||x_1, ..., x_n|| = ||x_{j_1}, ..., x_{j_n}||$ for every permutation $(j_1, ..., j_n)$ of $(1, ..., n)$; (iii) $||rx_1, \dots, x_n|| = |r| ||x_1, \dots, x_n|| (r \in \mathcal{K}, x_1, \dots, x_n \in X);$ (iv) the strong triangle inequality

 $||x+y, x_2, \dots, x_n|| \leq max\{||xx_2, \dots, x_n||, ||y, x_2, \dots, x_n||\}(x, y, x_2, \dots, x_n \in X).$ Then $(x, \|\cdot, \cdot\cdot\cdot, \cdot\|)$ is called a non-Archimedean n–normed space.

From now on, we assume that X and Y be non-Archimedean n-normed linear spaces over a field K with a non-Archimedean valuation $|\cdot|_1$, f be a mapping from X into Y if without special statements.

Definition 3.2. Let X and Y be non-Archimedean n -normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized n-isometry if

$$
||x_1 - y_1, ..., x_n - y_n|| = ||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. In particular if $y_1 = y_2 = ... = y_n$, then f is said to be a n-isometry.

Definition 3.3. Let X and Y be non-Archimedean n−normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized distance n preserving property (GDnPP) if

$$
||x_1 - y_1, ..., x_n - y_n|| = n
$$

implies that

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = n
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. In particular if $n = 1$, then f is said to satisfy the generalized distance one preserving property (GDOPP).

Definition 3.4. Let X and Y be non-Archimedean n–normed linear spaces and $f: X \to Y$ a mapping. We say that f is n-Lipschitz mapping if there is a $K > 0$ such that

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le K||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. The smallest such K is called the n-Lipschitz constant.

Lemma 3.5. ([10]) Let X be non-Archimedean n-normed linear spaces, x_i be an element of a non-Archimedean n-normed spaces X, for every $i \in \{1, ..., n\}$ and $r \in \mathcal{K}$, then $||x_1, ..., x_i, ..., x_j, ..., x_n|| = ||x_1, ..., x_i, ..., x_j + rx_i, ..., x_n||$ for all $x_1, ..., x_n \in X$ and all $1 \leq i \neq j \leq n$.

Lemma 3.6. Let X and Y be non-Archimedean n-normed linear spaces and $f: X \rightarrow Y$ satisfies GDOPP and

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \leq 1$, then f satisfies

$$
||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \leq 1$.

Proof. If

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| < ||x_1 - y_1, ..., x_n - y_n||,
$$

let

$$
y_0 = y_1 - ||x_1 - y_1, ..., x_n - y_n|| (x_1 - y_1),
$$

then

 $||y_0 - y_1, ..., x_n - y_n|| = |||x_1 - y_1, ..., x_n - y_n|| (x_1 - y_1), ..., x_n - y_n|| = 1$ and

$$
||y_0 - x_1, ..., x_n - y_n||
$$

= $||y_1 - x_1 - ||x_1 - y_1, ..., x_n - y_n|| (x_1 - y_1), ..., x_n - y_n||$
=
$$
\frac{||(x_1 - y_1), ..., x_n - y_n||}{1 + ||(x_1 - y_1), ..., x_n - y_n||}
$$

< 1.

Hence

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n) || = 1
$$

and

$$
|| f(y_0) - f(x_1), ..., f(x_n) - f(y_n) ||
$$

\n
$$
\leq || y_0 - x_1, ..., x_n - y_n ||
$$

\n
$$
< 1.
$$

On the other hand

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n) ||
$$

\n
$$
\leq \max \{ || f(y_0) - f(x_1), ..., f(x_n) - f(y_n) ||,
$$

\n
$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n) || \}
$$

\n
$$
< 1.
$$

This contradicts the equality

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n) || = 1.
$$

Hence

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \leq 1.$

Theorem 3.7. Let X and Y be non-Arichimedean n-normed spaces and f : $X \rightarrow Y$ satisfies GDnPP for all $n \in N$, if f is a n-Lipschitz mapping with $K = 1$:

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$, then f is a generalized n-isometry.

Proof. By Lemma 3.6

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \leq 1$. In the following, We will show that

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||
$$

if $||x_1 - y_1, ..., x_n - y_n|| > 1$. Suppose, on the contrary, that

$$
||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| < ||x_1 - y_1, ..., x_n - y_n||
$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| > 1$. There exists a positive integer n_0 such that $n_0 < ||x_1 - y_1, ..., x_n - y_n|| \leq n_0 + 1$. Let

$$
y_0 = y_1 - \frac{\|x_1 - y_1, ..., x_n - y_n\|}{n_0 + 1}(x_1 - y_1),
$$

then

$$
||y_0 - y_1, ..., x_n - y_n||
$$

= $|| - \frac{||x_1 - y_1, ..., x_n - y_n||}{n_0 + 1} (x_1 - y_1), ..., x_n - y_n||$
= $n_0 + 1$,

and

$$
||y_0 - x_1, ..., x_n - y_n||
$$

= $|| - (1 + \frac{||x_1 - y_1, ..., x_n - y_n||}{n_0 + 1})(x_1 - y_1), ..., x_n - y_n||$
= $\frac{n_0 + 1}{n_0 + 1 + ||x_1 - y_1, ..., x_n - y_n||} ||x_1 - y_1, ..., x_n - y_n||$
< $||x_1 - y_1, ..., x_n - y_n||$
< $n_0 + 1$.

Hence

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n) || = n_0 + 1
$$

and

$$
|| f(y_0) - f(x_1), ..., f(x_n) - f(y_n) ||
$$

\n
$$
\leq || y_0 - x_1, ..., x_n - y_n ||
$$

\n
$$
< n_0 + 1.
$$

On the other hand,

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n) ||
$$

\n
$$
\leq \max \{ || f(y_0) - f(x_1), ..., f(x_n) - f(y_n) ||,
$$

\n
$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n) || \}
$$

\n
$$
< n_0 + 1.
$$

This contradicts the equality

$$
|| f(y_0) - f(y_1), ..., f(x_n) - f(y_n)|| = n_0 + 1.
$$

Hence

$$
|| f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||
$$

when $||x_1 - y_1, ..., x_n - y_n|| > 1$. So f is a generalized n-isometry. \Box

REFERENCES

- [1] A. D. Alexandrov, Mappings of families of sets, Soviet Math. 11 (1970), 116-120.
- [2] Th. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), 919-925.
- [3] H. Y. Chu, C.-K. Park and W.-K. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl. **289** (2004), 666-672.
- [4] H.-Y. Chu, K. Lee and C.-K. Park, On the Aleksandrov problem in linear n-normed spaces,Nonlinear Anal. 59 (2004), 1001-1011.
- [5] X. Y. Chen and M. M. Song, Characterizations on isometries in linear n-normed spaces,Nonlinear Anal. 72 (2010), 1895-1901.
- [6] G. G. Ding, On isometric extensions and distance one preserving mappings, Taiwanese J. Math. 10(1) (2006), 243-249.
- [7] Y. M. Ma, The Alexandrov problem for unit distance preserving mappings, Acta Math. Sci. **20 (3)** (2000), 359-364.
- [8] M. S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal. 69 (2008), 3405-3408.
- [9] J. Choy, H.-Y. Chu and S.-H. Ku, Characterizations on Mazur-Ulam theorem, Nonlinear Anal. 72 (2010), 1291-1297.
- [10] M. Amyari and Gh. Sadeghi, Isometries in non-Archimedean 2-normed spaces, Sringer Veerlag. Berlin. (2009), 13-22.