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Abstract. If P (z) :=
∑n
j=0 ajz

j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≥ 1, then it was proved by Aziz and Rather [ J. Math. Ineq. Appl., 1 (1998), 231-238 ]
that for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n
( |α| − k
kn + 1

)
max
|z|=1

|P (z)|.

In this paper, we sharpen above result for the polynomials P (z) of degree n ≥ 3.

1. Introduction

Let P (z) :=
∑n

j=0 ajz
j be a polynomial of degree n and P ′(z) its derivative,

then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

Inequality (1.1) is a famous result due to Bernstein and is best possible with
equality holding for the polynomial P (z) = λzn, where λ is a complex number.

If we restricted ourselves to a class of polynomial having no zeros in |z| < 1,
then the above inequality can be sharpened. In fact, Erdös conjectured and
later Lax [7] proved that if P (z) 6= 0 in |z| < 1, then
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2 max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.2)

On the other hand, it was proved by Turán [10] that if P (z) is a polynomial
of degree n having all its zeros in |z| ≤ 1, then

2 max
|z|=1

|P ′(z)| ≥ nmax
|z|=1

|P (z)|. (1.3)

The inequalities (1.2) and (1.3) are also best possible and become equality for
polynomials which have all zeros on |z| = 1.

For the class of polynomials having all the zeros in |z| ≤ k, Malik [8](See
also Govil [6]) proved that if P (z) is a polynomial of degree n having all zeros
lie in |z| ≤ k, then

(1 + k) max
|z|=1

|P ′(z)| ≥ nmax
|z|=1

|P (z)|, if k ≤ 1, (1.4)

where as Govil [6] showed that

(1 + kn) max
|z|=1

|P ′(z)| ≥ nmax
|z|=1

|P (z)|, if k ≥ 1. (1.5)

Both the inequalities are best possible, with equality in (1.4) holding for
P (z) = (z + k)n and in (1.5) the equality holds for the polynomial P (z) =
(zn + kn).

Let DαP (z) denote the polar derivative of the polynomial P (z) of degree
n with respect to α, then

DαP (z) = nP (z) + (α− z)P ′(z).
The polynomial DαP (z) is of degree at most n − 1 and it generalizes the
ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

Aziz and Rather [2] extended (1.5) to the polar derivative of a polynomial and
proved the following:

Theorem 1.1. If the polynomial P (z) :=
∑n

j=0 ajz
j has all its zeros in

|z| ≤ k, k ≥ 1, then for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n
( |α| − k
kn + 1

)
max
|z|=1

|P (z)|. (1.6)
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2. Lemmas

We need the following lemmas:

The first lemma is due to Bhat [3].

Lemma 2.1. Let P (z) :=
∑n

j=0 ajz
j be a polynomial of degree n. Then for

R > 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|

− |a1|
[{(cn + 1)(Rn − 1)

n

}
−
{Rn−2 − 1

n− 2

}]
, n > 2

(2.1)

and

max
|z|=R

|P (z)| ≤ R2 max
|z|=1

|P (z)|

− |a1|
{(R− 1)(R+ 1−

√
2)√

2

}
, n = 2,

(2.2)

where c2 =
√

2 − 1, c3 = 1√
2
and for n ≥ 4, cn is the unique positive root of

the equation

16n− 8(3n+ 2)x2 − 16x3 + (n+ 4)x4 = 0

lying in (0, 1).

Frapper [5] showed that the coefficient cn defined in the above Lemma is
given by

cn := 2n
n−4

√
2(n+2)
n − 1 for n ≥ 4.

Lemma 2.2. If P (z) :=
∑n

j=0 ajz
j is a polynomial of degree n having all its

zeros in |z| ≤ 1, then for every α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≥ n

2

{
(|α| − 1) max

|z|=1
|P (z)|+ (|α|+ 1) min

|z|=1
|P (z)|

}
.

This lemma is due to Aziz and Dawood [1].

Lemma 2.3. If P (z) :=
∑n

j=0 ajz
j is a polynomial of degree n having no zeros

in |z| ≤ 1, then for R ≥ 1,
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max
|z|=R

|P (z)|

≤
(Rn + 1

2

)
max
|z|=1

|P (z)| −
(Rn − 1

2

)
min
|z|=1
|P (z)|

− 2|P ′(0)|
(n+ 1)

[(Rn − 1)

n
− (R− 1)

]
− 2|P ′′(0)|

[((Rn−1)− n(R−1)

n(n− 1)

)
−
((Rn−2−1)− (n−2)(R−1)

(n− 2)(n− 3)

)]
(2.3)

for n > 3 and

max
|z|=R

|P (z)| ≤
(Rn + 1

2

)
max
|z|=1

|P (z)| −
(Rn − 1

2

)
min
|z|=1
|P (z)|

− 2|P ′(0)|
(n+ 1)

[(Rn − 1)

n
− (R− 1)

]
− 2|P ′′(0)|
n(n− 1)

(R− 1)n
(2.4)

for n = 3.

The above result is a special case of a result due to Dewan, Singh and Mir
[4] with k=1.

Remark 2.4. Here we note that for the proof of this result an additional
hypothesis that P (0) 6= 0 is required. A simple counter example in this case
is P (z) = zn.

3. Main Result

In this paper, we prove the following result which is a refinement as well as
generalization of Theorem 1.1.

Theorem 3.1. Let P (z) :=
∑n

j=0 ajz
j, ana0 6= 0 be a polynomial of degree

n ≥ 3, having all its zeros in |z| ≤ k, k ≥ 1. Then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|DαP (z)|

≥ n
( |α| − k

1 + kn

){
max
|z|=1

|P (z)|+ (kn − 1)

2kn
min
|z|=k

|P (z)|

+ 2
|an−1|
(n+ 1)

[(kn − 1)

n
− (k − 1)

]
+ 2|an−2|

[((kn − 1)− n(k − 1)

n(n− 1)

)
−
((kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

)]}
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+ n
(|α|+ k)

2kn
min
|z|=k

|P (z)|

+
1

kn−1

[((cn−1 + 1)(kn−1 − 1)

n− 1

)
−
(kn−3 − 1

n− 3

)]
|(n− 1)a1 + 2αa2|

(3.1)

for n > 3 and

max
|z|=1

|DαP (z)| ≥ n
( |α| − k

1 + kn

){
kn−3 max

|z|=1
|P (z)|+ (kn − 1)

2k3
min
|z|=k

|P (z)|

+ 2kn−3
|an−1|
(n+ 1)

[(kn − 1)

n
− (k − 1)

]
+ 2kn−3

|an−2|
n(n− 1)

(k − 1)n
}

+ n
(|α|+ k)

2k3
min
|z|=k

|P (z)|

+
1

k2
|(n− 1)a1 + 2αa2|

[(k − 1)(k + 1−
√

2)√
2

]
(3.2)

for n = 3, where c2 =
√

2− 1, c3 = 1√
2
and cn := 2n

n−4

√
2(n+2)
n − 1, for n ≥ 4.

Proof. Since the polynomial P (z) has all its zeros in |z| ≤ k, k ≥ 1. If
Q(z) = znP (1z ) be the reciprocal polynomial of P (z). Then the polynomial
Q( zk ) has all its zeros in |z| ≥ 1. Hence by applying (2.3) of Lemma 2.3 to the
polynomial Q( zk ), k ≥ 1, we get

max
|z|=k

|Q(
z

k
)|

≤ (kn + 1)

2
max
|z|=1

|Q(
z

k
)|− (kn − 1)

2
min
|z|=1
|Q(

z

k
)|− 2|an−1|

(n+ 1)

[(kn − 1)

n
−(k − 1)

]
− 2|an−2|

[{(kn − 1)− n(k − 1)

n(n− 1)

}
−
{(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

}]
.

This in particular gives

max
|z|=1

|P (z)|

≤ (kn + 1)

2kn
max
|z|=k

|P (z)|− (kn − 1)

2kn
min
|z|=k

|P (z)|− 2|an−1|
(n+ 1)

[(kn − 1)

n
−(k−1)

]
− 2|an−2|

[{(kn − 1)− n(k − 1)

n(n− 1)

}
−
{(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

}]
.

Which is equivalent to

max
|z|=k

|P (z)| ≥ 2kn

(kn + 1)
max
|z|=1

|P (z)|+ (kn − 1)

(kn + 1)
min
|z|=k

|P (z)|



248 Gulshan Singh and Irshad Ahmad

+
4kn

(kn + 1)

|an−1|
(n+ 1)

[(kn − 1)

n
− (k − 1)

]
+

4kn

(kn + 1)
|an−2|

[{(kn − 1)− n(k − 1)

n(n− 1)

}
−
{(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

}]
.

(3.3)

By hypothesis that the polynomial P (z) has all its zeros in |z| ≤ k, k ≥ 1,
therefore all the zeros of the polynomial T (z) = P (kz) lie in |z| ≤ 1. As
|α|
k ≥ 1 and by applying Lemma 2.2 to the polynomial T (z), we get

max
|z|=1

|Dα
k
T (z)| ≥ n

2

{(
|α
k
| − 1

)
max
|z|=1

|T (z)|+
(
|α
k
|+ 1

)
min
|z|=1
|T (z)|

}
,

that is,

max
|z|=k

|DαP (z)| ≥ n

2

{( |α| − k
k

)
max
|z|=k

|P (z)|+
( |α|+ k

k

)
min
|z|=k

|P (z)|
}
. (3.4)

The polynomial P (z) is of degree n > 3 and so DαP (z) is the polynomial of
degree n − 1, where n − 1 > 2, hence by applying (2.1) of Lemma 2.1 to the
polynomial DαP (z), we obtain for k ≥ 1,

max
|z|=k

|DαP (z)|

≤ kn−1 max
|z|=1

|DαP (z)|

− |(n− 1)a1 + 2αa2|
[{(cn−1 + 1)(kn−1 − 1)

n− 1

}
−
{kn−3 − 1

n− 3

}]
,

(3.5)

for n > 3, where cn is defined as in the Theorem.

Combining (3.4) and (3.5), we get

kn−1 max
|z|=1

|DαP (z)|−|(n−1)a1+2αa2|
[{(cn−1+1)(kn−1−1)

n− 1

}
−
{kn−3−1

n− 3

}]
≥ n

2

{( |α| − k
k

)
max
|z|=k

|P (z)|+
( |α|+ k

k

)
min
|z|=k

|P (z)|
}

or,

max
|z|=1

|DαP (z)|

≥ n

2

{( |α| − k
kn

)
max
|z|=k

|P (z)|+
( |α|+ k

kn

)
min
|z|=k

|P (z)|
}

+
1

kn−1
|(n−1)a1+2αa2|

[{(cn−1+1)(kn−1−1)

n− 1

}
−
{kn−3−1

n− 3

}]
.

(3.6)
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Again, combining (3.6) and (3.3), we get the desired result. This completes
the proof of inequality (3.1). The proof of the Theorem 3.1 in the case n = 3
follows along the same lines as the proof of (3.1) but instead of inequalities
(2.1) and (2.3), we use inequalities (2.2) and (2.4) respectively. �

Remark 3.2. For k = 1, Theorem 3.1 provides a refinement of a theorem
proved by Shah [9].

Remark 3.3. For k > 1, and for y > 1, [(ky−1)−y(k−1)]
y(y−1) and (ky−1)

y are both

increasing functions of y and so the expressions[{(kn − 1)− n(k − 1)

n(n− 1)

}
−
{(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

}]
and [(kn − 1)

n
− (k − 1)

]
are always non-negative so that for polynomials of degree n ≥ 3, Theorem 3.1
is an improvement of Theorem 1.1.

Dividing both sides of (3.1) and (3.2) by |α| and letting |α| → ∞, we get
the following:

Corollary 3.4. Let P (z) =
∑n

j=0 ajz
j, ana0 6= 0 be a polynomial of degree

n ≥ 3, having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|P ′(z)|

≥ n

1 + kn

{
max
|z|=1

|P (z)|+ (kn − 1)

2kn
min
|z|=k

|P (z)|+2
|an−1|
(n+ 1)

[(kn−1)

n
−(k−1)

]
+ 2|an−2|

[((kn − 1)− n(k − 1)

n(n− 1)

)
−
((kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)

)]}
+

n

2kn
min
|z|=k

|P (z)|

+
2|a2|
kn−1

[((cn−1 + 1)(kn−1 − 1)

n− 1

)
−
(kn−3 − 1

n− 3

)]
for n > 3 and

max
|z|=1

|P ′(z)| ≥ n

1 + kn

{
kn−3 max

|z|=1
|P (z)|+ (kn − 1)

2k3
min
|z|=k

|P (z)|

+ 2kn−3
|an−1|
(n+ 1)

[(kn − 1)

n
− (k − 1)

]
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+ 2kn−3
|an−2|
n(n− 1)

(k − 1)n
}

+
n

2k3
min
|z|=k

|P (z)|

+
2|a2|
k2

[(k − 1)(k + 1−
√

2)√
2

]
for n = 3,

where c2 =
√

2− 1, c3 = 1√
2
and cn := 2n

n−4

√
2(n+2)
n − 1, for n ≥ 4.
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