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Abstract. If P(z) := > 7_;a; 27 is a polynomial of degree n, having all its zeros in |z| < k,
k > 1, then it was proved by Aziz and Rather [ J. Math. Ineq. Appl., 1 (1998), 231-238 |
that for every real or complex number « with |a| > k,

Ial—k)
P(2)|.
e gllfgl ()]

In this paper, we sharpen above result for the polynomials P(z) of degree n > 3.

max |DaP(2)| > n(

2]

1. INTRODUCTION

Let P(z) :== > 1 a;jz/ be a polynomial of degree n and P'(2) its derivative,
then

max | P'(2)| < nmax|P(2)|. (1.1)
|z|=1 |z|=1
Inequality (1.1) is a famous result due to Bernstein and is best possible with
equality holding for the polynomial P(z) = Az", where A is a complex number.

If we restricted ourselves to a class of polynomial having no zeros in |z| < 1,
then the above inequality can be sharpened. In fact, Erdés conjectured and
later Lax [7] proved that if P(z) # 0 in |z| < 1, then
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2max |P'(2)] < nmax|P(z)|. (1.2)
|z]=1 |z|=1

On the other hand, it was proved by Turdn [10] that if P(z) is a polynomial

of degree n having all its zeros in |z| < 1, then

2max |P'(z)| > nmax|P(z)|. (1.3)
|z|=1 |z|=1
The inequalities (1.2) and (1.3) are also best possible and become equality for
polynomials which have all zeros on |z| = 1.

For the class of polynomials having all the zeros in |z| < k, Malik [8](See
also Govil [6]) proved that if P(z) is a polynomial of degree n having all zeros
lie in |z| < k, then

(1+ k) max |P'(2)] = nmax|P(z)l, if k<1, (1.4)

where as Govil [6] showed that
(1+ k")Tn‘a)l{ |P'(2)] > n‘mla)lc|P(z)], if k>1. (1.5)

Both the inequalities are best possible, with equality in (1.4) holding for
P(z) = (z+ k)™ and in (1.5) the equality holds for the polynomial P(z) =
(2" + k™).

Let DoP(z) denote the polar derivative of the polynomial P(z) of degree
n with respect to a, then
D,P(z) =nP(z) + (a — 2) P'(2).

The polynomial D,P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that

lim LO‘P(Z)

a—00 o
Aziz and Rather [2] extended (1.5) to the polar derivative of a polynomial and
proved the following:

= P'(2).

Theorem 1.1. If the polynomial P(2) = 377 ajz’ has all its zeros in
|z| <k, k> 1, then for every real or complex number o with |a| > k,

ol —k
> . .
max [ Do P(2)]| 2 n( e 1) max | P(2) (1.6)
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2. LEMMAS

We need the following lemmas:

The first lemma is due to Bhat [3].
Lemma 2.1. Let P(z) := Z?:o a;jz’ be a polynomial of degree n. Then for
R>1,

max |P(z)] < R" max |P(z)]

|z|=R |z|=1
B ‘a1|[{(cn+1)(Rn — 1)} B {R:;—i; 1H7 o (2.1)
and
max |P(2)| < B* max |P(2)|
(2.2)

where co = V2 —1, ¢5 = % and for n > 4, ¢, is the unique positive root of
the equation

16n — 8(3n + 2)2% — 1623 + (n + 4)z* =0
lying in (0,1).
Frapper [5] showed that the coefficient ¢,, defined in the above Lemma is
given by

cn::ﬁ W—l for n > 4.

Lemma 2.2. If P(z) := Z?:o ajzj s a polynomial of degree n having all its
zeros in |z| < 1, then for every a with |af > 1,

fil\i}f Do P(2)] > 5{(|oz| — 1)‘1£1|i>1<|P(z)| + (Ja| + 1) |g|u:% |p(2)|}

This lemma is due to Aziz and Dawood [1].

Lemma 2.3. If P(z) := Z?:o a;jz’ is a polynomial of degree n having no zeros
in|z| <1, then for R > 1,
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IIZI‘IE:MIC%|P(Z)|
< (F55) max P () = () min P()
_2|P'(0)] [(Rn -1) (7 1)} (2.3)
(n+1) n
" (R"—1) =n(R—=1)\ ((R"*-1) - (n—2)(R—-1)
2P 0)]|( n(n — 1) ) (n—2)(n—3) )]
forn >3 and
ma [P(2)] < (75 ) max| P(e)] = (F5—) min [P(2) y
APOUE =Y ) AP0 24
(n+1) n n(n—1)

forn =3.

The above result is a special case of a result due to Dewan, Singh and Mir
[4] with k=1.

Remark 2.4. Here we note that for the proof of this result an additional

hypothesis that P(0) # 0 is required. A simple counter example in this case
is P(z) = z".

3. MAIN RESULT

In this paper, we prove the following result which is a refinement as well as
generalization of Theorem 1.1.

Theorem 3.1. Let P(z) := Z?:o a;jzl, anag # 0 be a polynomial of degree
n > 3, having all its zeros in |z| < k, k > 1. Then for every real or complex
number o with |a| > k,

ﬁg}leaP(Z)l
la] — K (k" —=1) .
= 1+ kn N max |P(2)| + 5 min [P(2)]
|an—1| [(K" —1)
+2(n+z)[ n _(k_l)}

ool (D nE =y (1)~ (0= Dk 1)y

n(n—1)
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+ (|a2’k—:k) IH\HIIIJP(Z)’
= (3.1)
1 rflen—1+ 1) (k"1 —1) k3 —1
ko 1[( n—1 >_( n—3 )h(”_l)“ﬁm“?'
forn >3 and
lal = kN f1n3 (k" —1) .
e 0aP ) 2 (T ) 1 s PO+ g i [P
+ 2kn—3 |an 1‘ |:(k -1 —(k‘—l):|
(n+1) n (3.2)
2n3 ’an 2’ 1n (’a‘+ . P
2k n(n—l)(k )}—i—n 2k3 fﬁiri’ ()
1 k—1)(k+1—+2
k2|(n—1)a1—|—2aa2|[( >(\/§ )}
forn =3, where ca =2 —1, c3 = L+ and ¢, := 2% M—l,fornzél.
V2 n—4 n

Proof. Since the polynomial P(z) has all its zeros in |z| < k, k& > 1. If
Q(z) = z2"P(2) be the reciprocal polynomial of P(z). Then the polynomial
Q(%) has all its zeros in |z| > 1. Hence by applying (2.3) of Lemma 2.3 to the
polynomial Q(7), k > 1, we get

max [Q(7)|
(k" +1) (k" 1) oz 2apa| Tk — 1)
< S maxle()l- min [Q()|- (n+1)[ —— —(k— 1)
(k" —1) — n(k ) ("2 =1) = (n—=2)(k—1)
_2|“"—2‘H n(n—1) }_{ (n—2)(n—3) H
This in particular gives
max | P(2)
(k" +1) k" —1) 2an_1| (" — 1)
< g max P =g in |P(:)| - e [———(k-1)]
(k" — 1) —n(k — 1) (k"2 1) — (n—2)(k — 1)
_2“‘”—2‘[{ n(n—1) }_{ (n—2)(n—3) H

Which is equivalent to

2k" (k" —1)
max |P(z)| 2 Gy max P + (g min [P(:)
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* (k:k—fl) (‘::7:11’) [(knn_ - (k- D)
(k"2 —1) — (n—2)(k -
; { (nl)— 2)(n —23)k 1)}]

By hypothesis that the polynomial P(z) has all its zeros in |z| < k, k > 1,
therefore all the zeros of the polynomial T'(z) = P(kz) lie in |z| < 1. As

% > 1 and by applying Lemma 2.2 to the polynomial T'(z), we get

max Do T(2)| > G{ (13- 1) max ()] + (1714 1) min TG},

|z|=1
that is,
ni/lal—k laf + kY .
D,P > — P P . 4
mex 0P () 2 51 (F) e PO+ (B min PG @4

The polynomial P(z) is of degree n > 3 and so D, P(z) is the polynomial of
degree n — 1, where n — 1 > 2, hence by applying (2.1) of Lemma 2.1 to the
polynomial D, P(z), we obtain for k > 1,

max | Dy P(2)|
|z|=k

< n—1
<k max [ Do P(2)] (3.5)

(o1 +1)(E" 1 — 1)} B {kn_?’ -1 H’

n—1 n—3

— |(n — 1)a; + 2cay| H

for n > 3, where ¢, is defined as in the Theorem.

Combining (3.4) and (3.5), we get

B ﬁi}f | Do P(2)|—|(n—1)a1+2aas| H (cn1+1) (k"1 —1) }_{k:”—?’_l }]

n—1 n—3
> H{ (L) max e+ (2L min 1peay )
or,

max | Dy P(2)|
|z|=1

> g{ ( a‘k; k) max |P(2)] + <‘a‘k: k) min IP(z)!} (3.6)

((n—1)a +2aas)| H (cn—1 +;)_(k1”1 ~1) } B { k;i;l H :

1
+ k,n—l
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Again, combining (3.6) and (3.3), we get the desired result. This completes
the proof of inequality (3.1). The proof of the Theorem 3.1 in the case n = 3
follows along the same lines as the proof of (3.1) but instead of inequalities
(2.1) and (2.3), we use inequalities (2.2) and (2.4) respectively. O

Remark 3.2. For £ = 1, Theorem 3.1 provides a refinement of a theorem
proved by Shah [9].

Remark 3.3. For k > 1, and for y > 1, % and @ are both

increasing functions of y and so the expressions
n _ —nlk — n—2 _ —(n— _
H . nl()n — 1()k . } - { . (nl)— 2)((71 —23))% . }]

and ( )
K" —1
S (k1))
0
are always non-negative so that for polynomials of degree n > 3, Theorem 3.1
is an improvement of Theorem 1.1.

Dividing both sides of (3.1) and (3.2) by || and letting |a| — oo, we get
the following;:

Corollary 3.4. Let P(z) = Z?:o ajzl, anag # 0 be a polynomial of degree
n > 3, having all its zeros in |z| < k, k > 1, then for every real or complex
number o with |a| > k,

ma | P'(2)

et P+ min IP<z)|+2(’Z’:11’) (=D )]
el () - (e )
+ g i P
(e ) - ()

forn >3 and

n _ (k" —=1) .
P'(2)| > {k” 3 P — P
{E‘iﬁ“ (2)] > T ﬁl\i’f‘ )+ =53 Eﬁﬁ’ (2)]

|an—1‘ [(kn - 1)

2kn73
+ (n+1) n

~ (k=1)]
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2 n—3 ‘aﬁ_Q, -1 n L : P
2k n(n—1) (k=1) } + 2k3 |IZI\1£llc| )

_ 2l [(k —1)(k+1—-+2)

12 7 } for n =3,

where ¢a = V2 —1, 3 = = and ¢, := % 2Ant2) _ 1, for n > 4.

1]

[10]
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