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Abstract. In this paper, we discuss some related properties and fixed point theorems on

the complete cone metric spaces, and we obtain some new fixed point theorems for different

expanding mappings on the generalized complete cone metric spaces. Especially this paper

omittes the normal cone which is required in the similar studies before, and generalizes some

new results about the related references.

1. Introduction

It is known to us that the fixed point theory is an important branch of non-
linear analisis, and it is applied in many areas such as physics and economics.
Huang and Zhang replace the real numbers by ordering Banach space and
define cone metric spaces, and they also prove some fixed point theorems for
contractive mappings(see reference [1]). [5] generalizes the results of [1] later.
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Scholars study and obtain many fixed point theorems for different contractive
mappings in cone metric spaces, but the normal cone must be used during the
process of proving the results.

In this paper, we give some properties of cone metric space and related fixed
point theorems about the cone metric space. In the complete G−cone metric
space, we obtain several new fixed point theorems for different expanding
mappings. Especially, this paper omits the normal cone which is required
in the similar study before(see references [3] and [8]), and generalizes some
related results(see references [6] and [10]).

2. Preliminaries

Let E always be a real Banach space and P a subset of E. P is called a
cone if

(i) P is closed, nonempty, and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ;

(iii) x ∈ P and − x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y−x ∈ P . We shall write x < y to indicate that x ≤ ybut
x 6= y, while x � y will stand for y − x ∈ intP , intP denotes the interior of
P .

Definition 2.1. ([1]) Let X be a nonempty set. Suppose the mapping d :
X ×X → E satisfies

(i) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2. ([1]) Let (X, d) be a cone metric space. Let {xn} be a se-
quence in X and x ∈ X. If for every c ∈ E with 0 ≤ c, there is N such that for
all n > N , d(xn, x) ≤ c, then {xn} is said to be convergent and {xn} converges
to x, and x is the limit of {xn}. We denote this by

lim
n→∞

xn = x or xn → x (n→∞).

Definition 2.3. ([1]) Let (X, d) be a cone metric space, {xn} be a sequence
in X. If for any c ∈ E with 0 � c, there is N such that for all n,m > N ,
d(xm, xn)� c, then {xn} is called a Cauchy sequence in X.
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Definition 2.4. ([1]) Let (X, d) be a cone metric space, if every Cauchy
sequence is convergent in X, then X is called a complete cone metric space.

Definition 2.5. ([2]) Let X be a nonempty set. Suppose the mapping G :
X ×X ×X → E satisfies:

(i) G(x, y, z) = 0 if x = y = z;
(ii) 0 < G(x, x, y), whenever x 6= y, for all x, y ∈ X;

(iii) G(x, x, y) ≤ G(x, y, z), whenever y 6= z;
(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = ... (Symmetric in all three vari-

ables);
(v) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X.

Then G is called a generalized cone metric on X, and X is called a generalized
cone metric space or more specially a G−cone metric space.

From definition, we always have

1

2
G(x, y, y) ≤ G(x, x, y) ≤ 2G(x, y, y), ∀ x, y ∈ X.

Definition 2.6. ([2]) A G−cone metric space X is symmetric if

G(x, x, y) = G(y, y, x) for all x, y ∈ X.

Definition 2.7. ([2]) Let X be a G−cone metric space and {xn}be a sequence
in X. We say that {xn} is

(i) Cauchy sequence if for every c ∈ E with 0 � c, there is N such that
for all m,n, l > N, G(xm, xn, xl)� c.

(ii) Convergent sequence if for every c in E with0 � c, there is N such
that for all m,n > N , G(xm, xn, x) ≤ c for some fixed x in X. Here x
is called the limit of a sequence {xn} and is denoted by lim

n→∞
xn = x

or xn → x as n→∞.

A G−cone metric space X is said to be complete if every Cauchy sequence
in X is convergent in X.

Lemma 2.8. Let (X, d) be a cone metric space, {xm} and {yn} be sequences
in X such that xm → x, yn → y as m,n → ∞, then d(xm, yn) → d(x, y) as
m,n→∞.

Proof. Let {xm}, {yn} be sequences in X such that xm → x, yn → y as
m,n → ∞. For any c ∈ E with 0 � c, and any k ≥ 1, there is Nk, for all
m,n > Nk, d(xm, x) ≤ c

2k , d(yn, y) ≤ c
2k . We have

d(xm, yn) ≤ d(xm, x) + d(x, yn) ≤ d(xm, x) + d(x, y) + d(y, yn).
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Hence, for all m,n > Nk,

d(xm, yn)− d(x, y) ≤ d(xm, x) + d(y, yn) ≤ c

2k
+

c

2k
=

c

k
.

Similarly

d(x, y)− d(xm, yn) ≤ c

k
.

It implies that c
k − (d(xm, yn)−d(x, y)) and c

k − (d(x, y)−d(xm, yn)) are in P .
For any m and n, xm and yn is always in X, by (i) in Definition 2.1, we have

0 ≤ d(xm, yn), this means d(xm, yn) ∈ P , therefore lim
m,n→∞

d(xm, yn) always

exists as m,n → ∞. Since c
k → 0, as k → ∞ and P is closed, therefore we

have
{d(x, y)− lim

m,n→∞
d(xm, yn)} ∈ P

and
−{d(x, y)− lim

m,n→∞
d(xm, yn)} ∈ P

as k,m, n→∞. Therefore

d(x, y)− lim
m,n→∞

d(xm, yn) = 0,

this means
lim

m,n→∞
d(xm, yn) = d(x, y). �

Lemma 2.9. ([9]) Let (X, d) be a cone metric space, P is a cone in E, for
all x, y, z ∈ E, we have

(i) If x ≤ y, y � z, then x� z;
(ii) If x ≤ y, y ≤ z, then x ≤ z;

(iii) If x� y, y � z, then x� z.

Lemma 2.10. ([2]) Let X be a G−cone metric space, {xm}, {yn} and {zl}
be sequences in X such that xm → x, yn → y, zl → z, then G(xm, yn, zl) →
G(x, y, z), as m,n, l→∞.

3. Main Results

Theorem 3.1. Let X be a cone metric space, P is a cone in E, for all
x, y, g, h ∈ E, if x ≤ g, y � h, then x + y � g + h.

Proof. Given that x ≤ g, y � h, we have g−x ∈ P and h−y ∈ intP . Therefore
g + y− y− x ∈ P and h+ g− g− y ∈ intP . This means (g + y)− (y + x) ∈ P
and (h + g) − (g + y) ∈ intP . Thus x + y ≤ g + y and g + y � g + h. By
Lemma 2.9, we have x + y � g + h. �
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Theorem 3.2. Let X be a cone metric space, P is a cone in E, {xm} and
{ym} be sequences in X, xm → x, ym → y as m → ∞, if for any m, the
sequence of {ym − xm} is convergent in P and {ym − xm} ∈ P , then x ≤ y.

Proof. Since P is a cone in E, therefore P is nonempty, closed and a convex
set in E. Thus, for any convergent sequence in P , the limit of the sequence is
still in P . We have

lim
m→∞

(ym − xm) ∈ P,

lim
m→∞

(ym − xm) = lim
m→∞

(ym − y + y − x + x− xm)

= lim
m→∞

(ym − y) + lim
m→∞

(y − x) + lim
m→∞

(x− xm)

= y − x ∈ P.

Therefore x ≤ y. �

Remark 3.3. The results of Theorem 3.1 and Theorem 3.2 can be generalized
to G−cone metric space. The process of proof is similar and omitted here.

Theorem 3.4. Let (X, d) be a complete cone metric space and T : X → X be
a surjective mapping satisfying the following conditions

d(Tx, Ty) ≥ ad(x, y) + bd(x, Tx) + cd(y, Ty)

for all x, y ∈ X, x 6= y, where a, b, c ≥ 0 and a + b + c > 1. Then T must has
a fixed point in X, especially when a > 1, T has a unique fixed point in X.

Proof. Choose any x0 ∈ X. Since T is a surjective mapping, therefore there
exits x1 ∈ X satisfying Tx1 = x0. Similarly we can obtain a sequence of {xn}
in X such that xn = Txn+1 and xn 6= xn+1 (If there exists a positive integer
i satisfying xi = xi+1, then xi+1 = xi = Txi+1, hence xi+1 is a fixed point of
T ). We have

d(xn−1, xn) = d(Txn, Txn+1)

≥ ad(xn, xn+1) + bd(xn, xn−1) + cd(xn+1, xn),

so,
(1− b)d(xn−1, xn) ≥ (a + c)d(xn, xn+1). (3.1)

If a+c = 0, since a+b+c > 1, therefore 1−b < 0, we have (1−b)d(xn−1, xn) ≤
0. But (a + c)d(xn, xn+1) ≥ 0. Thus a + c 6= 0, b < 1. Using (3.1), we have

d(xn, xn+1) ≤
1− b

a + c
d(xn−1, xn).

Let h = 1−b
a+c , then

h =
1− b

a + c
<

(a + b + c)− b

a + c
= 1.
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Therefore

d(xn, xn+1) ≤ hd(xn−1, xn)⇒ d(xn, xn+1) ≤ hnd(x0, x1).

For any positive integer m > n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ (hn + hn+1 + ... + hm−1)d(x0, x1)

=
hn(1− hm−n)

1− h
d(x0, x1)

≤ hn

1− h
d(x0, x1).

For any c ∈ E with 0 � c. Choose t > 0 such that {c} + Nt(0) ⊆ P , where
Nt(0) = {y : ||y|| < t}. Choose a positive integer N1 such that

hn

1− h
d(x0, x1) ∈ Nt(0),

for all n > N1. Then, hn

1−hd(x0, x1)� c, for all n > N1. Thus

d(xn, xm) ≤ hn

1− h
d(x0, x1)� c

for all m > n > N1. Therefore {xn}is a Cauchy sequence in X. Since (X, d)
is a complete cone metric space, so there exists z ∈ X such that xn → z as
n→∞. Since T is a surjective mapping, there exists g ∈ X such that z = Tg.
We have

d(xn, T g) = d(Txn+1, T g) ≥ ad(xn+1, g) + bd(xn+1, xn) + cd(g, Tg). (3.2)

It follows from (3.2) and the Lemma 2.8, we have (a + c)d(g, Tg) ≤ 0 as
n→∞. Since a+ c 6= 0, so d(g, Tg) = 0, Therefore Tg = g. So g is one of the
fixed points of the mapping T .

While a > 1, suppose T also has a fixed point with u, then Tu = u. We
have

d(g, u) = d(Tg, Tu) ≥ ad(g, u) + bd(g, Tg) + cd(u, Tu).

Therefore

(a− 1)d(g, u) ≤ 0.

Since a−1 > 0, so d(g, u) = 0. Therefore g = u. It implies that Thas a unique
fixed point while a > 1. �
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Theorem 3.5. Let (X, d) be a complete cone metric space and let f : [0, 1)→
(16 , 1] be a nonincreasing and onto function defined by

f(r) =


1, 0 ≤ r ≤

√
3−1
2 ,

1−2r
2r2

,
√
3−1
2 ≤ r < 1√

5
,

1
4+2r ,

1√
5
≤ r < 1.

Suppose that T : X → X is a mapping on X and there exists r ∈ [0, 1) such
that

f(r)d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Since f(r) ≤ 1, hence f(r)d(x, Tx) ≤ d(x, Tx). Using the hypothesis
we have

d(Tx, T 2x) ≤ rd(x, Tx),

so

d(Tnx, Tn+1x) ≤ rnd(x, Tx), (3.3)

for all n ∈ N, x ∈ X. Choose x0 ∈ X, and define a sequence {xn} by xn+1 =
Txn and xn = Tnx0. Let x = x0, by (3.3), we have

d(xn, xn+1) ≤ rnd(x0, x1).

Choose a natural number m, while m > n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ (rn + rn+1 + ... + rm−1)d(x0, x1)

=
rn(1− rm−n)

1− r
d(x0, x1)

≤ rn

1− r
d(x0, x1).

For any c ∈ E with 0 � c. Choose t > 0 such that {c} + Nt(0) ⊆ P , where
Nt(0) = {y : ||y|| < t}. Choose a natural number N1 such that rn

1−rd(x0, x1) ∈
Nt(0), for all n > N1. Therefore rn

1−rd(x0, x1)� c, for all n > N1. Thus

d(xn, xm) ≤ rn

1− r
d(x0, x1)� c,

for all m > n > N1. Therefore {xn} is a Cauchy sequence inX. Since (X, d)
is a complete cone metric space, so there exists z ∈ X such that xn → z as
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n → ∞. Hence for all x ∈ X − {z}, there exists a positive integerN2, while

n > N2, we have d(xn, z) ≤ d(x,z)
4 . Hence

f(r)d(xn, Txn) ≤ d(xn, xn+1) ≤ d(xn, z) + d(xn+1, z)

≤ d(x, z)

4
+

d(x, z)

4
=

d(x, z)

2

≤ 3

4
d(x, z) = d(x, z)− d(x, z)

4
≤ d(x, z)− d(xn, z)

≤ d(xn, x).

Therefor f(r)d(xn, xn+1) ≤ d(xn, x). By the hypothesis, we have d(Tx, Txn) ≤
rd(xn, x). Hence

d(Tx, z) ≤ rd(z, x) (3.4)

as n→∞, for all x 6= z.
Suppose T kz 6= z, for all positive integer k. By (3.4), we have

d(T k+1z, z) ≤ rd(z, T kz) ≤ r2d(z, T k−1z) ≤ ... ≤ rkd(z, Tz).

(1) If 0 ≤ r ≤
√
3−1
2 , then 2r2 + 2r − 1 ≤ 0 and 3r2 < 1. Suppose d(T 2z, z) <

d(T 2z, T 3z), we have

d(Tz, z) ≤ d(Tz, T 2z) + d(T 2z, z) < rd(z, Tz) + d(T 2z, T 3z)

≤ rd(z, Tz) + r2d(z, Tz) = (r + r2)d(z, Tz)

≤ (2r + 2r2)d(z, Tz) ≤ d(z, Tz),

which is a contradiction, since d(Tz, z) = d(z, Tz). Hence the hypothesis that
d(T 2z, z) < d(T 2z, T 3z) is wrong, so we have

f(r)d(T 2z, T 3z) ≤ d(T 2z, T 3z) ≤ d(T 2z, z).

We have

d(Tz, z) ≤ d(Tz, T 3z) + d(T 3z, z) ≤ 2d(Tz, T 3z) + d(T 3z, z)

≤ 2rd(T 2z, Tz) + r2d(Tz, z) ≤ 2r2d(Tz, z) + r2d(Tz, z)

= 3r2d(Tz, z) < d(Tz, z),

which is a contradiction, since d(Tz, z) = d(z, Tz).

(2) If
√
3−1
2 ≤ r < 1√

5
, then 3r2 < 1. Suppose d(T 2z, z) < f(r)d(T 2z, T 3z), we

have

d(Tz, z) ≤ d(Tz, T 2z) + d(T 2z, z) < d(Tz, T 2z) + f(r)d(T 2z, T 3z)

≤ rd(z, Tz) + r2f(r)d(z, Tz) ≤ (2r + 2r2f(r))d(z, Tz) = d(z, Tz),
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which is a contradiction, since d(Tz, z) = d(z, Tz). Hence the hypothesis that
d(T 2z, z) < f(r)d(T 2z, T 3z) is wrong, so we have

d(T 2z, z) ≥ f(r)d(T 2z, T 3z).

We have

d(Tz, z) ≤ d(Tz, T 3z) + d(T 3z, z) ≤ 2d(Tz, T 3z) + d(T 3z, z)

≤ 2rd(T 2z, Tz) + r2d(Tz, z) ≤ 2r2d(Tz, z) + r2d(Tz, z)

= 3r2d(Tz, z) < d(Tz, z),

which is a contradiction, since d(Tz, z) = d(z, Tz).

(3) If 1√
5
≤ r < 1, then f(r)d(x, Tx) ≤ d(x, y) or f(r)d(Tx, T 2x) ≤ d(Tx, y)

for all x, y ∈ X. Since if f(r)d(x, Tx) > d(x, y) and f(r)d(Tx, T 2x) >
d(Tx, y), then we have

d(Tx, x) ≤ d(Tx, y) + d(y, x) ≤ d(Tx, y) + 2d(y, x)

< f(r)d(Tx, T 2x) + 2f(r)d(x, Tx) ≤ rf(r)d(x, Tx) + 2f(r)d(x, Tx)

≤ f(r)(2r + 4)d(x, Tx) = d(Tx, x),

which is a contradiction, since d(Tx, x) = d(x, Tx). Hence for all positive
integer n, we have

f(r)d(x2n, x2n+1) ≤ d(x2n, z)

or
f(r)d(x2n+1, x2n+2) ≤ d(x2n+1, z).

Hence we have
d(x2n+1, T z) ≤ rd(x2n, z)

or
d(x2n+2, T z) ≤ rd(x2n+1, z).

Since xn → z as n → ∞, therefore there exists a subsequence of {xni} such
that xni → Tz as ni →∞, where i is a positive integer. Hence Tz = z, which
is a contradiction with the hypothesis that T kz 6= z for any positive integer k.
By (3.1), (3.2) and (3.3), we obtain that the previous hypothesis that T kz 6= z
for any positive integer k is wrong. Hence T jz = z, for some positive integer
j. Hence z is the fixed point of T j .

Next we show that the fixed point of T j is unique. Suppose that w 6= z is
also a fixed point of T j , then T jw = w. By (3.4), we have

d(T jw, T jz) ≤ rd(T j−1w, T jz) ≤ · · · ≤ rjd(w, T jz) = rjd(T jw, T jz).

Hence (1 − rj)d(T jw, T jz) ≤ 0. Since r ∈ [0, 1), so 1 − rj > 0. Hence
d(T jw, T jz) = 0. Thus we have T jw = T jz. Hence w = z, T j has a unique
fixed point. Since T jz = z, so T j(Tz) = (Tz). Hence Tz is also a fixed point
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of T j . Since the fixed point of T j is unique, therefore Tz = z, z is a fixed
point of T .

Suppose that Talso has a fixed point v, then Tv = v. By (3.4), we have

d(z, v) = d(z, Tv) ≤ rd(z, v).

Hence (1 − r)d(z, v) ≤ 0. Since 0 < 1 − r < 1, therefore d(z, v) = 0. Hence
z = v, T has a unique fixed point. �

Theorem 3.6. Let (X,G) be a complete symmetric G−cone metric space and
T : X → X be a surjective mapping satisfying the following conditions

G(T px, T px, T qy) ≥ hG(x, x, y)

for all x, y ∈ X and h > 1, where p and q are positive integers. Then T has a
unique fixed point.

Proof. Choose any x0 ∈ X. Since T is a surjective mapping, there exists
x1 ∈ X such that Tx1 = x0. Similarly, we obtain a sequence of {xn} such that
xn = Txn+1 in X. Let y0 = x0, y1 = xq, y2 = xp+q, y2n−1 = x(n−1)(p+q)+q,
y2n = xn(p+q), then we have

G(y2n−1, y2n−1, y2n) = G(T py2n, T
py2n, T

qy2n+1)

≥ hG(y2n, y2n, y2n+1).

Hence

G(y2n, y2n, y2n+1) ≤
1

h
G(y2n−1, y2n−1, y2n). (3.5)

Similarly, we have

G(y2n−2, y2n−2, y2n−1)

= G(T qy2n−1, T
qy2n−1, T

py2n) = G(T py2n, T
py2n, T

qy2n−1)

≥ hG(y2n, y2n, y2n−1) = hG(y2n−1, y2n−1, y2n).

Hence

G(y2n−1, y2n−1, y2n) ≤ 1

h
G(y2n−2, y2n−2, y2n−1). (3.6)

It follows from (3.5) and (3.6) that

G(yn, yn, yn+1) ≤
1

h
G(yn−1, yn−1, yn) ≤ · · · ≤ 1

hn
G(y0, y0, y1).
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Let k = 1
h . Since h > 1, therefore 0 < k < 1. Choose a natural number

m > n, we have

G(yn, yn, ym)

≤ G(yn, yn, yn+1) + G(yn+1, yn+1, ym)

≤ G(yn, yn, yn+1) + G(yn+1, yn+1, yn+2) + . . . + G(ym−1, ym−1, ym)

≤ (kn + kn+1 + . . . + km−1)G(y0, y0, y1)

=
kn(1− km−n)

1− k
G(y0, y0, y1)

≤ kn

1− k
G(y0, y0, y1).

For any c ∈ E with 0 � c. Choose t > 0 such that {c} + Nt(0) ⊆ P ,
where Nt(0) = {y : ||y|| < t}. Choose a positive integer N1 such that
kn

1−kG(y0, y0, y1) ∈ Nt(0), for all n > N1. Then, kn

1−kG(y0, y0, y1) � c, for
all n > N1. Thus

G(yn, yn, ym) ≤ kn

1− k
G(y0, y0, y1)� c

for all m > n > N1. Therefore {yn} is a Cauchy sequence in X. Since (X,G)
is a complete cone metric space, so there exists z ∈ X such that yn → z as
n → ∞. Since T is a surjective mapping, so T p is also a surjective mapping.
Hence there exists u ∈ X such that T pu = z. We have

G(z, z, y2n) = G(T pu, T pu, T qy2n+1) ≥ hG(u, u, y2n+1).

Hence hG(u, u, z) ≤ 0 as n→∞. Since h > 1, so G(u, u, z) = 0. Hence u = z.
Since T pu = z, so T pu = z = u. Therefore z is a fixed point of T p. Similarly,
z is also a fixed point of T q. Hence z is the common fixed point of T p and T q.

Now we show that the common fixed point of T p and T q is unique. We
assume that e ∈ X is also a common fixed point of T p and T q, then

G(z, z, e) = G(T pz, T pz, T qe) ≥ hG(z, z, e).

Hence (h − 1)G(z, z, e) ≤ 0. Since h − 1 > 0, so G(z, z, e) = 0. Hence
z = e. Since T pz = z, so T p(Tz) = Tz. Hence Tz is also a fixed point of T p.
Similarly, Tz is also a fixed point of T q. Hence Tz is a common fixed point of
T p and T q. Since the common fixed point of T p and T q is unique, so Tz = z.
Hence z is a fixed point of T and z is also the unique fixed point of T . �

Theorem 3.7. Let (X,G) be a complete G−cone metric space and T : X → X
be a surjective mapping satisfying the following conditions

G(Tx, Ty, Ty) ≥ aG(x, y, y) + bG(x, x, Tx) + cG(y, y, Ty),
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for all x, y ∈ X and x 6= y, where a, b, c ≥ 0 and a+ b+ c > 1. Then T has at
least one fixed point. Especially, while a > 1, T has a unique fixed point.

Proof. Choose any x0 ∈ X. Since T is a surjective mapping, so there exists
x1 ∈ X such that Tx1 = x0. Similarly we can obtain a sequence of {xn} in
X such that xn = Txn+1 andxn 6= xn+1 (if there exists a positive integer i
satisfying xi = xi+1, then xi+1 = xi = Txi+1, hence xi+1 is a fixed point of
T ). We have

G(xn−1, xn, xn)

= G(Txn, Txn+1, Txn+1)

≥ aG(xn, xn+1, xn+1) + bG(xn, xn, xn−1) + cG(xn+1, xn+1, xn). (3.7)

Hence
(1− b)G(xn−1, xn, xn) ≥ (a + c)G(xn, xn+1, xn+1).

Suppose that a + c = 0, since a + b + c > 1, so 1 − b < 0, we have (1 −
b)G(xn−1, xn, xn) ≤ 0. But (a+ c)G(xn, xn+1, xn+1) ≥ 0. Hence a+ c 6= 0, b <
1. It follows from (3.7) that we have

G(xn, xn+1, xn+1) ≤
1− b

a + c
G(xn−1, xn, xn).

Let h = 1−b
a+c , then h = 1−b

a+c < (a+b+c)−b
a+c = 1. Hence

G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn).

Thus we have
G(xn, xn+1, xn+1) ≤ hnG(x0, x1, x1).

For any positive integer m > n, we have

G(xn, xm, xm)

≤ G(xn, xn+1, xn+1) + G(xn+1, xm, xm)

≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2) + · · ·+ G(xm−1, xm, xm)

≤ (hn + hn+1 + · · ·+ hm−1)G(x0, x1, x1)

=
hn(1− hm−n)

1− h
G(x0, x1, x1)

≤ hn

1− h
G(x0, x1, x1).

For any c ∈ E with 0 � c. Choose t > 0 such that {c} + Nt(0) ⊆ P ,
where Nt(0) = {y : ||y|| < t}. Choose a positive integer N1 such that
hn

1−hG(x0, x1, x1) ∈ Nt(0), for all n > N1. Then, hn

1−hG(x0, x1, x1) � c, for
all n > N1. Thus

G(xn, xm, xm) ≤ hn

1− h
G(x0, x1, x1)� c
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for all m > n > N1. Therefore {xn} is a Cauchy sequence in X. Since (X,G)
is a complete cone metric space, so there exists z ∈ X such that xn → z as
n → ∞. Since T is a surjective mapping, so there exists g ∈ X such that
z = Tg. We have

G(Tg, xn, xn) = G(Tg, Txn+1, Txn+1)

≥ aG(g, xn+1, xn+1) + bG(g, g, Tg) + cG(xn+1, xn+1, xn),

by Lemma 2.10, we have

0 ≥ aG(g, Tg, Tg) + bG(g, g, Tg)

≥ aG(g, Tg, Tg) +
b

2
G(g, Tg, Tg)

= (a +
b

2
)G(g, Tg, Tg)

as n → ∞. Since a + b
2 > 0, so G(g, Tg, Tg) = 0. Hence Tg = g, g is a fixed

point of T .
While a > 1, suppose that u is another fixed point of T , then Tu = u. We

have
G(g, u, u) = G(Tg, Tu, Tu)

≥ aG(g, u, u) + bG(g, Tg, Tg) + cG(u, Tu, Tu).

Hence (a− 1)G(g, u, u) ≤ 0. Since a− 1 > 0, hence G(g, u, u) = 0. So g = u.
Hence we have that T has a unique fixed point while a > 1. �
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