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Abstract. In this paper, we study the existence and uniqueness of solutions for the neutral

fractional integrodifferential equations with fractional integral boundary conditions by using

fixed point theorems. The fractional derivative considered here is in the Caputo sense.

Examples are provided to illustrate the results.

1. Introduction

The subject of fractional calculus has been receiving a great deal of attention
from many researchers and scientists during the past few decades. This is
mainly due to the fact that it provides an excellent tool in the modelling of
dynamical systems which arise in science and engineering. For an extensive
collection of such results, one can refer [15, 20, 21, 25, 26].

In fact, fractional differential equations are considered as an alternative
model to nonlinear differential equations [12]. The most important advantage
of using them is their non-local property. It is well known that the integer
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order differential operator is a local operator but the fractional order differ-
ential operator is non-local. This means that the future state of a system
depends not only on its current state but also upon all its past states. This is
probably the most relevant feature for making this fractional tool useful from
an applied standpoint and interesting from a mathematical standpoint. They
appear naturally in control theory of dynamical systems, fluid flow, chemical
physics, rheology, dynamical processes in self-similar and porous structures,
viscoelasticity, optics and signal processing, electrical networks, electrochem-
istry of corrosion and so on. For some recent contributions on fractional initial
value problems, see [2, 3, 9, 10, 11, 18, 32].

In recent years, boundary value problems of fractional differential equations
involving a variety of boundary conditions have been investigated by several
researchers [1, 6, 14, 19, 22, 29, 30]. In particular, integral boundary conditions
have various applications in applied fields such as blood flow problems, thermo-
elasticity, chemical engineering, underground water flow, cellular systems, heat
transmission, plasma physics, population dynamics and so forth. For a detailed
description of these boundary conditions, one can refer the papers [7, 13, 17,
24, 27, 28]. Also integrodifferential equations arise in many engineering and
scientific disciplines. The recent results of fractional boundary value problems
with integrodifferential equations can be found in [4, 5, 8, 31] and the references
therein.

In the first part of this paper, we discuss the existence and uniqueness of
solutions to the nonlinear neutral fractional boundary value problem

CDq
0+[x(t)− g(t, x(t))] = f(t, x(t)), t ∈ [0, 1], 0 < q ≤ 1,

x(0) = αIpx(η), 0 < η < 1,

 (1.1)

where CDq
0+ denotes the Caputo fractional derivative of order q. The function

f : [0, 1]×R→ R is continuous, g : [0, 1]×R→ R is continuously differentiable.

Here α ∈ R is such that α 6= Γ(p+1)
ηp and Ip, 0 < p < 1, is the Riemann-Liouville

fractional integral of order p. The results generalise those of [23].

In the second part, we study the existence and uniqueness of solutions to
the nonlinear neutral fractional integrodifferential boundary value problem

CDq
0+[x(t)− g(t, x(t))] = f

(
t, x(t),

∫ t
0 k(t, s, x(s))ds

)
,

t ∈ [0, 1], 0 < q ≤ 1,

x(0) = αIpx(η), 0 < η < 1,

 (1.2)

where the functions f : [0, 1]× R× R→ R, k : Ω× R→ R are continuous, g :
[0, 1]×R→ R is continuously differentiable with Ω = {(t, s) : 0 ≤ s < t ≤ 1} .
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The paper is organized as follows: In Section 2, we give some preliminary
results. In Section 3, we discuss the existence and uniqueness results for
(1.1) by using Krasnoselskii’s, Leray-Schauder fixed point theorems and the
Banach contraction principle respectively. The nonlinear neutral fractional
integrodifferential equation (1.2) is considered in Section 4 where the existence
and uniqueness results are studied using the same technique as in Section 3.
Examples are also provided to illustrate the main results. To the best of
the authors’ knowledge, no paper has considered the existence of solutions to
the nonlinear neutral fractional differential equation with fractional integral
boundary conditions.

2. Preliminaries

Let us recall some basic definitions of fractional calculus [20].

Definition 2.1. The Riemann-Liouville fractional integral of a function f ∈
L1(R+) of order q is defined as

Iq0+f(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds, q > 0, (2.1)

provided the integral exists.

Definition 2.2. The Caputo fractional derivative of order q is defined as

CDq
0+f(t) =

1

Γ(n− q)

∫ t

0
(t− s)n−q−1f (n)(s)ds, n− 1 < q ≤ n, (2.2)

where the function f(t) has absolutely continuous derivatives upto order (n−
1). In particular, if 0 < q ≤ 1,

CDq
0+f(t) =

1

Γ(1− q)

∫ t

0

f ′(s)

(t− s)q
ds,

where f ′(s) = Df(s) = df(s)
ds .

Lemma 2.3. ([1]) Let p, q ≥ 0, f ∈ L1[a, b]. Then IpIqf(t) = Ip+qf(t) =
IqIpf(t) and cDqIqf(t) = f(t), for all t ∈ [a, b].

3. Nonlinear neutral equations

Definition 3.1. A function x(t) ∈ C([0, 1],R) is said to be a solution of (1.1)
if it satisfies the equation

CDq[x(t)− g(t, x(t))] = f(t, x(t)), t ∈ [0, 1]
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and the boundary condition

x(0) = αIpx(η), 0 < η < 1.

To study the nonlinear problem (1.1), we first consider the linear problem
and obtain its solution.

Lemma 3.2. Let α 6= Γ(p+1)
ηp . Then, for given f ∈ C([0, 1],R), g ∈ C1([0, 1],R),

the solution of the fractional differential equation

CDq[x(t)− g(t)] = f(t), 0 < q ≤ 1, (3.1)

subject to the boundary condition

x(0) = αIpx(η) (3.2)

is given by

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− Γ(p+ 1)

Γ(p+ 1)− αηp
g(0) + g(t) +

αΓ(p+ 1)

Γ(p+ 1)− αηp

×
(∫ η

0

(η − s)p−1

Γ(p)
g(s)ds+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s)ds

)
. (3.3)

Proof. Suppose that x is a solution of (1.1), then from [20], we have, for some
constant c0 ∈ R,

x(t) = c0 − g(0) + g(t) + Iqf(t). (3.4)

Taking Riemann-Liouville fractional integral of order p on both sides of (3.4),
we get

Ipx(t) =

∫ t

0

(t− s)p−1

Γ(p)
(c0 − g(0) + g(s) + Iqf(s)) ds

=
c0

Γ(p+ 1)
tp − g(0)

Γ(p+ 1)
tp + Ipg(t) + IpIqf(t).

Using Lemma 2.3, we have

Ipx(η) =
c0

Γ(p+ 1)
ηp − g(0)

Γ(p+ 1)
ηp + Ipg(η) + Ip+qf(η). (3.5)

Using (3.5) in (3.2), we have

c0 =
αΓ(p+ 1)

Γ(p+ 1)− αηp

(
− g(0)

Γ(p+ 1)
ηp + Ipg(η) + Ip+qf(η)

)
.
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Substituting the value of c0 in (3.4), we get

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds− Γ(p+ 1)

Γ(p+ 1)− αηp
g(0) + g(t)

+
αΓ(p+ 1)

Γ(p+ 1)−αηp

(∫ η

0

(η−s)p−1

Γ(p)
g(s)ds+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s)ds

)
.

�

3.1. Existence and Uniqueness Results. Let C = C([0, 1],R) be the Ba-
nach space of all continuous functions from [0, 1]→ R endowed with the norm
defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}. In view of Lemma 3.2, we transform
(1.1) as

x = F (x), (3.6)

where F : C([0, 1],R)→ C([0, 1],R) is given by

(Fx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− Γ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0))

+g(t, x(t)) +
αΓ(p+ 1)

Γ(p+ 1)− αηp

(∫ η

0

(η−s)p−1

Γ(p)
g(s, x(s))ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s, x(s))ds

)
, t ∈ [0, 1]. (3.7)

Observe that the problem (1.1) has solutions if the operator equation (3.6)
has fixed points.

Assume that the following conditions hold:

(A1) The function f : [0, 1] × R → R is continuous, g : [0, 1] × R → R is
continuously differentiable and there exist positive constants L1, L2

such that, for t ∈ [0, 1], x, y ∈ R,
(i) |f(t, x)− f(t, y)| ≤ L1|x− y|,
(ii) |g(t, x)− g(t, y)| ≤ L2|x− y|.

(A2) Let δ1 = L1λ1 + L2λ2 < 1,

where λ1=
(

1
Γ(q+1) + |α|ηp+qΓ(p+1)

|Γ(p+1)−αηp|Γ(p+q+1)

)
and λ2=

(
|Γ(p+1)−αηp|+|α|ηp
|Γ(p+1)−αηp|

)
.

(A3) For each (t, x) ∈ [0, 1]× R and µ1, µ2 ∈ C([0, 1],R+), we have
(i) |f(t, x)| ≤ µ1(t),
(ii) |g(t, x)| ≤ µ2(t).

Theorem 3.3. Assume that f, g satisfy the hypotheses (A1) and (A2). Then
the boundary value problem (1.1) has a unique solution on [0, 1].
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Proof. Let M1 = sup
t∈[0,1]

|f(t, 0)| , M2 = sup
t∈[0,1]

|g(t, 0)| and consider

Br = {x ∈ C : ‖x‖ ≤ r} , where r ≥ δ2
1−δ1 with

δ2 = M1λ1 +M2λ2 +
Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

and δ1 given by the assumption (A2). Now we show that FBr ⊂ Br, where
F : C → C is defined by (3.7). For x ∈ Br, we have

‖(Fx)(t)‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

+|g(t, x(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η − s)p−1

Γ(p)
|g(s, x(s))|ds

+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

)}
≤ sup

t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+
Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|+ (|g(t, x(t))− g(t, 0)|+ |g(t, 0)|)

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η − s)p−1

Γ(p)
(|g(s, x(s))− g(s, 0)|

+|g(s, 0)|) ds+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
(|f(s, x(s))− f(s, 0)|

+|f(s, 0)|) ds)}

≤ (L1r +M1)λ1 + (L2r +M2)λ2 +
Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

≤ [L1λ1 + L2λ2] r+

[
M1λ1 +M2λ2 +

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

]
≤ δ1r + δ2 ≤ r.

This shows that FBr ⊂ Br. Next, for x, y ∈ C and t ∈ [0, 1], we obtain

‖Fx− Fy‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+|g(t, x(t))− g(t, y(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

×
(∫ η

0

(η−s)p−1

Γ(p)
|g(s, x(s))− g(s, y(s))|ds
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+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
|f(s, x(s))− f(s, y(s))|ds

)}
≤ |x− y| [L1λ1 + L2λ2]

≤ δ1|x− y|.
Here δ1 depends only on the parameters involved in the problem. By assump-
tion (A2), δ1< 1 and therefore F is a contraction. Hence, by the Banach
contraction principle, the problem (1.1) has a unique solution on [0, 1]. �

Now we prove the existence of solutions of (1.1) by applying Krasnoselskii’s
fixed point theorem.

Theorem 3.4. ([16], Krasnoselskii Theorem) Let S be a closed, convex, non-
empty subset of a Banach space X. Let P,Q be two operators such that

(i) Px+Qy ∈ S, whenever x, y ∈ S,
(ii) P is compact and continuous,

(iii) Q is a contraction mapping.

Then there exists z ∈ S such that z = Pz +Qz.

Theorem 3.5. Suppose that the assumptions (A1) and (A3) hold with

L =
1

|Γ(p+ 1)−αηp|

{
L2 (|Γ(p+1)−αηp|+|α|ηp)+

L1|α|ηp+qΓ(p+1)

Γ(p+ q + 1)

}
< 1. (3.8)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Let sup
t∈[0,1]

|µi(t)| = ‖µi‖, i = 1, 2, and Br = {x ∈ C : ‖x‖ ≤ r} . Now we

decompose F as F1 + F2 on Br, where

(F1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds, t ∈ [0, 1],

(F2x)(t) = − Γ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0)) + g(t, x(t)) +

αΓ(p+ 1)

Γ(p+ 1)− αηp

×
(∫ η

0

(η−s)p−1

Γ(p)
g(s, x(s))ds+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s, x(s))ds

)
,

for t ∈ [0, 1]. Choose

r ≥ ‖µ‖
[

1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

|Γ(p+ 1)− αηp|Γ(p+ q + 1)

+
|Γ(p+ 1)− αηp|+ |α|ηp

|Γ(p+ 1)− αηp|
+

Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.
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For x, y ∈ Br, we find that

‖F1x+ F2y‖

≤ sup
t∈[0,1]

{∫ t

0

(t−s)q−1

Γ(q)
|f(s, x(s))|ds+

Γ(p+1)

|Γ(p+1)− αηp|
|g(0, y(0))|

+|g(t, y(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η−s)p−1

Γ(p)
|g(s, y(s))|ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
|f(s, y(s))|ds

)}
≤ ‖µ1‖

Γ(q + 1)
+

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, y(0))|+ ‖µ2‖

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(
ηp

Γ(p+ 1)
‖µ2‖+

ηp+q

Γ(p+ q + 1)
‖µ1‖

)
.

Let µ = max{µ1, g(0, y(0)), µ2}. Then, by simplification, we have

‖F1x+ F2y‖ ≤ ‖µ‖
[

1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

|Γ(p+ 1)− αηp|Γ(p+ q + 1)

+
|Γ(p+ 1)− αηp|+ |α|ηp

|Γ(p+ 1)− αηp|
+

Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
≤ r.

Thus F1x+ F2y ∈ Br. Next we prove that F2 is a contraction.

‖F2x− F2y‖ ≤ sup
t∈[0,1]

{|g(t, x(t))− g(t, y(t))|

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η−s)p−1

Γ(p)
|g(s, x(s))− g(s, y(s))|ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
|f(s, x(s))− f(s, y(s))|ds

)}
≤ |x− y|

{
L2 (|Γ(p+ 1)− αηp|+ |α|ηp)

|Γ(p+ 1)− αηp|

+
L1|α|ηp+qΓ(p+ 1)

|Γ(p+ 1)− αηp|Γ(p+ q + 1)

}
≤ L|x− y|.

Hence F2 is a contraction. Continuity of f implies that the operator F1 is
continuous. Also F1 is uniformly bounded on Br as
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‖(F1x)(t)‖ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

}
≤ ‖µ1‖

Γ(q + 1)
.

To prove that the operator F1 is compact, it remains to show that F1 is
equicontinuous. For that, let f̄ = sup

(t,x)∈[0,1]×Br

|f(t, x)| . Now, for any t1, t2 ∈

[0, 1] with t1 < t2 and x ∈ Br, we have

‖(F1x)(t2)− (F1x)(t1)‖ ≤ sup
(t,x)∈[0,1]×Br

{∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

|f(s, x(s))|ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
|f(s, x(s))|ds

}
≤ f̄

Γ(q + 1)
[tq2 − t

q
1],

which is independent of x and tends to zero as t2 − t1 → 0. Thus F1 is
equicontinuous. By Arzela-Ascoli Theorem, F1 is compact. Hence, by the
Krasnoselskii fixed point theorem, there exists a fixed point x ∈ C such that
Fx = x which is a solution to the boundary value problem (1.1). �

The next result is based on Leray-Schauder nonlinear alternative.

Theorem 3.6. ([16], Leray-Schauder nonlinear alternative) Let E be a Ba-
nach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U.
Suppose that F : Ū → C is a continuous, compact (that is, F (Ū) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in Ū or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with

u = λF (u).

Theorem 3.7. Assume that the following hypotheses hold:

(A4) There exist continuous nondecreasing functions ψ1, ψ2 : [0,∞)→ (0,∞)
and φ1, φ2 ∈ L1([0, 1],R+) such that, for each (t, x) ∈ [0, 1]× R,
(i) |f(t, x)| ≤ φ1(t)ψ1(‖x‖),
(ii) |g(t, x)| ≤ φ2(t)ψ2(‖x‖).

(A5) There exists a constant M > 0 such that M
Λ ≥ 1, where

Λ=ψ(M)

[
Iqφ1(1)+

|α|Γ(p+1)Ip(Iqφ1(η)+φ2(η))

|Γ(p+ 1)− αηp|
+φ2(1)+

Γ(p+ 1)

|Γ(p+1)−αηp|

]
.

Then the boundary value problem (1.1) has at least one solution on [0, 1].



260 K. Shri Akiladevi, K. Balachandran and J. K. Kim

Proof. Observe that the operator F : C → C defined by (3.7) is continuous.
Next we show that F maps bounded sets into bounded sets in C.

For a positive number k, let Bk = {x ∈ C : ‖x‖ ≤ k} be a bounded ball in
C([0, 1],R). Then we have

‖(Fx)(t)‖

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

+|g(t, x(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η − s)p−1

Γ(p)
|g(s, x(s))|ds

+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

)}
≤ ψ1(‖x‖)

∫ 1

0

(1− s)q−1

Γ(q)
φ1(s)ds+

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

+φ2(1)ψ2(‖x‖) +
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(
ψ2(‖x‖)

∫ η

0

(η − s)p−1

Γ(p)

φ2(s)ds+ ψ1(‖x‖)
∫ η

0

(η − s)p+q−1

Γ(p+ q)
φ1(s)ds

)
≤ ψ1(k)

[
Iqφ1(1) +

|α|Γ(p+ 1)Ip+qφ1(η)

|Γ(p+ 1)− αηp|

]
+

Γ(p+ 1)|g(0, x(0))|
|Γ(p+ 1)− αηp|

+ψ2(k)

[
φ2(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ipφ2(η)

]
.

Choosing ψ(k) = max {ψ1(k), ψ2(k), g(0, x(0))}, we have

‖(Fx)(t)‖ ≤ ψ(k)

[
Iqφ1(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip(Iqφ1(η) + φ2(η))

+φ2(1) +
Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.

Now we show that F maps bounded sets into equicontinuous sets in Bk. For
that, let t1, t2 ∈ [0, 1] with t1 < t2. Then, for x ∈ Bk,

‖(Fx)(t2)− (Fx)(t1)‖ ≤
∫ t2

0

(t2 − s)q−1

Γ(q)
|f(s, x(s))|ds+ |g(t2, x(t2))|

−
∫ t1

0

(t1 − s)q−1

Γ(q)
|f(s, x(s))|ds− |g(t1, x(t1))|



Existence results for neutral fractional integrodifferential equations 261

≤ ψ1(k)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

Γ(q)

]
φ1(s)ds

+|g(t2, x(t2))− g(t1, x(t1))|

+ψ1(k)

∫ t2

t1

(t2 − s)q−1

Γ(q)
φ1(s)ds.

As t2 → t1, the right hand side of the above inequality tends to zero indepen-
dently of x ∈ Bk. Thus F maps bounded sets into equicontinuous sets in Bk.
By Arzela-Ascoli’s Theorem, F is completely continuous.

Now let x = λFx where λ ∈ (0, 1). Then, for t ∈ [0, 1], we have

x(t) = λ

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− λΓ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0))

+λg(t, x(t)) +
λαΓ(p+ 1)

Γ(p+ 1)− αηp

(∫ η

0

(η − s)p−1

Γ(p)
g(s, x(s))ds

+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s, x(s))ds

)
.

Then, using the computations of the first step, we have

|x(t)| ≤ ψ(‖x‖)
[
Iqφ1(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip(Iqφ1(η) + φ2(η))

+φ2(1) +
Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.

Consequently

‖x‖ ≤ ψ(‖x‖)
[
Iqφ1(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip(Iqφ1(η) + φ2(η))

+φ2(1) +
Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.

In view of (A5), there exists M such that ‖x‖ 6= M . Let us set

U = { x ∈ C : ‖x‖ < M} .

Note that the operator F : Ū → C is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder theorem, we
deduce that F has a fixed point x ∈ Ū which is a solution to the problem
(1.1). �
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3.2. Examples.

Example 3.8. Consider the following fractional boundary value problem

CD1/2
[
x(t)− 1+e−t

38+et
x(t)

1+x(t)

]
= t

4 + sin t
25 |x(t)|, t ∈ [0, 1],

x(0) =
√

5I1/2x
(

1
5

)
.

 (3.9)

Here q = 1
2 , α =

√
5, p = 1

2 , η = 1
5 , f(t, x) = t

4 + sin t
25 |x(t)|, g(t, x) =

1+e−t

38+et
x(t)

1+x(t) . Also α =
√

5 6= Γ(p+1)
ηp = Γ(3/2)/(1/5)1/2. Now

|f(t, x)− f(t, y)| =

∣∣∣∣ t4 +
sin t

25
|x(t)| − t

4
− sin t

25
|y(t)|

∣∣∣∣
≤ sin t

25
|x− y|

≤ 1

25
|x− y|,

|g(t, x)− g(t, y)| =

∣∣∣∣1 + e−t

38 + et
x(t)

1 + x(t)
− 1 + e−t

38 + et
y(t)

1 + y(t)

∣∣∣∣
≤ 1 + e−t

38 + et
|x− y|

(1 + |x|)(1 + |y|)

≤ 1 + e−t

38 + et
|x− y|

≤ 2

39
|x− y|.

Condition (A1) holds with L1 = 1
25 , L2 = 2

39 . Further, for the above values of
L1, L2, p, q, α, η, we get the value of δ1 = 0.6865 < 1. Thus all the conditions
of the Theorem 3.3 are satisfied. Hence, by Theorem 3.3, the boundary value
problem (3.9) has a unique solution on [0, 1].

Example 3.9. Consider the following fractional boundary value problem

CD1/4
[
x(t)− e−t

1+16et
x(t)

1+x(t)

]
= 1

(t+7)2
|x(t)|

1+|x(t)| , t ∈ [0, 1],

x(0) =
√

2I1/4x
(

1
2

)
.

 (3.10)

Here q = 1
4 , α =

√
2, p = 1

4 , η = 1
2 , f(t, x) = 1

(t+7)2
|x(t)|

1+|x(t)| , g(t, x) =

e−t

1+16et
x(t)

1+x(t) . Also α =
√

2 6= Γ(p+1)
ηp = Γ(5/4)/(1/2)1/4. Now
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|f(t, x)− f(t, y)| =

∣∣∣∣ 1

(t+ 7)2

|x(t)|
1 + |x(t)|

− 1

(t+ 7)2

|y(t)|
1 + |y(t)|

∣∣∣∣
≤ 1

(t+ 7)2

|x− y|
(1 + |x|)(1 + |y|)

≤ 1

(t+ 7)2
|x− y| ≤ 1

49
|x− y|,

|g(t, x)− g(t, y)| =

∣∣∣∣ e−t

(1 + 16et)

x(t)

1 + x(t)
− e−t

(1 + 16et)

y(t)

1 + y(t)

∣∣∣∣
≤ e−t

(1 + 16et)

|x− y|
(1 + |x|)(1 + |y|)

≤ e−t

(1 + 16et)
|x− y| ≤ 1

17
|x− y|.

Also |f(t, x)| =
∣∣∣ 1

(t+7)2
|x(t)|

1+|x(t)|

∣∣∣ ≤ 1
49 and |g(t, x)| =

∣∣∣ e−t

1+16et
x(t)

1+x(t)

∣∣∣ ≤ 1
17 .

Hence the conditions (A1) and (A3) holds with L1 = 1
49 , L2 = 1

17 , µ1(t) =
1
49 , µ2(t) = 1

17 . For the above values of L1, L2, p, q, α, η, we get the value
of L = 0.37997 < 1. Thus all the conditions of the Theorem 3.5 are satisfied.
Hence, by Theorem 3.5, the problem (3.10) has at least one solution on [0, 1].

4. Nonlinear neutral integrodifferential equations

Definition 4.1. A function x(t) ∈ C([0, 1],R) is said to be a solution of (1.2)
if it satisfies the equation

CDq[x(t)− g(t, x(t))] = f

(
t, x(t),

∫ t

0
k(t, s, x(s))ds

)
, t ∈ [0, 1],

and the boundary condition

x(0) = αIpx(η), 0 < η < 1.

Taking Kx(t) =

∫ t

0
k(t, s, x(s))ds, equation (1.2) is equivalent to the fol-

lowing integral equation

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s),Kx(s))ds− Γ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0))

+g(t, x(t)) +
αΓ(p+ 1)

Γ(p+ 1)− αηp

(∫ η

0

(η−s)p−1

Γ(p)
g(s, x(s))ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s, x(s),Kx(s))ds

)
.
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Define the mapping F : C → C by

(Fx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s),Kx(s))ds− Γ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0))

+g(t, x(t)) +
αΓ(p+ 1)

Γ(p+ 1)− αηp

(∫ η

0

(η−s)p−1

Γ(p)
g(s, x(s))ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s, x(s),Kx(s))ds

)
, (4.1)

for t ∈ [0, 1] and we have to show that F has a fixed point. This fixed point is
then a solution to the boundary value problem (1.2).

4.1. Existence and Uniqueness Results. Assume that the following con-
ditions hold:

(B1) The function f : [0, 1]× R× R → R is continuous, g : [0, 1]× R → R
is continuously differentiable and there exist positive constants L1, L2

such that
(i) |f(t, x1, y1) − f(t, x2, y2)| ≤ L1 {|x1 − x2|+ |y1 − y2|} , t ∈ [0, 1],

x1, x2, y1, y2 ∈ R,
(ii) |g(t, x1)− g(t, x2)| ≤ L2|x1 − x2|, t ∈ [0, 1], x1, x2 ∈ R.

(B2) The function k : [0, 1] × [0, 1] × R → R is continuous and there exists
constant L3 > 0, such that
|k(t, s, x1)− k(t, s, x2)| ≤ L3|x1 − x2|, ∀t, s ∈ [0, 1], x1, x2 ∈ R.

(B3) Let ρ1 = L1(1 + L3)λ1 + L2λ2 < 1.
(B4) For µ1, µ2 ∈ C([0, 1],R+), we have

(i) |f(t, x, y)| ≤ µ1(t), (t, x, y) ∈ [0, 1]× R× R,
(ii) |g(t, x)| ≤ µ2(t), (t, x) ∈ [0, 1]× R.

Theorem 4.2. Assume that f, g satisfy the hypotheses (B1) − (B3). Then
the boundary value problem (1.2) has a unique solution on [0, 1].

Proof. Let M1 = sup
t∈[0,1]

|f(t, 0, 0)|, M2 = sup
t∈[0,1]

|g(t, 0)|, M3 = sup
t,s∈[0,1]

|k(t, s, 0)|

and consider Br = {x ∈ C : ‖x‖ ≤ r} , where r ≥ ρ2
1−ρ1 with

ρ2 =

[
(L1M3 +M1)λ1 +M2λ2 +

Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

]
and ρ1 given by the assumption (B3). Now we show that FBr ⊂ Br, where
F : C → C is defined by (4.1). For x ∈ Br, we have
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‖(Fx)(t)‖

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s),Kx(s))|ds+

Γ(p+ 1)|g(0, x(0))|
|Γ(p+ 1)− αηp|

+|g(t, x(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η − s)p−1

Γ(p)
|g(s, x(s))|ds

+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s),Kx(s))|ds

)}
≤ sup

t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
(|f(s, x(s),Kx(s))−f(s, 0, 0)|+|f(s, 0, 0)|) ds

+
Γ(p+ 1)|g(0, x(0))|
|Γ(p+ 1)− αηp|

+ (|g(t, x(t))− g(t, 0)|+ |g(t, 0)|)

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

(∫ η

0

(η − s)p−1

Γ(p)
(|g(s, x(s))− g(s, 0)|

+|g(s, 0)|) ds+

∫ η

0

(η − s)p+q−1

Γ(p+ q)
(|f(s, x(s),Kx(s))− f(s, 0, 0)|

+|f(s, 0, 0)|) ds)}

≤ 1

Γ(q + 1)
[L1 {(1 + L3)r +M3}+M1] +

Γ(p+ 1)|g(0, x(0))|
|Γ(p+ 1)− αηp|

+(L2r +M2) + (L2r +M2)
|Γ(p+ 1)− αηp|+ |α|ηp

|Γ(p+ 1)− αηp|

+
|α|ηp+qΓ(p+ 1)

|Γ(p+ 1)− αηp|Γ(p+ q + 1)
[L1 {(1 + L3)r +M3}+M1]

≤ [L1(1 + L3)λ1 + L2λ2] r + [(L1M3 +M1)λ1 +M2λ2

+
Γ(p+ 1)

|Γ(p+ 1)− αηp|
|g(0, x(0))|

]
≤ ρ1r + ρ2 ≤ r.

This shows that FBr ⊂ Br. Next, for x, y ∈ C and t ∈ [0, 1], we obtain

‖(Fx)(t)− (Fy)(t)‖

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s),Kx(s))− f(s, y(s),Ky(s))|ds

+|g(t, x(t))− g(t, y(t))|+ |α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

×
(∫ η

0

(η−s)p−1

Γ(p)
|g(s, x(s))− g(s, y(s))|ds
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+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
|f(s, x(s),Kx(s))− f(s, y(s),Ky(s))|ds

)}
≤ |x− y|

[
L1(1 + L3)

{
1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

|Γ(p+ 1)− αηp|Γ(p+ q + 1)

}
+L2

(|Γ(p+ 1)− αηp|+ |α|ηp)
|Γ(p+ 1)− αηp|

]
≤ ρ1|x− y|.

Here ρ1 depends only on the parameters involved in the problem. By (B3), ρ1<
1 and therefore F is a contraction. Hence, by the Banach contraction principle,
the problem (1.2) has a unique solution on [0, 1]. �

Now we prove the existence result based on Krasnoselskii’s fixed point the-
orem.

Theorem 4.3. Suppose that the assumptions (B1), (B2) and (B4) hold with

L =
1

|Γ(p+ 1)− αηp|

{
L2 (|Γ(p+ 1)− αηp|+ |α|ηp)

+
L1(1 + L3)|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)

}
< 1. (4.2)

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. Let sup
t∈[0,1]

|µi(t)| = ‖µi‖, i = 1, 2 and Br = {x ∈ C : ‖x‖ ≤ r} . Now we

decompose F as F1 + F2 on Br where

(F1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s),Kx(s))ds, t ∈ [0, 1],

(F2x)(t) = − Γ(p+ 1)

Γ(p+ 1)− αηp
g(0, x(0)) + g(t, x(t))

+
αΓ(p+ 1)

Γ(p+ 1)− αηp

(∫ η

0

(η−s)p−1

Γ(p)
g(s, x(s))ds

+

∫ η

0

(η−s)p+q−1

Γ(p+ q)
f(s, x(s),Kx(s))ds

)
, t ∈ [0, 1].

As in Theorem 3.5, we can show that F1x + F2y ∈ Br, F2 is a contraction
with L given by (4.2) and F1 is compact and continuous. Hence, by the
Krasnoselskii fixed point theorem, there exists a fixed point x ∈ C such that
Fx = x which is a solution to the boundary value problem (1.2). �
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Next we apply Leray-Schauder nonlinear alternative to prove the existence
results for (1.2).

Theorem 4.4. Assume that the following hypotheses hold:

(B5) There exist continuous nondecreasing functions ψ1, ψ2 : [0,∞)→ (0,∞)
and φ1, φ2 ∈ L1([0, 1],R+) such that
(i) |f(t, x, y)| ≤ φ1(t)ψ1(‖x‖), (t, x, y) ∈ [0, 1]× R× R,
(ii) |g(t, x)| ≤ φ2(t)ψ2(‖x‖), (t, x) ∈ [0, 1]× R.

(B6) There exists a constant N > 0 such that N
Λ ≥ 1, where

Λ = ψ(N)

[
Iqφ1(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip(Iqφ1(η) + φ2(η))

+φ2(1) +
Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. For a positive number k, let Bk = {x ∈ C : ‖x‖ ≤ k} be a bounded ball
in C([0, 1],R).
By a similar argument as in Theorem 3.7, it is easy to prove that F is contin-
uous, compact and

‖x‖ ≤ ψ(‖x‖)
[
Iqφ1(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip(Iqφ1(η) + φ2(η))

+φ2(1) +
Γ(p+ 1)

|Γ(p+ 1)− αηp|

]
.

In view of (B6), there exists N such that ‖x‖ 6= N . Let us set

U = { x ∈ C : ‖x‖ < N} .
Note that the operator F : Ū → C is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder theorem, we
deduce that F has a fixed point x ∈ Ū which is a solution to the boundary
value problem (1.2). �

4.2. Examples.

Example 4.5. Consider the following fractional boundary value problem

CD1/2
[
x(t)− e−t

26+et
x(t)

1+x(t)

]
= 1

(t+6)2
|x(t)|

1+|x(t)|+
1
36

∫ t
0 e

−1
5
x(s)ds, t ∈ [0, 1],

x(0) =
√

2I1/2x
(

1
2

)
.

 (4.3)

Here q = 1
2 , α =

√
2, p = 1

2 , η = 1
2 , f(t, x,Kx) = 1

(t+6)2
|x(t)|

1+|x(t)| + 1
36Kx(t),
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where Kx(t) =
∫ t

0 e
−1
5
x(s)ds, g(t, x) = e−t

26+et
x(t)

1+x(t) . Also α =
√

2 6= Γ(p+1)
ηp =

Γ(3/2)/(1/2)1/2. Now

|k(t, s, x(s))− k(t, s, y(s))| =
∣∣∣e−1

5
x − e

−1
5
y
∣∣∣ ≤ 1

5
|x− y|,

|f(t, x,Kx)− f(t, y,Ky)| ≤ 1

(t+ 6)2

|x− y|
(1 + |x|)(1 + |y|)

+
1

36
|Kx(t)−Ky(t)|

≤ 1

36
[|x− y|+ |Kx−Ky|] ,

and

|g(t, x)− g(t, y)| =
∣∣∣∣ e−t

26 + et
x(t)

1 + x(t)
− e−t

26 + et
y(t)

1 + y(t)

∣∣∣∣ ≤ 1

27
|x− y|.

Hence the conditions (B1), (B2) hold with L1 = 1
36 , L2 = 1

27 , L3 = 1
5 . Further,

for the above values of L1, L2, L3, p, q, α, η, we get the value of ρ1 =
0.58378 < 1. All the conditions of the Theorem 4.2 are satisfied. Hence (4.3)
has a unique solution on [0, 1].

Example 4.6. Consider the following fractional boundary value problem

CD1/2
[
x(t)− e−t

1+36et
x(t)

1+x(t)

]
= 1

(t+4)2
|x(t)|

1+|x(t)|+
1
16

∫ t
0
e−s

9
|x(t)|

1+|x(t)|ds,

t ∈ [0, 1],

x(0) =
√

11I1/2x
(

1
11

)
.

 (4.4)

Here q = 1
2 , α =

√
11, p = 1

2 , η = 1
11 , f(t, x,Kx) = 1

(t+4)2
|x(t)|

1+|x(t)| + 1
16Kx(t),

where Kx(t) =
∫ t

0
e−s

9
|x(t)|

1+|x(t)|ds, g(t, x) = e−t

1+36et
x(t)

1+x(t) . Also α =
√

11 6=
Γ(p+1)
ηp = Γ(3/2)/(1/11)1/2. Now

|k(t, s, x(s))− k(t, s, y(s))| =
∣∣∣∣e−s9

|x(t)|
1 + |x(t)|

− e−s

9

|y(t)|
1 + |y(t)|

∣∣∣∣
≤ 1

9
|x− y|,

|f(t, x,Kx)−f(t, y,Ky)| ≤ 1

(t+4)2

|x− y|
(1+|x|)(1+|y|)

+
1

16
|Kx(t)−Ky(t)|

≤ 1

(t+ 4)2
|x− y|+ 1

16
|Kx−Ky|

≤ 1

16
[|x− y|+ |Kx−Ky|] ,
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and

|g(t, x)− g(t, y)| =

∣∣∣∣ e−t

(1 + 36et)

x(t)

1 + x(t)
− e−t

(1 + 36et)

y(t)

1 + y(t)

∣∣∣∣
≤ e−t

(1 + 36et)

|x− y|
(1 + |x|)(1 + |y|)

≤ e−t

(1 + 36et)
|x− y| ≤ 1

37
|x− y|.

Also |f(t, x, y)| =
∣∣∣ 1

(t+4)2
|x(t)|

1+|x(t)| + 1
16

∫ t
0
e−s

9
|x(t)|

1+|x(t)|ds
∣∣∣ ≤ 5

72 and |g(t, x)| =∣∣∣ e−t

1+36et
x(t)

1+x(t)

∣∣∣ ≤ 1
37 . Here L1 = 1

16 , L2 = 1
37 , L3 = 1

9 , µ1(t) = 5
72 , µ2(t) = 1

37 .

For the above values of L1, L2, L3, p, q, α, η, we get the value of L =
0.42769 < 1. All the conditions of the Theorem 4.3 are satisfied. Hence (4.4)
has at least one solution on [0, 1].
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