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Abstract. Let P(z) = an2™ + 3 )_, an—2""", 1 < <n, be a polynomial of degree n and
D, P(z) =nP(z) + (o — 2) P'(2) denote the polar derivative of P(z) with respect to a point
a € C. It is known that [3] for every real or complex number o with |a| > k¥,

max |[Da P(z)| > n M max |P(z)|
lzl=1' & = 1+ k+ ) 2=t ’

In this paper, we obtain some generalizations of above inequality by extending it to the sth

polar derivative.

1. INTRODUCTION
Let P(z) be a polynomial of degree n, then
max | P'(z)| < m|max\P(z)| . (1.1)
=1 =1

|| 2=
Inequality (1.1) is an immediate consequence of S. Bernstein’s Theorem on
the derivative of a trigonometric polynomial (for reference, see [8, p.531], [9,
p.508] or [10]) and the result is best possible with equality holding for the
polynomial P(z) = az", a # 0.
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For polynomials of degree n having all zeros in |z| < 1, it was proved by
Turén [11] that

n
P’ > — P . 1.2
max |P'(2)| 2 3max|P(z)| (1.2)
The inequality (1.2) is best possible and become equality for polynomial
P(z)=(z+1)"
As an extension of (1.2) Malik [6] proved that if P(z) is a polynomial of
degree n having all its zeros in |z| < k where k < 1, then
n
P’ > — P . 1.3
max |P'(2)] 2 ;- max |P(2)] (13)
For the class of polynomials P(z) = a,z"™ + ZZ:M p—p2" 7,1 < p < m, of
degree n having all their zeros in |z| < k where k < 1, Chan and Malik [5]
proved that

n
P'(z)| > P(2)]. 1.4
max | P'(z)] > g pmax|P(2)| (1.4)

Let D, P(z) denote the polar derivative of a polynomial P(z) of degree n
with respect to a point a € C, then (see [7])

DoP(z) = nP(z) + (a — 2) P'(2).

The polynomial D,P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that

D,P
limg D)

a—00 0%

— P/()

uniformly with respect to z for |z| < R, R > 0.
Now corresponding to a given nth degree polynomial P(z), we construct a
sequence of polar derivatives

Do, P(2) = nP(2) + (a1 — 2)P'(2),

DasDasfl ' "DO@DCHP(Z) = (n — s+ 1) {Das—l e DazDa1P(Z)}
+(as —2){Da,_, - - Doy Doy P(2)}.

The points oy, a0, -+ ,a5, s = 1,2,--- ,n, may be equal or unequal complex
numbers. The sth polar derivative Do Dy, -+ Do, Do, P(2) of P(z) is a
polynomial of degree at most n — s.

Aziz and Rather [3] extended inequality (1.4) to the polar derivative and
proved that if P(z) = a,2" + EZ:M ap—p2"", 1 < pu < n,is a polynomial of
degree n having all its zeros in |z| < k where k < 1, then for each complex
number « with |a| > k*

ax|DaP ()] = n (=) ax|P(2) (1.5)
max o z ~ZMn _— max z . .
|z|=1 14+ k8 ) z1=1
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2. PRELIMINARIES

For the proof of our Theorems, we need the following Lemmas.
The first Lemma follows by repeated application of Laguerre’s theorem [1] or
[7, p.52].

Lemma 2.1. If all the zeros of nth degree polynomial lie in circular region C
and if none of the points a1, ao, -+ , a5 lie in circular region C, then each of
the polar derivatives

Da.Da, Doy P(2), s=1,2,-- ,n—1 (2.1)
has all its zeros in C.
The next Lemma is due to Aziz and Rather [2].

Lemma 2.2. If P(z) is a polynomial of degree n having all its zeros in the
closed disk |z| < k, k < 1, then for each complex number o with |a| > k and
|z| = 1, we have

| Do P(2)] > n (W) |P(2)]- (2.2)

Lemma 2.3. If P(z) = E?:o a;jz’ is a polynomial of degree n having all its
zeros in |z| <k, k <1 then

Gn—1
Qp

< k. (2.3)

1
n
The above lemma is easy to prove.

Lemma 2.4. If P(z) be a polynomial of degree n having all zeros in the
disk |z| < k where k < 1, then for aj, a9, -+ ,as € C with |ai| > k,|as| >
ky--las| >k, (1 <s<mn), and|z| =1
[DaDa,_, -+ DayDa, P(2)]
(laa| = k) (2| = k) - - (Jes| — F)

P 2.4
> n, B Pl (24
where ng :==n(n—1)(n—2)---(n — s+ 1).
Proof. The result is trivial if |o;| = k for at least one j where j =1,2,--- ,s.
Therefore, we assume |oj| > k for all j = 1,2, -, s. We shall prove Lemma by

principle of mathematical induction. For s = 1 the result follows by Lemma
2.2.
We assume that the result is true for s = ¢, which means that for |z| = 1, we
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have

‘Danan e DaszP(Z)’

o Uoal = k)(laz| = k) - (lag| — k)
- (1+k)s

[P(2)]; (2.5)

where ¢ > 1 and ny = n(n—1)---(n — ¢+ 1). Now, we shall prove that the
Lemma, is also true for ¢t = g + 1.

Since D, P(2) = (nanoq + ap—1)2""1 + -+ + (nag + aya;) and |oq| > k,
D,, P(z) is a polynomial of degree n — 1. If this is not true, then

napay + ap—1 = 0,

which implies

1 {apn—1
| = —
n| an
By Lemma 2.3, we have
1 |a,_
n| an

But this is the contradiction to the fact || > k. Hence, D,, P(z) is a polyno-
mial of degree n — 1 and by Lemma 2.1, D,, P(z) has all its zeros in |z| < k.
Therefore, it follows by similar argument as before, D,,D,, P(z) must be a
polynomial of degree n — 2 for |a1| > k, |a2| > k and all its zeros in |z| < k.
Continuing in this way, we conclude Do, Dy, ; - - Da, P(2) is a polynomial
of degree n — ¢ for all || > k, j = 1,2,...,¢q and has all zeros in |z| < k.
Applying Lemma 2.2 to Dy, Da,_; - Day Do, P(2), we get for |agi1| > F,
’Daq#»lDanaqfl “++ Doy Doy P(2)|

(n = a)(|ag1] —F)
- 1+k

|DayDay_y -+ Doy Doy P(2)] for |z] = 1. (2.6)

Inequality (2.6) in conjunction with (2.5) gives for |z| = 1,

|Dayr DagDey 1 - Doy Doy P(2)]
(loa| = K)(laz| = k) - - - (Jagia| = F)

o (1 + ket

Qg+1

>n |P(z)| for |z| =1,

where ngy1 =n(n—1)--- (n—q). This shows that the result is true for s = ¢+1
also. This completes the proof of Lemma 2.4. O

We also need the following Lemma due to Aziz and Rather [3].
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Lemma 2.5. Let P(z) = apz" + > )_ an—2""", 1 < i < n, be a polynomial
of degree n having all its zeros in the disk |z| < k where k < 1 then for every
real or complex number o with |a| > k

’O"_’““>|P(z)| for |z =1. (2.7)

|DoP(z)| >n ( Ty

3. MAIN RESULTS

In this paper, we first obtain the following generalization of inequality (1.5).

Theorem 3.1. Let P(z) = anz"+ZZ:# an—2""", 1 < p < n, be a polynomial
of degree n having all its zeros in the disk |z| < k where k < 1 then for complex
numbers o, j =1,2,--- s with |ogj| >k if j=1,2,--- ,p—1 and |a;| > k if
j=p,u+1,--+ s and for|z| =1

[Day Do,y + - Doy Doy P(2)] 2 15 Mg, )| P(2)], (3.1)
where
s (loy| — kI :
Jl;[1< 1+ kpitl s
A, s) == (3.2)

(ol — k’”“) s (l%’l —k> .
= _ —Jr > ,
jl;ll < 14+ ]f,’L_J—i_l j:l;:[+1 14+ k Zf 5 H

where ng =n(n—1)(n—2)---(n—s+1).
Proof. If © =1, then result follows from Lemma 2.4. So, we assume pu > 1.

Case I: If s < pu. We prove the result by Principle of Mathematical Induction.
Since P(z) = an2"+3_)_, an—2""", 1 < pp < n, has all its zeros in 2] < k, k <
1, applying Lemma 2.5 to P(z), we get for every a; € C, with |a1| > k,

al"’““) P(z)]  for | =1. (33)

Doy P 20 (5]

Again, since Dy, P(2) = naj,o12" 1 + pan—p 2" H -+ (nag + agar) is a poly-
nomial of degree n — 1 and by Lemma 2.1 D,, P(z) has all its zeros in |z| < k.
Therefore, applying Lemma 2.5 to D, P(z), then for each ay € C with |as| > k
we obtain for |z| =1,

ag| — k#1
DasDn P = (0= 1) (12 ) 1D, o)

o] — ao| — kM1
> -y (Yool B pe), s
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By the similar argument as before, D,, D, P(z) is a polynomial of degree n—2
and has all its zeros in |z| < k. We assume that the result is true for s = g,
that is for every a; € C with || > k, j=1,2,--- ,q

[Day =+ Dag Da, P(2)]

>nn—1)---(n—q+1)

— kM — kpmy L — fp—atl
(|061’ )(‘042| ) (|aq| ) ’P(Z)| for |Z| - 1.
(T4 k#)(1+ k#=1y oo (1 4 kp—atl)

Proceeding as before, for every a; € C with |o;| > k, j = 1,2,--- ¢, we
conclude Py(z) := Dq, -+ DayDa, P(2) is a polynomial of degree n — ¢ and
has all its zeros in |z| < k. Now, Py(2) = ng[[j=; ajan2""% + plan_,2"* +
<ot (ag(---)+(n—g+1)(--+)). Applying Lemma 2.5 to P,(z), we obtain for
every ag41 € C, with |ag41| > k and |z| =1,

DaguPia)l 2 (n—0) (2228 17y

>nn—1)---(n—q+1)(n—q)

(loal = k#) (oo — K#71) -+ (Joga| — K#9)
- ( 1 (1+ku)(21+ku—1)...(1 ++];,u—q) ) [P(2)]-

This show the result is true for s = ¢+ 1 also. This completes proof of Case 1.

Case II: If s > p, by Case I, for each a; € C with |aj| > k j =1,2,--- ,p,
we have for |z| =1,

|Dau“'Da1P(Z)|
(loa] = B#)(Jaa] = K1) - (o] = k)
. < 1+ k(14 k1) (1 +Mk) ) |P(2)]. (3.5)

Since P,(z) := Dq, -+ Dq, P(2) is a polynomial of degree n — u. Applying
Lemma 2.4 to Dy, - -- Do, P(2), we obtain for a1, 042, -+ ,as_1, s with
1] >k, lapgol > koo as—1] >k, [as| >k

|DaeDay_y -+ Da#+1Pu(Z)’

(los| = K)(as—1] = F) -~ (Jaut1] — F)
(14 k)s—+

14 —i41 s
|| — kFTH lovj| — K _
Z%H<HW%4j§41+k“W”M'”*

J=1

>n—p)---(n—-s) |Pu(2)]

If |oj| = k for some j = p,pu+1,--- s, then the result follows trivially. This
completes the proof of Theorem 3.1. O
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If we take a; = ag = -+ - = g = a and divide two sides of inequalities (3.1)
and (3.2) by |a|® and letting |a| — 00, j = 1,2,--- s, we obtain the following
generalization of inequality (1.4).

Corollary 3.2. Let P(z) = anz"+zgzu an_2""", 1 < <mn, be a polynomial
of degree n having all its zeros in the disk |z| < k where k <1 then for |z| =1,

. > 1 ,
’P()<Z)|ZHSHW’P(Z)‘ if s<up
J:
and

n
CIATES T § G :
P <Z>\—(1+k)sujHl(HWH)'PW if s>

where ng =n(n —1)(n—2)---(n —s+1).
Next as a refinement of Theorem 3.1, we prove:

Theorem 3.3. Let P(z) = anz"+3 )_, an—2""", 1 < pp <n, be a polynomial
of degree n having all its zeros in the disk |z| < k where k < 1 then for complex
numbers o, j =1,2,--- s with |ogj| >k if j=1,2,--- ,p—1 and |aj| > k if
j:M7M+1’ ) S andfm“ |Z’ = 1a

|Da,Da,_y *++ DayDa, P(2)]

> N

A, s)|P(2)| + {\061!\062! - fos| = Alp, S)}m], (3.6)

where A(p, s) is defined by (3.2), ns = n(n —1)(n—2)---(n — s+ 1) and
m = min|;_ [P(2)].

Proof. We prove Theorem for the case s > p and the case s < p follows on
same lines. Let

m = min|P(z)|.
|z|=k

If P(z) has a zero on |z| = k then result follows from Theorem 3.1. Therefore
from now onwards we shall assume that P(z) has all its zeros in |z| < k. By
Rouché’s theorem, the polynomial F'(z) = P(z) — mf3z"™ have all its zeros in
|z| < k, for every B with |3| < 1. Thereby applying Theorem 3.1 to F'(z)
then we get for complex numbers a;, j = 1,2,--- ;s with |a;| > k if j =
1,2,---,p—1and |oj| > kif j = p,pp+1,--- ,s and for |z| =1

|DasDas—1 o+ Doy Do, F(2)]

p 41 s
o] — kT o — K
Zn5H<1+]{;uj+1 H BEYE [F(2)]; s> W,

j=1 Jj=p+1
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that is

‘D%Dag L Doy Doy P(2) — Bmnsaiag - - a2 °

ﬁ ('Ci fff) f[ ('?'[k’“) (P -miBl}.  (37)

=p+1

By Lemma 2.1, the polynomial

Do, Do, -+ DaszF(z)
=Dy, Do, | DayDoy P(2) — Pmnsaiag - - - sz °

has all its zeros in |z| < k and therefore for |z| > 1,
[DagDay sy -+ Doy Day P(2)] = |Blmns|aa]|az - -fos||z[*7%. (3.8)

Choosing argument of 3 in the right hand side of inequality (3.7) such that

Do, Dy, - DagDcuP(z) — pmnsaiag - a2’
= |Da, Da,_; -+ Day Doy P(2)| = |Blmns|an ||zl - - - |as||2[*7%, (3.9)

which is possible due to inequality (3.8). Using (3.9) in (3.7), we obtain for
2] =1,

|DasDasfl o 'DazDalp(z)|

Iz —it1 s
|aj| — kHTIT oy — &
Zns[H(W j:#H+1 an )P

j=1

14 —i41 s

oy | — k#7IT joj| — K
+’ﬂ’{’a1"0¢2""|as‘—n<w H 1+ & mi.

J=1 J=p+1

Letting |3| — 1, we get Theorem 3.3. O
If we take ay = g = - -+ = s = a and divide two sides of inequalities (3.6)

by |a|® and letting |a| — o0, j = 1,2,-- , s, we shall obtain a refinement of

Corollary 3.2, we omit the details.
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