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1. INTRODUCTION

In this paper, we consider the nonlinear Volterra-Hammerstein integral
equation in three variables of the form

u(z,y,z) = qlr,y,2)+ f(z,y,z;u(z,y, 2))

/ / / (z,y,2;s,m,t;u(s,rt)) dsdrdt (1.1)
+/ / / F (z,y,z;s,rt;u(s,rt))dsdrdt,
o Jo Jo

for (x,y,2) € R3, where Ry = [0,00), ¢ : Ri — E; f Ri x E — E;
F . Ri xE—FE;,V:AxFE— E are supposed to be continuous, in which FE
is a Banach space with norm || and A = {(z,y, 2;5,7,t) € RS : s <z, r <y,
t <z}

Nonlinear integral equations of various types and kinds appear in the math-
ematical description of the applications in other fields of science, such as eco-
nomics, mechanics and physics. Solving such equations and proving the ex-
istence of their solutions have been extensively interested by many authors,
see [1]-[11] and the references given therein. In general, the main results have
been obtained via the fundamental methods in which the fixed point theorems
are often applied.

In [2], using a fixed point theorem of Krasnosel’skii, Avramescu and Vladimi-
rescu have proved the existence of asymptotically stable solutions to the fol-
lowing integral equation

u(t) = q(t) —i—/o K(t,s,u(s))ds + /000 G(t,s,u(s))ds, t € Ry, (1.2)

where the functions given with real values are supposed to be continuous
satisfying suitable conditions.

In case the Banach space E is arbitrary, recently in [8], [9], the existence of
asymptotically stable solutions to the following integral equations

x(t) = q(t)—i—f(t,x(t))—i—/ot V(t,s,a;(s))ds—i—/ooo G(t,s,z(s))ds, t € Ry, (1.3)

or

w(ry) = qley)+ Fyulzy) + /D /0 V (2,9, 5.1, u(s, ) dsdt
—i—/o /0 F (z,y,s,t,u(s,t)) dsdt, (1.4)

(z,y) € RZ, also have been proved by using the fixed point theorem of Kras-
nosel’skii type [7] as follows.
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Theorem 1.1. Let (X,|-|,) be a Fréchet space and let U, C : X — X be two
operators. Assume that

(i) U is a k—-contraction operator, k € [0,1) (depending on n), with respect
to a family of seminorms ||-||,, equivalent with the family ||, ;
(ii) C is completely continuous;
(i) lim €% =0, vpeN.
[al, =00 17l

Then U + C' has a fixed point.

In [6], Lungu and Rus established some results relative to existence, unique-
ness, integral inequalities and data dependence for the solutions of the fol-
lowing functional Volterra-Fredholm integral equation in two variables with
deviating argument in a Banach space by Picard operators technique

u(z,y) = g(z,y, h(u)(x,y)) + /Ox /OyK(az,y,s,t,u(s,t))dsdt, (1.5)
for (z,y) € RZ.

In [10], based on the applications of the Banach fixed point theorem coupled
with Bielecki type norm and the integral inequality with explicit estimates, B.
G. Pachpatte studied some basic properties of solutions of the Fredholm type
integral equation in two variables as follows

a b
u(x,y)—f(x,y)—i—/o /0 g (z,y,s,t,u(s,t), Diu(s,t), Dyu(s,t)) dtds. (1.6)

With the same methods, in [11], the existence, uniqueness and other prop-
erties of solutions of certain Volterra integral and integrodifferential equations
in two variables were considered.

In [1], M.A. Abdou et al. investigated a mixed nonlinear integral equation
of the second kind in n-dimensional. Using the Banach fixed point theorem,
the existence of a unique solution of this equation was proved.

Also applying the Banach fixed point theorem, in [4], El-Borai et al. have
proved the existence of a unique solution of a nonlinear integral equation of
type Volterra-Hammerstein in n-dimensional.

Motivated by the mentioned works as above, we extend the results of [9] to
several dimensions concentrating on three dimensions since this is the first case
where new techniques or ideas are need. Applying Theorem 1.1, under some
suitable conditions, we also get the same results for (1.1) as those for (1.4)
in [9]. The proofs are completed by combination of the arguments in [9],
a condition for the relative compactness of a subset in certain space and the
integral inequalities with explicit estimates (see Lemmas 2.2, 2.3, 3.1 as below).
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The paper consists of three sections. In section 2, the existence of solutions
are proved. In section 3, we present the existence of asymptotically stable
solutions for (1.1). The results obtained here may be considered as the gen-
eralizations of those in [9] and can be useful for seeking the corresponding
results in n variables.

2. THE EXISTENCE RESULT

Let X = C(R3;E) be the space of all continuous functions on R3 to E
which equipped with the numerable family of seminorms

ul,, = sup |u(z,y,2)], n>1.
0<z, y, z<n

Then (X, |-|,) is complete in the metric
o n_|u—v|
d = 2" e
(Uﬂ)) Zn:l 1+ |’LL . v|n

and X is the Fréchet space. Consider in X the other family of seminorms |||,
is defined as follows
Han = ‘u|'yn + ’u‘hn , N Z ]-7

where

‘u|fyn = sSup |U($ay, Z)’7
0<z, y, z<n, o+y+2<7n

lul, = sup e~ hn(ztytz—mm) lu(z,y, 2)],
" 0<x, y, 2<n, a+y+2>n

Yn € (0,n) and h,, > 0 are arbitrary numbers, which is equivalent to |u],, ,
since

e Tyl < lull, < 2w u € n > 1.
Fn(Bn=m) (), < Jlull,, < 21ul,,, Yu € X, Vn > 1

We make the following assumptions.
(A1) g€ X.
(A2) There exists a constant L € [0, 1) such that

|f(x,y,z,u) — f(x,y,z,v)| < L|lu—v|, Yu,v € E, ¥(x,y,2) € Ri.
(A3) There exists a continuous function wy : A — Ry such that
|V (z,y,2z;8,m,t;u) — V (2,9, 2; 8,7, t;0)| <wi(x,y,z;8,1,t) |lu—1v],
V(z,y,z;s,mt) €A, Yu,v € E.

(A4) F is completely continuous such that for all bounded subsets I1, I»
of Ri and for any bounded subset J of F, for all € > 0, there exists
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o> 0, such that V(azl,yl,zl), (332,3/2,22) e I,

|z1 — @] + Y1 — y2| + |21 — 22| <6
— |F(£L’1,y1,21;8,7",t,u) *F(LL‘Q,yQ,ZQ;S,T‘,t,U)‘ <g,

for all (s,r,t,u) € Iy x J.
(As) There exists a continuous function wy : RS — R4 such that for each
bounded subset I of Ri,

/// sup  wa(z,y,z; 8,7, t)dtdrds < oo,
RY  (z,y,2)el

and
|F (x7 y7 Z; 87 T? t; u)‘ S w2<x7 y7 Z; 87 r? t)?
for all (z,y,2;s,7,t;u) € I x R3 x E.

Theorem 2.1. Let (A1) — (As) hold. Then the equation (1.1) has a solution
on Ri.

Proof. The proof consists of four steps.

Step 1. In X, we consider the equation

w(x,y,z) = q(z,y,2) + f(z,y, z;u(z,y,2))

/ / / V(z,y,z; 8,7, tu(s,rt)) dsdrdt,  (2.1)

Lemma 2.2. Let (A1) — (As) hold. Then equation (2.1) has a unique solution
u=E.

Proof. We rewrite (2.1) as follows

u(z,y, z) = du(r,y,2), (v,y,2) € RY, (2.2)

for (z,y,z) € R3.

where
Qu(z,y,2) = q(z,y,2)+ f(z,y,zu(z,y, 2))

/ / / (z,y, 2 8,7t u(s, ) dsdrdt,  (2.3)

for (z,y,2z,u) € R3 x X. By the assumptions (A4s3), (As), we have, for all u,
v e X,
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|¢)u($ Y,z >_ CI)’U(.%' Y,z )|

< [fy, 2 u(@,y, 2)) = f2,y,2,0(2, 9, )|
///\ny,zsrtu(STt))
—V(z,y,z; 8,7 t;0(s,r,t))| dsdrdt
< Llu(z,y,2) —v(z,y,2)] (2.4)

/ / / wi(z,y, z; 8,1, t) |u(s,r,t) —v(s,r,t)| dsdrdt.

Let n € N be fixed. For all z,y,z € [0,n], 0 <z +y+ 2z < 7y, with 4, € (0,n)
chosen later, we have

|(I)U(£L‘ Y,z )—(I)U(JI Y,z )|
S L’Ul’y, —U(l'y, )‘

/ / / wi(z,y, z; 8,7, t) |u(s, r,t) — v(s,rt)| dsdrdt

< Llu—v|, + 3 1m [u — vl,,

= (L+3@mm) |u— vl s (2.5)
where
W1n = sup{wi(x,y,z;s,7,t): (x,y,2;8,1,t) € Ap}, (2.6)
A, = {(z,y,2;8,1t):0<s<zx<n, 0<r<y<n, 0<t<z<n}
So
|Qu — vl < (L+*y731031n) lu—vl,, (2.7)

On the other hand, for all z,y,z € [0,n], z +y + z > 7,, we have
|(I)’LL(£C Y,z )_q)v(aj Y,z )|

< L]u:vy, —’U(ilfy, )|
/ / / wi(z,y, z; 8,7, t) |u(s, r,t) —v(s,rt)| dsdrdt
< Lluteys) — oGy )|+ [ [0 [ Tutsir) = o, dsarar
o Jo Jo

= L|u(z,y,z) —v(z,y,2)| (2.8)

T Py rz
+1n / / / lu(s,r,t) —v(s,r,t)| dsdrdt
o Jo Jo

s+r+t<vyn
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T Yy rz
+/ / / lu(s,r,t) — v(s,r,t)| dsdrdt
o Jo Jo

S+r+t>yn
By the inequality
0 < e rmlEtvtz=m) <1 Ve yzel0n], z+y+2z>m,
with hy, > 0 is also chosen later, we get

|¢’U;<.’L‘, Y, Z) - @U(.’E, Y, z)‘ e_hn(x—‘,—y-',—z_»yn)

< L]u—v\hn

T pry rz
+ Qe @Yz / / / lu(s,r,t) —v(s,r,t)| dsdrdt
0 Jo JO

s+r+t<yn

199

(2.9)

T Yy rz
+ / / / eln(strtt=on) g=hn(str+t=9n) |y (s 1 t) — v(s,r,t)| dsdrdt
o Jo Jo

s+r+t>yn
T Yy rz
< L]ufv\hn+<D1ne_h"(x+y+z_7”) |uv|%/ / /dsdrdt

0o Jo JO
s+r+t<yn

T Yy rz

+|u—v[hn/ / /eh"(”’”””")dsdrdt
0o Jo Jo
s+r+t>yn

= Llu—vf, + Bipe”m@tytEm) UU —vl,, I+ |lu—vl,, IQ] :

On the other hand

T Yy z 1
I, = / / / dsdrdt < / / / dsdrdt = =~3,
o Jo Jo 6

s+r+t<yn s+r+t<vyn
T Y z

I, = ///eh”(“”t_”’")dsdrdt
0 0 0
S+r+t>vn

IN

T Yy [z
/ / / ehn(str+t=m) g o drdt
0 0 0

(2.10)

(2.11)

I (1 _ @*hnw> (1 _ e*’bn?/) (1 — e*hnZ) . (2.12)

h,
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Hence

|(I)u($,y’z) - (I)U(x Y,z )| —hn(z+y+2z—7n)

< Llu— U‘hn + wine” hn(@+y+z=n) [G'Yn lu — U|’Yn
i e 1) () (o)
hn
1 ..
< L]u—v\hn—l—g’yflwm\u— ] h3wln\u vl
1,
= gfynwln]u—v]%—i— L+ — h3 n ) lu—l, . (2.13)
So
1 5. 1.
|Pu — Pvf), < gfy n@in [u— v, + L+h—3w1n lu — vl . (2.14)
n
Consequently,

= |Pu—Pv|, +|Pu—Dv|,,

6

= (L+ %Mln) ju—wl, + <L+ h3 ) lu — vl

S nH«T_yHrw (215)

1 5. 1 .
< (L+7pam) lu—vl, + — V3 lu—vl,, + <L+ h3 > lu — v,

A

where L,, = max {L + %’yf’bdjln, L+ h%@ln} . Choosing h,,, v, such that

1 6(1 —L
3 w1, and 0 < 7y, < min 3¥

hy > ¢ ——
" 1—L To1n

I n i

then we have L, < 1, so ® is a L,— contraction operator on the Fréchet
space (X, ||]/,,), the Lemma 2.2 follows via the known Banach’s contraction
principle. O

By the transformation u = v + £, we can write the equation (1.1) in the
form

v(z,y,2) = Uv(z,y,2) + Co(z,y,2), (x,y,2) €RY, (2.16)

where
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UU($7yaz) = q(ﬂl‘,y,Z)+f(l‘,y,Z;’U(LU,y,Z)—f-f(l‘,y, z))—f(:v,y,z)
+ S LSS V(@ y, z5 s, m (s, r, t)+E(s, 7, 1)) dsdrdt,

Cv(z,y, z ffng (z,y,z; 8,1, t;0(s,7,t) + &(s,7, 1)) dsdrdt,

(2.17)

for (z,y,z2) € Ri.
Step 2. The operator U is a L,—contraction, with respect to a family of
seminorms ||-||,,. Indeed, fixed an arbitrary positive integer n € N. We have
UU(CL’ Y,z )—U@(:U Y, 2)
= f@y,z0(y,2) +&(2,y,2)) — fl2,y,2002,y,2) + (2,9, 2))

/// (z,y,2;8,rt;0(s, 7, t) + &(s,7,1))

—V(x,y,z;8,1m,t;0(s,r,t) + &(s,7,t))] dsdrdt, (2.18)

so using the similar estimates as in the proof of Lemma 2.2, the results are as
follows. For all z,y,z € [0,n], 0 <z +y+ 2 <y,

|Uv(z,y,2) — Ub(z,y, 2)|
< Llv(z,y,2)—9(z,y,2)|

///wlx?/azSTt)lv(srt) (s, r,t)| dsdrdt

This implies that
Uv—Ud|, < (L+7p@1)|v—1],, . (2.20)
For all z,y,z € [0,n], x + y + 2 > n,
Uv(x,y, 2) — Ud(z,y, z)| e "n@ry+z=m)
1 5. . 1 . N
< éfygwln\v—vl <L+ h3 ) lv— 3], . (2.21)
It follows that
1 N -
|Uv - Ud, < < g 1n\v—v[ <L+h3 ) lv— 9], - (2.22)
Consequently
U0 = U, < Ly o =l (2.23)

and then U is a L,—contraction operator with respect to |||,

Step 3. The operator C : X — X is completely continuous. First, let us give
the following condition for the relative compactness of a subset in X.
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Lemma 2.3. Let X = C(R3; E) be the Fréchet space defined as above and A
be a subset of X. For each n € N, let X,, = C([0,n)3; E) be the Banach space
of all continuous functions u : [0,n]®> — E with the norm

lul, = sup |u(z,y,z)|
(z,y,2)€[0,n]?
and An = {uljpns : u € A}. The set A in X is relatively compact if and only
if for each n € N, A,, is equicontinuous in X,, and for every (z,y,z) € [0,n]3,
the set Ap(z,y,2) = {u(x,y,2) : u € A} is relatively compact in E.

The proof of this condition is similar to that in Appendix of [7], it follows
from the Ascoli-Arzela’s Theorem(see [5], p.211).

By the assumptions (A4), (As), using the method as in [9] in which Lemma
2.3 and the arguments of density are applied, the Step 3 is proved. Let us sum
up the main points of this proof as follows.

(i) For any vg € X, let {vn,} be a sequence in X such that lim vy, = vp.
m—00

Let n € N be fixed. For any given € > 0, by

/// sup  wa(x,y,z; 8,7 t)dtdrds < co,
R3 (z,y,2)€[0,n]3

there exists T;, € N(T,, is big enough) such that

/// (x,y, z; 8,7, t)dtdrds
R3 \Bn

< /// sup  wa(x,y, z;8,r, t)dtdrds
Ri\Bn (z,y,2)€[0,n]3

< = Y(x,y,2) €0,n]3, (2.24)

=~ m

where B, = {(s,r,t) € R3 : s> +r? + > < T2}

Put K = {(vm + &) (s,7,t) : (s,7,t) € By, m € Z}, then K is compact
in E. For € > 0 be given as above, by F' is continuous on the compact set
[0,n]% x B, x K, there exists § > 0 such that for every u, v € K, |u — v| < 6,

|F'(2,y, 23 8,7, t;u) — F(x,y,2;8,7,t;0)]
3e

e Y(z,y,2;8,7,t) € [0,n]> x By. (2.25)

By lim  sup |(vm +&)(s,7,t) — (vo + &)(s,r,t)| = 0, there exists mg such
Mmoo (S»r7t)€Bn
that for m > my,

|(Um + &) (s, t) — (vo+ &) (s, 1, t)| <0, V(s,7,t) € By. (2.26)
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This implies that for all (z,y, z , for all m > my,

Com(,,2) = Cuola,y, 2 / / / (2,255,785 (0 + €)(5,7:1)
—F(z,y,2; 8,7, t; (vo + &) (s,r, t))|dsdrdt

+2 /// (z,y,2;8,7,t)dsdrdt
R3 \Bn

3
< ng 7rT3 + 24 (2.27)

so |Cvpy, — Cvgl,, < €, for all m > myg, and the continuity of C' is proved.
(ii) It remains to show that C' maps bounded sets into relatively compact sets.
Let €2 be a bounded subset of X. We have to prove that for n € N,

(a) the set (CQ), is equicontinuous in X,
(b) for every (z,y,2) € [0,n]3, the set
(CQ)n(x,y, 2) = {CV|gn3(2,y,2) : v € Q}
is relatively compact in E.

Let n € N be fixed. Consider any € > 0 given. Then, there exists T}, € N(T, is
big enough) such that (2.24) is valid.
Proof of (a) : For any v € Q, for all (z1,v1,21), (T2, Y2, 22) € [0,n]3,

|CU 331,2/1,21) CU($2,y2722)|

/// |F (x1,y1, 215 8,7, t;0(s, 7, ) + E(s,7, 1)) (2.28)

— F (22,92, 22; 5,7, t;v(s, 7, t) + (s, 7,1))| dtdrds
/// (wo(x1,y1, 2158, 7, t) + walx2, Y2, 22; 8,1, t)) dtdrds.
RS

According to (2.24), (2.28) and the hypothesis (A4), (CQ),, is equicontinuous
on X,.
Proof of (b) : Let {Culj n)3 (2, Y, 2) bk, vk € Q, be asequence in (CQ)y,(z,y, 2).
We have to show that there exists a convergent subsequence of {Cvglg s (7,
Y, 2) }i. Put

S={(v+¢&(z,y,2) :veQ, (z,y,2) € Bp}. (2.29)
Then S is bounded in E and consequently the set F([0,n]® x B, x S) is
relatively compact in F, since F' is completely continuous. The sequence
{F(2,y, 28,7t (vk + &) (s,7,t) )}, belongs to F([0,n]3x By, x S), so there ex-
ists a subsequence {F (:z, Y, 258,15t (v, + &) (s,7,1) )}] and ¥(z,y, z;s,7,t) €
FE, such that

(55,?/,2’;3,7“773 (/Ukj +€)(87T7 t) ) - \Ij(x>y’z;5’7‘7 t)| — 0 as j — 00. (230)
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On the other hand, by (As),
‘F (x,y,z;s,r,t; (vg; + &) (s,7,1) )| < ws(z,y,z;8,1,1),
for all (z,vy,2;s,7,t) € [0,n]® x B,. Hence
‘F (x,y, z; 8,7, (vg; +§)(s,7,1) ) — U (z,y, z; 8,1, t)’

< ‘F (9572/72;3,7"7@ (Ukj +§)(3ara t) )} + |\I/(.%',y,2;8,7", t)‘
< 2‘«02(1”1/;2;8’7315)7 (231)

for all (z,,25,7,t) € [0,n]3 x By, ws(2,y,% ) € L' (By). Using the domi-
nated convergence theorem, (2.30) and (2.31) yield

/// !F (m,y,z;s,r,t; (vg; + &) (s,7,1) ) —U(x,y,2;8,T, t)| dsdrdt — 0,
Bn

as j — oo. It means that, for given € > 0, there exists jo such that for j > jo,
3e
/// ‘F (:B,y,z;s,r,t; (vg; + &) (5,7, 1) ) —U(x,y,z; 8,1, t)‘ dsdrdt < R

Consequently, for j > 7o,

Cop,;(z,y,2 /// (z,y,2;8,1,1) dsdrdt‘

= ‘///]R3 F (z,y,z 8,1t (vk; +&)(s,7,1) ) dsdrdt
T

—/// V(z,y,z;8,7,t) dsdrdt'

’/// F(z,y,2 8,71, (vp, + &) (s,7,1) ) dsdrdt

<
_/// \Il(x7y7z;87r7 t) de'I“dt'
ZL‘ 2 Yy 238,15 b (vk; + &) (s, t)) dsdrdt
R3 \Bn
/// x s Y, 258,17, 15 (vkj —1—5)(3’7«’15) )}dsdrdt
R} \Bn
= +/// Wl y, 28,7, t) dsdrdt < 2o 4 & = ¢ (2.32)
R3 \Bn 4 4
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Note that {Cuvy, (z,y, 2) }j is a subsequence of {Cvy(x,y, 2)};, . Then, (CQ),(z,

y,z) is relatively compact in E. In view of Lemma 2.3, C(Q) is relatively
compact in X. Therefore, C is completely continuous. Step 3 is proved.

Step 4. Finally, we show that Vn € N,

lim 1S _ (2.33)
|'U|n_>oo |U‘n
By the assumption (Ay4), for all (z,y, z) € [0,n]3, we get
[Co(z,y, 2)|

< /// |F (2,9, 2; 5,7, t;0(s,7, ) + £(s,7,1))| dsdrdt
RY

< /// sup  wa(z,y, z;8,r,t) dsdrdt < co. (2.34)
R

3 (zy2)eon]?

It follows that

lim 1% _

o], =0 |v],

(2.35)

By applying Theorem 1.1, the operator U + C' has a fixed point v in X.
Then the equation (1.1) has a solution u = v + £ on R3. The Theorem 2.1 is
proved. O

3. THE ASYMPTOTICALLY STABLE SOLUTIONS

We now consider the asymptotically stable solutions for (1.1) defined as
follows.

Definition 3.1. A function  is said to be an asymptotically stable solution
of (1.1) if for any solution u of (1.1),
lim \u(x,y, z) —ﬁ(x,y,z)| = 0. (31)

x24+y2422—+00

In this section, we assume (A;) — (As) hold. Then, by the Theorem 2.1, the
equation (1.1) has a solution on R?.

On the other hand, if u is a solution of (1.1) then, as step 1 of the proof the
Theorem 2.1, v = u— ¢ satisfies (2.16). This implies that for all (z,y,z) € RY,

v(z,y,2)| < |Uv(z,y,2)| + |Co(z,y,2)], (3:2)
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where Uv(z,y, 2), Cv(x,y,z) as in (2.17). Using (A1) — (A5) and note that
§,y,2) = qlx,y,2) + fz,y,2:8(2, 9, 2))

/ / / (,y, 238,71, (s, 7, 1)) dsdrdt,  (3.3)

we obtain for all (x,y,2) € R3,
lv(z,y, 2)|
T Yy Lz
< Lhtwy 2+ [ [ [ ez ol ldsdrde
0 0 0

+/// wo(x,y, z;8,7,t)dsdrdt. (3.4)
&

It follows that
T Yy [z
v(z,y,2)| < / / / r(x,y, z;s,7,t)|v(s,r, t)|dsdrdt + a(x,y, z), (3.5)
0 0 0

where
a(z,y,z) = ﬁ fffR:i wo(x,y, z;8,7,t)dsdrdt,
(3.6)
(:E Y, z8,T, t) 1 lel(x Y, 28,71, t)

The following properties of the function w(z, y, z) = |v(z,y, 2)| € C(RY;Ry)
are needed for the proof of our main result in this section.

Lemma 3.2. Let w, a € C(R3;Ry) and r € C(A;Ry),
r(z,y,z;8,1,t) < r(z,y,20,0,0) < 7(0,0,0;0,0,0),
v(xvyﬂz;&rvt) €A= {(m,y,z;s,r,t) € Rg— 15 < T, T < y,t < Z}
If
w(z,y,2) <alz,y,z / / / r(x,y, z;s,m, t)w(s,rt) dtdrds,  (3.7)
for all (z,y,2) € Y, then
(1) wlz,y,2) <alz,y,2)

R
+ Z (zy2 (gj)y’ R(z,y, 2 / / / s,r,t) dsdrdt,
k=0 :

(i) w(z,y,2) < a(,y,2)

T Py rz
—|—R(a:,y,z)exp(xyzR(x,y,z))/ / / a(s,r,t) dsdrdt,
0 0 0
(3.8)
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for all (z,y, z) € R, where
R(z,y,z) =r(z,y,20,0,0). (3.9)
Proof. Put

(2., 2 / / / @y, 2 8,7, )w(s, r, t) dsdrdt, (3.10)

Aw(z,y,2) < R(z,y, 2 / / / (s,r,t) dsdrdt, (3.11)

for all w € C(R3;Ry). Combining (3.7), ) and (3.10), we get

w(z,y,2) < a(z,y,z)+ Aw(z,y, )
< a(z,y,2) + A(a+ Aw) (z,y, 2)

then

= a(z,y,2)+ Aa(z,y, 2) + A%w(z,y, 2) (3.12)
n—1
< a(z,y,2)+ Y A a(e,y, 2) + A" w(a, y, 2).
k=0
By induction, the result is
A (e, y, 2)
3.13
< (£(0,0 O)wyz T,Y, 2 / / / (s,r, t)dsdrdt. ( )
(k!)?
Thus
w(z,y, z)
n—1
k=0
« (R( :Uyz
+ R(zx,y, )Z k" (s, t)dsdrdt
k=0
+ (£(0,0, leyz T,Y, 2 / / / (s,r,t)dsdrdt.
(n!)
For Xy >0, Yy > 0, Zy > 0 are given, we have
(R(0,0,0)2y2)" | _ (R(0,0,0)X0YpZp)" (3.15)
(k!)? (k!)® ’ '

for all (z,y,2) € [0,Xo] x [0,Y5] x [0,Zy], Vk € N. The positive series

Zoo (R(0,0,0)X0Y0Z0)*
k=0 " (g3

K converges (via a standard of D’Alembert) and then
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oo (R(0,0,0)zyz)"
S° 0( ( (k!))3y)
dard of Weierstrass). By the continuity of the function (z,y, z) —

converges uniformly on [0, Xo] x [0, Y] % [0, Zy] (via a stan-

(R(0,0,0)zyz)"
(k1?

on [0, Xo| x [0,Yp] x [0, Zp], the sum of the series > 72 % is contin-

uous on [0, Xo] x [0, Yp] x [0, Zp]. On the other hand, because Xy > 0, Yy > 0,

Zy > 0 are arbitrary, the sum of this series is continuous on Ri.

Note that (R(O’OT’L% — 0 as n — oo, for all (z,y,2) € Ri’r, consequently,
(3.14) leads to
w(z,y,z) (3.16)
< a(m,y,z)—f—R(m,y,z)Z( OOOCEyZ / / / (s,r, t)dsdrdt,
k=0

for all (z,y, 2) € R3. The inequality (3.8)(1) follows.
Next, the inequality (3.8)(ii) is also obtained by

o < (B(0,0,0)zy2)" _ (R(0,0,0)zy2)"
- (k!)? - k!

consequently

o0 B i
3 (R(O,(()];'(;gxyz) <3 (3(070}4:(!))93?’/2) = exp(R(0,0,0)zyz), (3.18)
k=0 : k=0

for all (z,y,z) € R3. Therefore

, Y(x,y,2) € R3, (3.17)

w(z,y, 2) (3.19)
T oy oz
< a(z,y,2) + R(x,y, z) exp (R(0,0,0)J:yz)/o /0 /0 a(s,r,t)dsdrdt,
for all (z,y,2) € R}. Lemma 3.2 is proved. O
Using the inequality (3.8) (ii), with
w(z,y,z) = |U T, y,2)|a(z,y, )
= /// wo(x,y, z; 8,1, t) dsdrdt,

r(w,y,z;8,1,t) = 17Lw1(:1c Y, 258,71, 1),
we obtain the following properties of |v(z,y, z)|, for all (z,y,z) € RY :

lv(z,y, 2)| (3.20)

A TR
< a(z,y,2) + R(x,y, z) exp (R(0,0,0)a:yz)/ / / a(s,r,t)dsdrdt,
0o Jo JO
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where

(3.21)

R(z,y, )—T(:C y,zOOO) rwi(2,9,20,0,0),
a(r,y,z) = 1_L fffRi w2 x,y,z s,r,t)dsdrdt.

Then we have the following theorem about the asymptotically stable solutions.

Theorem 3.3. Let (A1) — (As) hold. If

lim [a(:r,y,z) (3.22)

22 4+y2+22—00

T Yy rz
+R(z,y, z)exp (R(0,0,0)zyz) / / / a(s,r, t)dsdrdt} =
0o Jo JO

{ a(z,y,z) = L ffng wo(x,y,z; 8,7, t) dsdrdt,

where

3.23
R(x,y,z)—r(x y,zOOO)—1 L-wi(z,y,20,0,0), (3.23)

then every solution u to (1.1) is an asymptotically stable solution. Further-
more,

lim lu(z,y,2) —&(x,y,2)| = 0. (3.24)

224+y2+22—00

Proof. Combining (3.20) and (3.22), we obtain

2 211H21 ’U(CE, Y, Z)’ =, QhH% |’LL(CL‘,y, ) 5(1: Y,z )| = 0.
ety +z°—+00 T4y +z—+00
Theorem 3.3 is proved. O

Remark 3.4. Assume that there exist the continuous functions &, 1, B2 €
C(R3;Ry), such that

wi(x,y, z;s,1,t) < Ca(x,y, z)p1(s,r, t),
wo(x,y, z; 8,1, t) < Ca(x,y, z)Ba2(s,r, t),

lim a(z,y,z)exp (R(0,0,0)zyz) = 0,
z2+y2+22—+o00

(3.25)
ffng a(z,y, z)drdydz < oo, ffng Ba(s,r,t)dsdrdt < oo,

sup Bi(s,r,t) < C, for all (x,y,2) € R3,
0<s<z, 0<r<y, 0<t<z

with C' always indicating a constant independent of x,y, z, s, 7,t. Then (3.22)
holds.
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Indeed, by (3.23), (3.25), we obtain

1
a(z,y,z) = Zl—L///Rs wa(x,y, z; 8,1, t)dsdrdt
+
c _
a(r,y,z) Ba(s,r,t)dsdrdt
1-L -

= Cha(z,y,2) = 0, as 22 +y> + 22 — +o0. (3.26)

<

R(x,y,z) = r(z,y,2;0,0,0) =

< 1 ?L&(O,O,O)@(az,y, z) < Ca(z,y,z),

1— Lwl(x7y> Z3 07 07 O)

T ry rz
R(x,y,z)exp(R(0,0,0)acyz)/ / / a(s,r,t)dsdrdt
o Jo Jo
T Py rz
< C’ng(:v,y,z)exp(R(0,0,0)xyz)/ / / a(z,y,z)a(s,r,t)dsdrdt

(cc2 / / / a(z,y, 2 srt)dsdrdt) a(z,y, z) exp (R(0,0,0)zyz)
< Calz,y, ) exp (R(0,0,0)zyz) — 0, (3.27)

IN

as 2 + y2 + 22 — +00. Hence
T Yy [z
a(x,y, z) + R(x,y, z) exp (R(0,0,0):J:yz)/ / / a(s,r, t)dsdrdt — 0,
o Jo Jo
as x2 4+ y? + 22 — +o0o. Then (3.22) holds.
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