Nonlinear Functional Analysis and Applications Vol. 17, No. 2 (2012), pp. 177-185

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2012 Kyungnam University Press

ON THE ALEKSANDROV PROBLEM IN NON-ARCHIMEDEAN 2-NORMED SPACES

Danping Wang¹, Yubo Liu² and Meimei Song³

¹Department of Mathematics, Science of College, Tianjin University of Technology Tianjin, 300384, China e-mail: wangdanping2011@126.com

²Department of Mathematics, Science of College, Tianjin University of Technology Tianjin, 300384, China

³Department of Mathematics, Science of College, Tianjin University of Technology Tianjin, 300384, China

Abstract. This paper show that every generalized area n-preserving mapping between non-Archimedean 2-normed spaces X and Y is a generalized 2-isometry under some conditions. In addition, we also showed the Alksandrov problem in non-Archimedean n-normed spaces under some conditions.

1. Introduction

In 1970, Aleksandrov in [1] posed the question that: whether the exist of the single preserved distance implies that f is an isometry from the metric space X into itself.

Until now, the Alesandrov problem in linear normed spaces has been studied in reference [2-6]. Recently Chu et al in [3] begin to consider the Aleksandrov problem in linear 2—normed spaces. They introduce the concept of 2—isometry and prove that Rassias and Semrl's theorem holds under some conditions.

 $^{^0\}mathrm{Received}$ September 20, 2011. Revised April 25, 2012.

 $^{^{0}2000}$ Mathematics Subject Classification: 47H10, 46B20, 46B04.

 $^{^{0}}$ Keywords: Generalized 2—isometry, non-Archimedean 2—normed space, GAnPP, generalized n—isometry, non-Archimedean n—normed space, GDnPP.

By utilizing the idea of preserving colinear, the authors give the following conclusion.

Theorem 1.1. ([3]) Let X and Y be 2-normed space and $f: X \to Y$, if f is a 2-Lipschitz mapping with the 2-Lipschitz constant $K \le 1$, if x, y and z are colinear implies f(x), f(y) and f(z) are colinear and if f satisfies (AOPP), then f is a 2-isometry.

After that, Ren Weiyun in [7] proved that the theorem still hold without the condition of preserving colinear. The author give the following conclusion.

Theorem 1.2. ([7]) Let X and Y be 2-normed space and $f: X \to Y$ satisfies (GAnPP) for all $n \in N$, if $||f(x) - f(z), f(p) - f(q)|| \le ||x - z, p - q||$ for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$, then f is a generalized 2-isometry.

A natural question is that: Whether the abover theorem still holds in the non-Archimedean 2-normed space? In this paper, we prove that the answer is positive if $||f(x) - f(z), f(p) - f(q)|| \le ||x - z, p - q||$ for all $x, z, p, q \in X$.

A non-Archimedean filed [8] is a filed \mathcal{K} equipped with a function (valuation) $|\cdot|$ from \mathcal{K} into $[0,\infty)$ such that |r|=0 if and only if r=0, |rs|=|r||s|, and $|r+s| \leq \max\{|r|,|s|\}$ for all $r,s \in \mathcal{K}$. Clearly |1|=|-1|=1 and $|n| \leq 1$ for all $n \in \mathbb{N}$. An example of a non-Archimedean valuation is the mapping $|\cdot|$ taking everything but 0 into 1 and |0|=0. This valuation is called trivial.

Another example of a non-Archimedean valuation is the mapping

$$|r|_1 = \begin{cases} 0, & \text{if } r = 0, \\ \frac{1}{r}, & \text{if } r > 0, \\ -\frac{1}{r}, & \text{if } r < 0, \end{cases}$$

for any $r \in \mathcal{K}$ with the condition that $r = r_1 + r_2$ with $r_1 \cdot r_2 > 0$.

2. The Aleksandrov problem in non-archimedean 2-normed spaces

Definition 2.1. ([9]) Let X be a vector space of dimension greater than 1 over a filed \mathcal{K} with a non-Archimedean valuation $|\cdot|$. A function $|\cdot|$, $|\cdot| : X \times X \to [0,\infty)$ is said to be a non-Archimedean 2—norm if it satisfies the following conditions:

- (i) ||x,y|| = 0 if and only if x, y are linearly dependent;
- (ii) ||x,y|| = ||y,x||;
- (iii)||rx, y|| = |r|||x, y|| $(r \in \mathcal{K}, x, y \in X);$
- (iv) the strong triangle inequality

$$||x, y + z|| \le max\{||x, y||, ||x, z||\}$$
 $(x, y, z \in X)$.

Then $(x, \|\cdot, \cdot\|)$ is called a non-Archimedean 2—normed space.

From now on, we assume that X and Y be non-Archimedean 2-normed linear spaces over a field \mathcal{K} with a non-Archimedean valuation $|\cdot|_1$, f be a mapping from X into Y if without special statements.

Definition 2.2. Let X and Y be non-Archimedean 2—normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized 2-isometry if

$$||x - w, y - z|| = ||f(x) - f(w), f(y) - f(z)||$$

for all $x, w, y, z \in X$. In particular if w = z, then f is said to be a 2-isometry.

Definition 2.3. Let X and Y be non-Archimedean 2—normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized area n preserving property (GAnPP) if

$$||x - w, y - z|| = n$$

implies that

$$||f(x) - f(w), f(y) - f(z)|| = n$$

for all $x, w, y, z \in X$. In particular if n = 1, then f is said to satisfy the generalized area one preserving property (GAOPP).

Definition 2.4. Let X and Y be non-Archimedean 2—normed linear spaces and $f: X \to Y$ a mapping. We say that f is 2-Lipschitz mapping if there is a K > 0 such that

$$||f(x) - f(w).f(y) - f(z)|| \le K||x - w, y - z||$$

for all $x, w, y, z \in X$. The smallest such K is called the Lipschitz constant.

Lemma 2.5. ([9]) Let X be non-Archimedean 2-normed linear spaces, then ||x,y|| = ||x,y+rx|| for all $x,y \in X$ and all $r \in K$.

Lemma 2.6. Let X and Y be non-Archimedean 2-normed linear spaces and $f: X \to Y$ satisfies GAOPP and

$$||f(x) - f(z).f(p) - f(q)|| \le ||x - z, p - q||$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$, then f satisfies

$$||f(x) - f(z).f(p) - f(q)|| = ||x - z, p - q||$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$.

Proof. If

$$||f(x) - f(z).f(p) - f(q)|| < ||x - z, p - q||,$$

let

$$w = z - ||x - z, p - q||(x - z),$$

180

then

$$||w-z, p-q|| = ||||x-z, p-q||(x-z), p-q|| = 1$$

and

$$||w - x, p - q||$$

$$= ||z - x - ||x - z, p - q||(x - z), p - q||$$

$$= \frac{||x - z, p - q||}{1 + ||x - z, p - q||}$$

$$< 1.$$

Hence

$$||f(w) - f(z), f(p) - f(q)|| = 1$$

and

$$||f(w) - f(x), f(p) - f(q)|| \le ||w - x, p - q|| < 1.$$

On the other hand,

$$||f(w) - f(z), f(p) - f(q)||$$

$$\leq \max\{||f(w) - f(x), f(p) - f(q)||, ||f(x) - f(z).f(p) - f(q)||\}$$

$$< 1.$$

This contradicts the equality ||f(w) - f(z).f(p) - f(q)|| = 1. Hence

$$||f(x) - f(z).f(p) - f(q)|| = ||x - z, p - q||$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$.

Theorem 2.7. Let X and Y be non-Archimedean 2-normed linear spaces and $f: X \to Y$ satisfies GAnPP for all $n \in N$, if f is a 2-Lipschitz mapping with K = 1:

$$||f(x) - f(z).f(p) - f(q)|| < ||x - z, p - q||$$

for all $x, z, p, q \in X$, then f is a generalized 2-isometry.

Proof. By Lemma 2.6

$$||f(x) - f(z), f(p) - f(q)|| = ||x - z, p - q||$$

for all $x, z, p, q \in X$ with $||x - z, p - q|| \le 1$.

In the following, We will show that

$$||f(x) - f(z).f(p) - f(q)|| = ||x - z, p - q||$$

if ||x-z, p-q|| > 1. Suppose, on the contrary, that

$$||f(x) - f(z).f(p) - f(q)|| < ||x - z, p - q||$$

for all $x, z, p, q \in X$ with ||x - z, p - q|| > 1. There exists a positive integer n_0 such that $n_0 \le ||x - z \cdot p - q|| < n_0 + 1$.

Let

$$y = x + \frac{\|x - z \cdot p - q\|}{n_0 + 1} (x - z),$$

then

$$||y-x, p-q|| = ||\frac{||x-z \cdot p-q||}{n_0+1}(x-z), p-q|| = n_0+1$$

and

$$||y-z, p-q||$$

$$= ||(1 + \frac{||x-z.p-q||}{n_0+1})(x-z), p-q||$$

$$= \frac{n_0+1}{n_0+1+||x-z.p-q||}||x-z.p-q||$$

$$< ||x-z.p-q||$$

$$< n_0+1.$$

Hence

$$||f(y) - f(x), f(p) - f(q)|| = n_0 + 1$$

and

$$||f(y) - f(z), f(p) - f(q)|| \le ||y - z, p - q|| < n_0 + 1.$$

On the other hand,

$$\begin{aligned} & \|f(y) - f(x), f(p) - f(q)\| \\ & \leq & \max\{\|f(y) - f(z), f(p) - f(q)\|, \|f(x) - f(z), f(p) - f(q)\|\} \\ & \leq & \max\{\|y - z, p - q\|, \|x - z, p - q\|\} \\ & < & n_0 + 1. \end{aligned}$$

This contradicts the equality

$$||f(y) - f(x), f(p) - f(q)|| = n_0 + 1.$$

Hence

$$\|f(x)-f(z),f(p)-f(q)\|=\|x-z,p-q\|$$
 when $\|x-z,p-q\|>1.$ So f is a generalized 2-isometry. \Box

3. The aleksandrov problem in non-Archimedean n-normed spaces

Definition 3.1. ([10]) Let X be a vector space of dimension greater than n-1 over a filed \mathcal{K} with a non-Archimedean valuation $|\cdot|$. A function $||\cdot,\cdot\cdot\cdot,\cdot||: X\times\cdots\times X\to [0,\infty)$ is said to be a non-Archimedean n-norm if it satisfies the following conditions:

(i) $||x_1, \dots, x_n|| = 0$ if and only if $|x_1, \dots, x_n|$ are linearly dependent;

- (ii) $||x_1, \dots, x_n|| = ||x_{j_1}, \dots, x_{j_n}||$ for every permutation (j_1, \dots, j_n) of $(1, \dots, n)$;
- (iii) $||rx_1, \dots, x_n|| = |r|||x_1, \dots, x_n|| (r \in \mathcal{K}, x_1, \dots, x_n \in X);$
- (iv) the strong triangle inequality

 $||x+y, x_2, \dots, x_n|| \le \max\{||xx_2, \dots, x_n||, ||y, x_2, \dots, x_n||\}(x, y, x_2, \dots, x_n \in X).$ Then $(x, ||\cdot, \cdot\cdot\cdot, \cdot||)$ is called a non-Archimedean n-normed space.

From now on, we assume that X and Y be non-Archimedean n-normed linear spaces over a field \mathcal{K} with a non-Archimedean valuation $|\cdot|_1$, f be a mapping from X into Y if without special statements.

Definition 3.2. Let X and Y be non-Archimedean n-normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized n-isometry if

$$||x_1 - y_1, ..., x_n - y_n|| = ||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. In particular if $y_1 = y_2 = ... = y_n$, then f is said to be a n-isometry.

Definition 3.3. Let X and Y be non-Archimedean n-normed linear spaces and $f: X \to Y$ a mapping. We say that f is a generalized distance n preserving property (GDnPP) if

$$||x_1 - y_1, ..., x_n - y_n|| = n$$

implies that

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = n$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. In particular if n = 1, then f is said to satisfy the generalized distance one preserving property (GDOPP).

Definition 3.4. Let X and Y be non-Archimedean n-normed linear spaces and $f: X \to Y$ a mapping. We say that f is n-Lipschitz mapping if there is a K > 0 such that

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le K||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$. The smallest such K is called the n-Lipschitz constant.

Lemma 3.5. ([10]) Let X be non-Archimedean n-normed linear spaces, x_i be an element of a non-Archimedean n-normed spaces X, for every $i \in \{1, ..., n\}$ and $r \in \mathcal{K}$, then $||x_1, ..., x_i, ..., x_j, ..., x_n|| = ||x_1, ..., x_i, ..., x_j + rx_i, ..., x_n||$ for all $x_1, ..., x_n \in X$ and all $1 \le i \ne j \le n$.

Lemma 3.6. Let X and Y be non-Archimedean n-normed linear spaces and $f: X \to Y$ satisfies GDOPP and

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le ||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \le 1$, then f satisfies

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \le 1$.

Proof. If

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| < ||x_1 - y_1, ..., x_n - y_n||,$$

let

$$y_0 = y_1 - ||x_1 - y_1, ..., x_n - y_n||(x_1 - y_1),$$

then

$$||y_0 - y_1, ..., x_n - y_n|| = |||x_1 - y_1, ..., x_n - y_n||(x_1 - y_1), ..., x_n - y_n|| = 1$$
 and

$$||y_0 - x_1, ..., x_n - y_n||$$

$$= ||y_1 - x_1 - ||x_1 - y_1, ..., x_n - y_n||(x_1 - y_1), ..., x_n - y_n||$$

$$= \frac{||(x_1 - y_1), ..., x_n - y_n||}{1 + ||(x_1 - y_1), ..., x_n - y_n||}$$

Hence

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)|| = 1$$

and

$$||f(y_0) - f(x_1), ..., f(x_n) - f(y_n)||$$

$$\leq ||y_0 - x_1, ..., x_n - y_n||$$

$$< 1.$$

On the other hand

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)||$$

$$\leq \max\{||f(y_0) - f(x_1), ..., f(x_n) - f(y_n)||,$$

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)||\}$$

$$< 1.$$

This contradicts the equality

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)|| = 1.$$

Hence

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||$$

for all
$$x_1, ..., x_n, y_1, ..., y_n \in X$$
 with $||x_1 - y_1, ..., x_n - y_n|| \le 1$.

Theorem 3.7. Let X and Y be non-Arichimedean n-normed spaces and $f: X \to Y$ satisfies GDnPP for all $n \in N$, if f is a n-Lipschitz mapping with K = 1:

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| \le ||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$, then f is a generalized n-isometry.

Proof. By Lemma 3.6

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| \le 1$.

In the following, We will show that

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||$$

if $||x_1-y_1,...,x_n-y_n|| > 1$. Suppose, on the contrary, that

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| < ||x_1 - y_1, ..., x_n - y_n||$$

for all $x_1, ..., x_n, y_1, ..., y_n \in X$ with $||x_1 - y_1, ..., x_n - y_n|| > 1$. There exists a positive integer n_0 such that $n_0 < ||x_1 - y_1, ..., x_n - y_n|| \le n_0 + 1$. Let

$$y_0 = y_1 - \frac{\|x_1 - y_1, ..., x_n - y_n\|}{n_0 + 1} (x_1 - y_1),$$

then

$$||y_0 - y_1, ..., x_n - y_n||$$

$$= || - \frac{||x_1 - y_1, ..., x_n - y_n||}{n_0 + 1} (x_1 - y_1), ..., x_n - y_n||$$

$$= n_0 + 1,$$

and

$$||y_{0} - x_{1}, ..., x_{n} - y_{n}||$$

$$= || - (1 + \frac{||x_{1} - y_{1}, ..., x_{n} - y_{n}||}{n_{0} + 1})(x_{1} - y_{1}), ..., x_{n} - y_{n}||$$

$$= \frac{n_{0} + 1}{n_{0} + 1 + ||x_{1} - y_{1}, ..., x_{n} - y_{n}||} ||x_{1} - y_{1}, ..., x_{n} - y_{n}||$$

$$< ||x_{1} - y_{1}, ..., x_{n} - y_{n}||$$

$$\leq n_{0} + 1.$$

Hence

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)|| = n_0 + 1$$

and

$$||f(y_0) - f(x_1), ..., f(x_n) - f(y_n)||$$

$$\leq ||y_0 - x_1, ..., x_n - y_n||$$

$$< n_0 + 1.$$

On the other hand,

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)||$$

$$\leq \max\{||f(y_0) - f(x_1), ..., f(x_n) - f(y_n)||, ||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)||\}$$

$$< n_0 + 1.$$

This contradicts the equality

$$||f(y_0) - f(y_1), ..., f(x_n) - f(y_n)|| = n_0 + 1.$$

Hence

$$||f(x_1) - f(y_1), ..., f(x_n) - f(y_n)|| = ||x_1 - y_1, ..., x_n - y_n||$$

when $||x_1 - y_1, ..., x_n - y_n|| > 1$. So f is a generalized n-isometry. \square

References

- [1] A. D. Alexandrov, Mappings of families of sets, Soviet Math. 11 (1970), 116-120.
- [2] Th. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), 919-925.
- [3] H. Y. Chu, C.-K. Park and W.-K. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl. 289 (2004), 666-672.
- [4] H.-Y. Chu, K. Lee and C.-K. Park, On the Aleksandrov problem in linear n-normed spaces, Nonlinear Anal. 59 (2004), 1001-1011.
- [5] X. Y. Chen and M. M. Song, Characterizations on isometries in linear n-normed spaces, Nonlinear Anal. 72 (2010), 1895-1901.
- [6] G. G. Ding, On isometric extensions and distance one preserving mappings, Taiwanese J. Math. 10(1) (2006), 243-249.
- [7] Y. M. Ma, The Alexandrov problem for unit distance preserving mappings, Acta Math. Sci. **20** (3) (2000), 359-364.
- [8] M. S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal. 69 (2008), 3405-3408.
- [9] J. Choy, H.-Y. Chu and S.-H. Ku, Characterizations on Mazur-Ulam theorem, Nonlinear Anal. 72 (2010), 1291-1297.
- [10] M. Amyari and Gh. Sadeghi, Isometries in non-Archimedean 2-normed spaces, Sringer Veerlag. Berlin. (2009), 13-22.