Nonlinear Functional Analysis and Applications Vol. 19, No. 2 (2014), pp. 213-221

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2014 Kyungnam University Press

GENERALIZATION OF AN INEQUALITY INVOLVING MAXIMUM MODULI OF A POLYNOMIAL AND ITS POLAR DERIVATIVE

N. A. Rather¹ and Suhail Gulzar²

¹Department of Mathematics, University of Kashmir Hazratbal Srinagar, India e-mail: dr.narather@gmail.com

²Department of Mathematics, University of Kashmir Hazratbal Srinagar, India e-mail: sgmattoo@gmail.com

Abstract. Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \le \mu \le n$, be a polynomial of degree n and $D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z)$ denote the polar derivative of P(z) with respect to a point $\alpha \in \mathbb{C}$. It is known that [3] for every real or complex number α with $|\alpha| \ge k^{\mu}$,

$$\max_{|z|=1} |D_{\alpha}P(z)| \geq n \left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right) \max_{|z|=1} |P(z)|.$$

In this paper, we obtain some generalizations of above inequality by extending it to the sth polar derivative.

1. Introduction

Let P(z) be a polynomial of degree n, then

$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|. \tag{1.1}$$

Inequality (1.1) is an immediate consequence of S. Bernstein's Theorem on the derivative of a trigonometric polynomial (for reference, see [8, p.531], [9, p.508] or [10]) and the result is best possible with equality holding for the polynomial $P(z) = az^n$, $a \neq 0$.

⁰Received October 9, 2013. Revised March 31, 2014.

⁰2010 Mathematics Subject Classification: 30A10, 30C10, 30E10.

⁰Keywords: Polynomials, inequalities in the complex domain, polar derivative, Bernstein's inequality.

For polynomials of degree n having all zeros in $|z| \leq 1$, it was proved by Turán [11] that

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{2} \max_{|z|=1} |P(z)|. \tag{1.2}$$

The inequality (1.2) is best possible and become equality for polynomial $P(z) = (z+1)^n$.

As an extension of (1.2) Malik [6] proved that if P(z) is a polynomial of degree n having all its zeros in $|z| \le k$ where $k \le 1$, then

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k} \max_{|z|=1} |P(z)|. \tag{1.3}$$

For the class of polynomials $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$, of degree n having all their zeros in $|z| \le k$ where $k \le 1$, Chan and Malik [5] proved that

$$\max_{|z|=1} |P'(z)| \ge \frac{n}{1+k^{\mu}} \max_{|z|=1} |P(z)|. \tag{1.4}$$

Let $D_{\alpha}P(z)$ denote the polar derivative of a polynomial P(z) of degree n with respect to a point $\alpha \in \mathbb{C}$, then (see [7])

$$D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z).$$

The polynomial $D_{\alpha}P(z)$ is of degree at most n-1 and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha} P(z)}{\alpha} = P'(z)$$

uniformly with respect to z for |z| < R, R > 0.

Now corresponding to a given nth degree polynomial P(z), we construct a sequence of polar derivatives

$$D_{\alpha_1}P(z) = nP(z) + (\alpha_1 - z)P'(z),$$

$$D_{\alpha_s}D_{\alpha_{s-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z) = (n-s+1)\left\{D_{\alpha_{s-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z)\right\} + (\alpha_s - z)\left\{D_{\alpha_{s-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z)\right\}'.$$

The points $\alpha_1, \alpha_2, \dots, \alpha_s$, $s = 1, 2, \dots, n$, may be equal or unequal complex numbers. The sth polar derivative $D_{\alpha_s}D_{\alpha_{s-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z)$ of P(z) is a polynomial of degree at most n-s.

Aziz and Rather [3] extended inequality (1.4) to the polar derivative and proved that if $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$, $1 \le \mu \le n$, is a polynomial of degree n having all its zeros in $|z| \le k$ where $k \le 1$, then for each complex number α with $|\alpha| \ge k^{\mu}$

$$\max_{|z|=1} |D_{\alpha}P(z)| \ge n \left(\frac{|\alpha| - k^{\mu}}{1 + k^{\mu}}\right) \max_{|z|=1} |P(z)|. \tag{1.5}$$

2. Preliminaries

For the proof of our Theorems, we need the following Lemmas. The first Lemma follows by repeated application of Laguerre's theorem [1] or [7, p.52].

Lemma 2.1. If all the zeros of nth degree polynomial lie in circular region C and if none of the points $\alpha_1, \alpha_2, \dots, \alpha_s$ lie in circular region C, then each of the polar derivatives

$$D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_1} P(z), \quad s = 1, 2, \cdots, n-1$$
 (2.1)

has all its zeros in C.

The next Lemma is due to Aziz and Rather [2].

Lemma 2.2. If P(z) is a polynomial of degree n having all its zeros in the closed disk $|z| \le k$, $k \le 1$, then for each complex number α with $|\alpha| \ge k$ and |z| = 1, we have

$$|D_{\alpha}P(z)| \ge n\left(\frac{|\alpha| - k}{1 + k}\right)|P(z)|. \tag{2.2}$$

Lemma 2.3. If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n having all its zeros in $|z| \le k$, $k \le 1$ then

$$\left| \frac{1}{n} \left| \frac{a_{n-1}}{a_n} \right| \le k. \tag{2.3} \right|$$

The above lemma is easy to prove.

Lemma 2.4. If P(z) be a polynomial of degree n having all zeros in the disk $|z| \leq k$ where $k \leq 1$, then for $\alpha_1, \alpha_2, \cdots, \alpha_s \in \mathbb{C}$ with $|\alpha_1| \geq k, |\alpha_2| \geq k, \cdots, |\alpha_s| \geq k, (1 \leq s < n)$, and |z| = 1

$$|D_{\alpha_{s}}D_{\alpha_{s-1}}\cdots D_{\alpha_{2}}D_{\alpha_{1}}P(z)|$$

$$\geq n_{s}\frac{(|\alpha_{1}|-k)(|\alpha_{2}|-k)\cdots(|\alpha_{s}|-k)}{(1+k)^{s}}|P(z)|, \qquad (2.4)$$

where $n_s := n(n-1)(n-2)\cdots(n-s+1)$.

Proof. The result is trivial if $|\alpha_j| = k$ for at least one j where $j = 1, 2, \dots, s$. Therefore, we assume $|\alpha_j| > k$ for all $j = 1, 2, \dots, s$. We shall prove Lemma by principle of mathematical induction. For s = 1 the result follows by Lemma 2.2.

We assume that the result is true for s = q, which means that for |z| = 1, we

have

$$|D_{\alpha_q} D_{\alpha_{q-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z)|$$

$$\geq n_q \frac{(|\alpha_1| - k)(|\alpha_2| - k) \cdots (|\alpha_q| - k)}{(1+k)^q} |P(z)|, \qquad (2.5)$$

where $q \ge 1$ and $n_q = n(n-1)\cdots(n-q+1)$. Now, we shall prove that the Lemma is also true for t = q+1.

Since $D_{\alpha_1}P(z) = (na_n\alpha_1 + a_{n-1})z^{n-1} + \cdots + (na_0 + \alpha_1a_1)$ and $|\alpha_1| > k$, $D_{\alpha_1}P(z)$ is a polynomial of degree n-1. If this is not true, then

$$na_n\alpha_1 + a_{n-1} = 0,$$

which implies

$$|\alpha_1| = \frac{1}{n} \left| \frac{a_{n-1}}{a_n} \right|.$$

By Lemma 2.3, we have

$$|\alpha_1| = \frac{1}{n} \left| \frac{a_{n-1}}{a_n} \right| \le k.$$

But this is the contradiction to the fact $|\alpha| > k$. Hence, $D_{\alpha_1}P(z)$ is a polynomial of degree n-1 and by Lemma 2.1, $D_{\alpha_1}P(z)$ has all its zeros in $|z| \le k$. Therefore, it follows by similar argument as before, $D_{\alpha_2}D_{\alpha_1}P(z)$ must be a polynomial of degree n-2 for $|\alpha_1| > k$, $|\alpha_2| > k$ and all its zeros in $|z| \le k$. Continuing in this way, we conclude $D_{\alpha_q}D_{\alpha_{q-1}}\cdots D_{\alpha_1}P(z)$ is a polynomial of degree n-q for all $|\alpha_j| > k$, $j=1,2,\ldots,q$ and has all zeros in $|z| \le k$. Applying Lemma 2.2 to $D_{\alpha_q}D_{\alpha_{q-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z)$, we get for $|\alpha_{q+1}| > k$,

$$|D_{\alpha_{q+1}} D_{\alpha_{q}} D_{\alpha_{q-1}} \cdots D_{\alpha_{2}} D_{\alpha_{1}} P(z)|$$

$$\geq \frac{(n-q)(|\alpha_{q+1}|-k)}{1+k} |D_{\alpha_{q}} D_{\alpha_{q-1}} \cdots D_{\alpha_{2}} D_{\alpha_{1}} P(z)| \text{ for } |z| = 1.$$
(2.6)

Inequality (2.6) in conjunction with (2.5) gives for |z|=1,

$$|D_{\alpha_{q+1}}D_{\alpha_{q}}D_{\alpha_{q-1}}\cdots D_{\alpha_{2}}D_{\alpha_{1}}P(z)|$$

$$\geq n_{q+1}\frac{(|\alpha_{1}|-k)(|\alpha_{2}|-k)\cdots(|\alpha_{q+1}|-k)}{(1+k)^{q+1}}|P(z)| \text{ for } |z|=1,$$

where $n_{q+1} = n(n-1)\cdots(n-q)$. This shows that the result is true for s = q+1 also. This completes the proof of Lemma 2.4.

We also need the following Lemma due to Aziz and Rather [3].

Lemma 2.5. Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \le \mu \le n$, be a polynomial of degree n having all its zeros in the disk $|z| \le k$ where $k \le 1$ then for every real or complex number α with $|\alpha| \ge k$

$$|D_{\alpha}P(z)| \ge n\left(\frac{|\alpha| - k^{\mu}}{1 + k^{\mu}}\right)|P(z)| \qquad for \quad |z| = 1.$$
 (2.7)

3. Main Results

In this paper, we first obtain the following generalization of inequality (1.5).

Theorem 3.1. Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \le \mu \le n$, be a polynomial of degree n having all its zeros in the disk $|z| \le k$ where $k \le 1$ then for complex numbers α_j , $j = 1, 2, \dots, s$ with $|\alpha_j| > k$ if $j = 1, 2, \dots, \mu - 1$ and $|\alpha_j| \ge k$ if $j = \mu, \mu + 1, \dots, s$ and for |z| = 1

$$|D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z)| \ge n_s \Lambda(\mu, s) |P(z)|, \tag{3.1}$$

where

$$\Lambda(\mu, s) := \begin{cases}
\prod_{j=1}^{s} \left(\frac{|\alpha_{j}| - k^{\mu - j + 1}}{1 + k^{\mu - j + 1}} \right) & \text{if } s \leq \mu, \\
\prod_{j=1}^{\mu} \left(\frac{|\alpha_{j}| - k^{\mu - j + 1}}{1 + k^{\mu - j + 1}} \right) \prod_{j=\mu+1}^{s} \left(\frac{|\alpha_{j}| - k}{1 + k} \right) & \text{if } s > \mu,
\end{cases}$$
(3.2)

where $n_s = n(n-1)(n-2)\cdots(n-s+1)$.

Proof. If $\mu = 1$, then result follows from Lemma 2.4. So, we assume $\mu > 1$.

<u>Case I</u>: If $s \leq \mu$. We prove the result by Principle of Mathematical Induction. Since $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \leq \mu \leq n$, has all its zeros in $|z| \leq k, k \leq 1$, applying Lemma 2.5 to P(z), we get for every $\alpha_1 \in \mathbb{C}$, with $|\alpha_1| > k$,

$$|D_{\alpha_1}P(z)| \ge n\left(\frac{|\alpha_1| - k^{\mu}}{1 + k^{\mu}}\right)|P(z)| \quad \text{for} \quad |z| = 1.$$
 (3.3)

Again, since $D_{\alpha_1}P(z)=na_n\alpha_1z^{n-1}+\mu a_{n-\mu}z^{n-\mu}\cdots+(na_0+\alpha_1a_1)$ is a polynomial of degree n-1 and by Lemma 2.1 $D_{\alpha_1}P(z)$ has all its zeros in $|z|\leq k$. Therefore, applying Lemma 2.5 to $D_{\alpha_1}P(z)$, then for each $\alpha_2\in\mathbb{C}$ with $|\alpha_2|>k$ we obtain for |z|=1,

$$|D_{\alpha_2}D_{\alpha_1}P(z)| \ge (n-1)\left(\frac{|\alpha_2| - k^{\mu-1}}{1 + k^{\mu-1}}\right)|D_{\alpha_1}P(z)|$$

$$\ge n(n-1)\left(\frac{(|\alpha_1| - k^{\mu})(|\alpha_2| - k^{\mu-1})}{(1 + k^{\mu})(1 + k^{\mu-1})}\right)|P(z)|. \tag{3.4}$$

By the similar argument as before, $D_{\alpha_2}D_{\alpha_1}P(z)$ is a polynomial of degree n-2 and has all its zeros in $|z| \leq k$. We assume that the result is true for s = q, that is for every $\alpha_j \in \mathbb{C}$ with $|\alpha_j| > k$, $j = 1, 2, \dots, q$

$$|D_{\alpha_q} \cdots D_{\alpha_2} D_{\alpha_1} P(z)|$$

$$\geq n(n-1) \cdots (n-q+1)$$

$$\times \left(\frac{(|\alpha_1| - k^{\mu})(|\alpha_2| - k^{\mu-1}) \cdots (|\alpha_q| - k^{\mu-q+1})}{(1+k^{\mu})(1+k^{\mu-1}) \cdots (1+k^{\mu-q+1})} \right) |P(z)| \quad \text{for} \quad |z| = 1.$$

Proceeding as before, for every $\alpha_j \in \mathbb{C}$ with $|\alpha_j| > k$, $j = 1, 2, \dots, q$, we conclude $P_q(z) := D_{\alpha_q} \cdots D_{\alpha_2} D_{\alpha_1} P(z)$ is a polynomial of degree n-q and has all its zeros in $|z| \leq k$. Now, $P_q(z) = n_q \prod_{j=1}^q \alpha_j a_n z^{n-q} + \mu^q a_{n-\mu} z^{n-\mu} + \cdots + (\alpha_q(\cdots) + (n-q+1)(\cdots))$. Applying Lemma 2.5 to $P_q(z)$, we obtain for every $\alpha_{q+1} \in \mathbb{C}$, with $|\alpha_{q+1}| > k$ and |z| = 1,

$$|D_{\alpha_{q+1}}P_{q}(z)| \geq (n-q) \left(\frac{|\alpha_{q+1}| - k^{\mu-q}}{1 + k^{\mu-q}}\right) |P_{q}(z)|$$

$$\geq n(n-1) \cdots (n-q+1)(n-q)$$

$$\times \left(\frac{(|\alpha_{1}| - k^{\mu})(|\alpha_{2}| - k^{\mu-1}) \cdots (|\alpha_{q+1}| - k^{\mu-q})}{(1 + k^{\mu})(1 + k^{\mu-1}) \cdots (1 + k^{\mu-q})}\right) |P(z)|.$$

This show the result is true for s = q + 1 also. This completes proof of Case I.

<u>Case II</u>: If $s > \mu$, by Case I, for each $\alpha_j \in \mathbb{C}$ with $|\alpha_j| > k$ $j = 1, 2, \dots, \mu$, we have for |z| = 1,

$$|D_{\alpha_{\mu}} \cdots D_{\alpha_{1}} P(z)|$$

$$\geq n(n-1) \cdots (n-\mu+1)$$

$$\times \left(\frac{(|\alpha_{1}| - k^{\mu})(|\alpha_{2}| - k^{\mu-1}) \cdots (|\alpha_{\mu}| - k)}{(1+k^{\mu})(1+k^{\mu-1}) \cdots (1+k)} \right) |P(z)|. \tag{3.5}$$

Since $P_{\mu}(z) := D_{\alpha_{\mu}} \cdots D_{\alpha_{1}} P(z)$ is a polynomial of degree $n - \mu$. Applying Lemma 2.4 to $D_{\alpha_{\mu}} \cdots D_{\alpha_{1}} P(z)$, we obtain for $\alpha_{\mu+1}, \alpha_{\mu+2}, \cdots, \alpha_{s-1}, \alpha_{s}$ with $|\alpha_{\mu+1}| > k, |\alpha_{\mu+2}| > k \cdots, |\alpha_{s-1}| > k, |\alpha_{s}| > k$

$$\begin{aligned} &|D_{\alpha_{s}}D_{\alpha_{s-1}}\cdots D_{\alpha_{\mu+1}}P_{\mu}(z)|\\ &\geq (n-\mu)\cdots (n-s)\frac{(|\alpha_{s}|-k)(|\alpha_{s-1}|-k)\cdots (|\alpha_{\mu+1}|-k)}{(1+k)^{s-\mu}}|P_{\mu}(z)|\\ &\geq n_{s}\prod_{j=1}^{\mu}\left(\frac{|\alpha_{j}|-k^{\mu-j+1}}{1+k^{\mu-j+1}}\right)\prod_{j=\mu+1}^{s}\left(\frac{|\alpha_{j}|-k}{1+k}\right)|P(z)| \quad \text{for} \quad |z|=1. \end{aligned}$$

If $|\alpha_j| = k$ for some $j = \mu, \mu + 1, \dots, s$, then the result follows trivially. This completes the proof of Theorem 3.1.

If we take $\alpha_1 = \alpha_2 = \cdots = \alpha_s = \alpha$ and divide two sides of inequalities (3.1) and (3.2) by $|\alpha|^s$ and letting $|\alpha| \to \infty$, $j = 1, 2, \dots, s$, we obtain the following generalization of inequality (1.4).

Corollary 3.2. Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \le \mu \le n$, be a polynomial of degree n having all its zeros in the disk $|z| \le k$ where $k \le 1$ then for |z| = 1,

$$|P^{(s)}(z)| \ge n_s \prod_{j=1}^s \frac{1}{1 + k^{\mu - j + 1}} |P(z)| \quad if \quad s \le \mu$$

and

$$|P^{(s)}(z)| \ge \frac{n_s}{(1+k)^{s-\mu}} \prod_{j=1}^{\mu} \left(\frac{1}{1+k^{\mu-j+1}}\right) |P(z)| \quad if \quad s > \mu,$$

where $n_s = n(n-1)(n-2)\cdots(n-s+1)$.

Next as a refinement of Theorem 3.1, we prove:

Theorem 3.3. Let $P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-} z^{n-\nu}$, $1 \le \mu \le n$, be a polynomial of degree n having all its zeros in the disk $|z| \le k$ where $k \le 1$ then for complex numbers α_j , $j = 1, 2, \dots, s$ with $|\alpha_j| > k$ if $j = 1, 2, \dots, \mu - 1$ and $|\alpha_j| \ge k$ if $j = \mu, \mu + 1, \dots, s$ and for |z| = 1,

$$|D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z)|$$

$$\geq n_s \left[\Lambda(\mu, s) |P(z)| + \left\{ |\alpha_1| |\alpha_2| \cdots |\alpha_s| - \Lambda(\mu, s) \right\} m \right], \tag{3.6}$$

where $\Lambda(\mu, s)$ is defined by (3.2), $n_s = n(n-1)(n-2)\cdots(n-s+1)$ and $m = \min_{|z|=k} |P(z)|$.

Proof. We prove Theorem for the case $s > \mu$ and the case $s \le \mu$ follows on same lines. Let

$$m = \min_{|z|=k} |P(z)|.$$

If P(z) has a zero on |z| = k then result follows from Theorem 3.1. Therefore from now onwards we shall assume that P(z) has all its zeros in |z| < k. By Rouché's theorem, the polynomial $F(z) = P(z) - m\beta z^n$ have all its zeros in |z| < k, for every β with $|\beta| < 1$. Thereby applying Theorem 3.1 to F(z)then we get for complex numbers α_j , $j = 1, 2, \dots, s$ with $|\alpha_j| > k$ if j = $1, 2, \dots, \mu - 1$ and $|\alpha_j| \ge k$ if $j = \mu, \mu + 1, \dots, s$ and for |z| = 1

$$|D_{\alpha_{s}}D_{\alpha_{s-1}}\cdots D_{\alpha_{2}}D_{\alpha_{1}}F(z)|$$

$$\geq n_{s}\prod_{j=1}^{\mu} \left(\frac{|\alpha_{j}| - k^{\mu - j + 1}}{1 + k^{\mu - j + 1}}\right)\prod_{j=\nu+1}^{s} \left(\frac{|\alpha_{j}| - k}{1 + k}\right)|F(z)|, \qquad s > \mu_{s}$$

that is

$$\left| D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z) - \beta m n_s \alpha_1 \alpha_2 \cdots \alpha_s z^{n-s} \right|$$

$$\geq n_s \prod_{j=1}^{\mu} \left(\frac{|\alpha_j| - k^{\mu-j+1}}{1 + k^{\mu-j+1}} \right) \prod_{j=\mu+1}^{s} \left(\frac{|\alpha_j| - k}{1 + k} \right) \left\{ |P(z)| - m|\beta| \right\}. \tag{3.7}$$

By Lemma 2.1, the polynomial

$$D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} F(z)$$

$$= D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z) - \beta m n_s \alpha_1 \alpha_2 \cdots \alpha_s z^{n-s}$$

has all its zeros in |z| < k and therefore for $|z| \ge 1$,

$$|D_{\alpha_s}D_{\alpha_{s-1}}\cdots D_{\alpha_2}D_{\alpha_1}P(z)| \ge |\beta|mn_s|\alpha_1||\alpha_2|\cdots|\alpha_s||z|^{n-s}.$$
 (3.8)

Choosing argument of β in the right hand side of inequality (3.7) such that

$$\left| D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z) - \beta m n_s \alpha_1 \alpha_2 \cdots \alpha_s z^{n-s} \right|
= \left| D_{\alpha_s} D_{\alpha_{s-1}} \cdots D_{\alpha_2} D_{\alpha_1} P(z) \right| - \left| \beta |m n_s |\alpha_1| |\alpha_2| \cdots |\alpha_s| |z|^{n-s},$$
(3.9)

which is possible due to inequality (3.8). Using (3.9) in (3.7), we obtain for |z| = 1,

$$\begin{split} &|D_{\alpha_{s}}D_{\alpha_{s-1}}\cdots D_{\alpha_{2}}D_{\alpha_{1}}P(z)|\\ &\geq n_{s}\Bigg[\prod_{j=1}^{\mu}\left(\frac{|\alpha_{j}|-k^{\mu-j+1}}{1+k^{\mu-j+1}}\right)\prod_{j=\mu+1}^{s}\left(\frac{|\alpha_{j}|-k}{1+k}\right)|P(z)|\\ &+|\beta|\Bigg\{|\alpha_{1}||\alpha_{2}|\cdots|\alpha_{s}|-\prod_{j=1}^{\mu}\left(\frac{|\alpha_{j}|-k^{\mu-j+1}}{1+k^{\mu-j+1}}\right)\prod_{j=\mu+1}^{s}\left(\frac{|\alpha_{j}|-k}{1+k}\right)\Bigg\}m\Bigg]. \end{split}$$

Letting $|\beta| \to 1$, we get Theorem 3.3.

If we take $\alpha_1 = \alpha_2 = \cdots = \alpha_s = \alpha$ and divide two sides of inequalities (3.6) by $|\alpha|^s$ and letting $|\alpha| \to \infty$, $j = 1, 2, \cdots, s$, we shall obtain a refinement of Corollary 3.2, we omit the details.

Acknowledgements: The second author is supported by Council of Scientific and Industrial Research, 193 New Delhi, under grant F.No. 09/251(0047)/2012-EMR-I.

References

- A. Aziz, A new proof of Laguerre's theorem about the zeros of polynomials, Bull. Austral. Math. Soc., 33 (1986), 131–138.
- [2] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. Ineq. Appl., 1 (1998), 231-238.
- [3] A. Aziz and N.A. Rather, Inequalities for the polar derivative of a polynomial with restricted zeros, Math. Balk., 17 (2003), 15–28.
- [4] A. Aziz and N.A. Rather, Some Zygmund type L^q inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14–29.
- [5] T.N. Chan and M.A. Malik, On ErdÖs-Lax theorem, Proc. Indian Acad. Sci., 92 (1983), 191–193.
- [6] M.A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc., 1 (1969), 57–60.
- [7] M. Marden, Geometry of Polynomials, Math. Surveys, Amer. Math. Soc., Providence, 1966.
- [8] G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias, *Topics in Polynomials: Extremal Properties, Inequalities*, Zeros, World scientific Publishing Co., Singapore (1994).
- [9] Q.I. Rahman and G. Schmessier, Analytic theory of polynomials, Claredon Press, Oxford, 2002.
- [10] A.C. Schaffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565–579.
- [11] P. Turán, Über die Ableitung von Polynomen, Compos. Math., 7 (1939), 89–95 (German).