Nonlinear Functional Analysis and Applications Vol. 19, No. 2 (2014), pp. 271-284

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2014 Kyungnam University Press

THE ALEKSANDROV PROBLEM IN 2-FUZZY N-NORMED LINEAR SPACES

Lifang Chang¹ and Meimei Song²

¹Department of Mathematics, College of Science Tianjin University of Technology, Tianjin, P.R. China e-mail: chang7717@126.com

²Department of Mathematics, College of Science Tianjin University of Technology, Tianjin, P.R. China e-mail: songmeimei@tjut.edu.cn

Abstract. In this paper, we obtain some results for the Aleksandrov problem in 2-fuzzy n-normed linear spaces using the concepts of n-isometry, n-collinearity, n-Lipschitz mapping and 2-fuzzy n-normed linear spaces which was introduced by Park and Alaca [7].

1. Introduction

Let X and Y be metric spaces. A mapping $f: X \to Y$ is called an isometry if f satisfies $d_Y(f(x), f(y)) = d_X(x, y)$ for every $x, y \in X$, Where $d_X(\cdot, \cdot)$ and $d_Y(\cdot, \cdot)$ denote the metrics in the spaces X and Y, respectively. For some fixed number r > 0, suppose that f preserves distance r; i.e., for all x, y in X with $d_X(x, y) = r$, we have $d_Y(f(x), f(y)) = r$. Then r is called a conservative (or preserved) distance for the mapping f. The basic problem of conservative distances is whether the existence of a single conservative distance for some f implies that f is an isometry of X into Y. It is called the Aleksandrov problem. Some results about this problem can be seen in [10-14].

In 1984, Katsaras [1] and Wu and Fang [2] introduced a notion of a fuzzy norm. Different authors introduced the definitions of fuzzy norms on a linear space. Cheng and Mordeson [3] and Bag and Samanta [4] introduced a concept of fuzzy norm on a linear space. The concept of fuzzy n-normed linear spaces

⁰Received December 6, 2013. Revised April 4, 11, 2014.

⁰2010 Mathematics Subject Classification: 46B04, 46B20, 46S40.

⁰Keywords: The Aleksandrov problem, 2-fuzzy n-normed linear space, n-isometry, n-Lipschitz mapping.

has been studied by many authors(see [5], [6]). In 2012, Park and Alaca [7] introduced the concept of 2-fuzzy n-normed linear space or fuzzy n-normed linear space of the set of all fuzzy sets of a non-empty set.

In this paper, we obtain some results for the Aleksandrov problem in 2-fuzzy n-normed linear spaces using the concepts of n-isometry, n-collinearity, n-Lipschitz mapping and 2-fuzzy n-normed linear spaces which was introduced Park and Alaca [7].

2. Preliminaries

Definition 2.1. ([8]) Let $n \in \mathbb{N}$ and let X be a real vector space of dimension $d \geq n$.(Here we allow d to be infinite). A real-valued function $\|\cdot, \dots, \cdot\|$ on $X \times X \cdots \times X$ satisfies the following properties:

- (1) $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (2) $||x_1, x_2, \dots, x_n||$ is invariant under any permutation,
- (3) $||x_1, x_2, \dots, \alpha x_n|| = |\alpha| \cdot ||x_1, x_2, \dots, x_n||$, for any $\alpha \in \mathbb{R}$,
- $(4) ||x_1, x_2, \dots, x_{n-1}, y + z|| \le ||x_1, x_2, \dots, x_{n-1}, y|| + ||x_1, x_2, \dots, x_{n-1}, z||,$

is called an n-normed on X and the pair $(X, \|\cdot, \dots, \cdot\|)$ is called an *n-normed linear space*.

Definition 2.2. ([6]) Let X be a linear space over a field K. A fuzzy subset N of $X^n \times \mathbb{R}(\mathbb{R})$, the set of real numbers) is called a fuzzy n-normed on X if and only if:

- (N1) For all $t \leq 0, N(x_1, x_2, \dots, x_n, t) = 0$,
- (N2) For all t > 0, $N(x_1, x_2, \dots, x_n, t) = 1$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (N3) $N(x_1, x_2, \dots, x_n, t)$ is invariant under any permutation of x_1, x_2, \dots, x_n ,
- (N4) $N(x_1, x_2, \dots, cx_n, t) = N(x_1, x_2, \dots, x_n, \frac{t}{|c|})$, for $c \neq 0$ and $c \in \mathcal{K}$,
- (N5) For all $s, t \in \mathbb{R}$,

$$N(x_1, x_2, \dots, x_n + x'_n, s + t)$$

 $\geq \min\{N(x_1, x_2, \dots, x_n, s), N(x_1, x_2, \dots, x'_n, t)\},\$

(N6) $N(x_1, x_2, \dots, x_n, t)$ is a nondecreasing function of $t \in \mathbb{R}$ and

$$\lim_{t \to \infty} N(x_1, x_2, \cdots, x_n, t) = 1.$$

The pair (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Theorem 2.3. ([6]) Let (X, N) be an f-n-NLS. Assume that

(N7) $N(x_1, x_2, \dots, x_n, t) > 0$ for all t > 0 implies that x_1, x_2, \dots, x_n are linearly dependent.

Define

$$||x_1, x_2, \dots, x_n||_{\alpha} = \inf\{t : N(x_1, x_2, \dots, x_n, t) \ge \alpha, \ \alpha \in (0, 1)\}.$$

Then $\{\|\cdot,\cdot,\ldots,\cdot\|_{\alpha}:\alpha\in(0,1)\}$ is an ascending family of n-normed on X.

We call these n-norms as α -n-norms on X corresponding to the fuzzy n-norm on X.

Definition 2.4. ([9]) Let X be any non-empty set and $\Im(X)$ be the set of all fuzzy sets on X. For $U, V \in \Im(X)$ and $\lambda \in \mathcal{K}$ the field of real numbers, define

$$U + V = \{ (x + y, v \land \mu) : (x, v) \in U, \ (y, \mu) \in V \}$$

and $\lambda U = \{(\lambda x, v) : (x, v) \in U\}.$

Definition 2.5. ([9]) A fuzzy linear space $\widehat{X} = X \times (0,1]$ over the number field \mathcal{K} , where the addition and scalar multiplication operation on X are defined by

$$(x, v) + (y, \mu) = (x + y, v \wedge \mu), \quad \lambda(x, v) = (\lambda x, v)$$

is a fuzzy normed space if to every $(x,v) \in \widehat{X}$ there is associated a non-negative real number, $\|(x,v)\|$, called the fuzzy norm of (x,v), in such a way that

- (1) ||(x,v)|| = 0 if x = 0 the zero element of $X, v \in (0,1]$,
- (2) $\|\lambda(x,v)\| = |\lambda| \|(x,v)\|$ for all $(x,v) \in \widehat{X}$ and $\lambda \in \mathcal{K}$,
- (3) $\|(x,v) + (y,\mu)\| \le \|(x,v \wedge \mu)\| + \|(y,v \wedge \mu)\|$ for all $(x,v), (y,\mu) \in \widehat{X}$,
- (4) $||(x, \vee_t v_t)|| = \wedge_t ||x, v_t||$ for all $v_t \in (0, 1]$.

3. 2-Fuzzy n-normed linear space

In this section, we introduce the concepts of 2-fuzzy n-normed linear space and α -n-norms on the set of all fuzzy sets of a non-empty set.

Definition 3.1. ([7]) Let X be any non-empty set and $\Im(X)$ be the set of all fuzzy sets on X. If $f \in \Im(X)$ then $f = \{(x, \mu) : x \in X \text{ and } \mu \in (0, 1]\}$. Clearly f is a bounded function for $|f(x)| \leq 1$. Let \mathcal{K} be the space of real numbers, then $\Im(X)$ is a linear space over the field \mathcal{K} where the addition and scalar multiplication are defined by

$$f + g = \{(x, \mu) + (y, \eta)\} = \{(x + y, \mu \land \eta) : (x, \mu) \in f, \ (y, \eta) \in g\}$$

and

$$\lambda f = \{(\lambda x, \mu) : (x, \mu) \in f\}, \quad \lambda \in \mathcal{K}.$$

The linear space $\Im(X)$ is said to be normed linear space if, for every $f \in \Im(X)$, there exists an associated non-negative real number ||f|| (called the norm of f) which satisfies

(1) ||f|| = 0 if and only if f = 0. For

$$\begin{split} \|f\| &= 0 \\ \Leftrightarrow & \{\|(x,\mu)\| : (x,\mu) \in f\} = 0 \\ \Leftrightarrow & x = 0, \ \mu \in (0,1] \Leftrightarrow f = 0. \end{split}$$

(2)
$$\|\lambda f\| = |\lambda| \|f\|, \ \lambda \in \mathcal{K}$$
. For $\|\lambda f\| = \{\|\lambda(x,\mu)\| : (x,\mu) \in f, \ \lambda \in \mathcal{K}\}$
= $\{|\lambda| \|(x,\mu)\| : (x,\mu) \in f\} = |\lambda| \|f\|.$

$$\begin{aligned} (3) \ \|f+g\| &\leq \|f\| + \|g\| \text{ for every } f,g \in \Im(X). \text{ For } \\ \|f+g\| &= \{\|(x,\mu) + (y,\eta)\| : x,y \in X, \ \mu,\eta \in (0,1]\} \\ &\leq \{\|(x,\mu \wedge \eta)\| + \|(y,\mu \wedge \eta)\| : (x,\mu) \in f, \ (y,\eta) \in g\} \\ &= \|f\| + \|g\|. \end{aligned}$$

Then $(\Im(X), \|\cdot\|)$ is a normed linear space.

Definition 3.2. ([7]) A 2-fuzzy set on X is a fuzzy set on $\Im(X)$.

Definition 3.3. ([7]) Let X be a real vector space of dimension $d \geq n (n \in \mathbb{N})$ and $\Im(X)$ be the set of all fuzzy sets in X. Here we allow d to be infinite. Assume that a [0,1]-valued function $\|\cdot,\ldots,\cdot\|$ on $\Im(X)\times\cdots\times\Im(X)$ satisfies the following properties

- (1) $||f_1, f_2, \dots, f_n|| = 0$ if and only if f_1, f_2, \dots, f_n are linearly dependent,
- (2) $||f_1, f_2, \dots, f_n||$ is invariant under any permutation of f_1, f_2, \dots, f_n ,
- (3) $||f_1, f_2, \dots, \lambda f_n|| = |\lambda| ||f_1, f_2, \dots, f_n||$, for any $\lambda \in \mathcal{K}$,
- $(4) ||f_1, f_2, \cdots, f_{n-1}, y + z|| \le ||f_1, f_2, \cdots, f_{n-1}, y|| + ||f_1, f_2, \cdots, f_{n-1}, z||.$

Then $(\Im(X), \|\cdot, \dots, \cdot\|)$ is an *n*-normed linear space or $(X, \|\cdot, \dots, \cdot\|)$ is a 2-n-normed linear space.

Definition 3.4. ([7]) Let $\Im(X)$ be a linear space over the field \mathcal{K} . A fuzzy subset N of $\Im(X) \times \cdots \times \Im(X) \times \mathbb{R}$ is called a 2-fuzzy n-norm on X (or fuzzy n-norm on $\Im(X)$) if and only if

- (2-N1) for all $t \in \mathbb{R}$ with $t \leq 0$, $N(f_1, f_2, \dots, f_n, t) = 0$,
- (2-N2) for all $t \in \mathbb{R}$ with t > 0, $N(f_1, f_2, \dots, f_n, t) = 1$, if and only if f_1, f_2, \dots, f_n are linearly dependent,
- (2-N3) $N(f_1, f_2, \dots, f_n, t)$ is invariant under any permutation of f_1, f_2, \dots, f_n

(2-N4) for all $t \in \mathbb{R}$ with t > 0, $N(f_1, f_2, \dots, \lambda f_n, t) = N(f_1, f_2, \dots, f_n, \frac{t}{|\lambda|})$, if $\lambda \neq 0$, $\lambda \in \mathcal{K}$,

(2-N5) for all $s, t \in \mathbb{R}$,

$$N(f_1, f_2, \dots, f_n + f'_n, s + t)$$

 $\geq \min\{N(f_1, f_2, \dots, f_n, s), N(f_1, f_2, \dots, f'_n, t)\},\$

(2-N6) $N(f_1, f_2, \dots, f_n, \cdot) : (0, \infty) \to [0, 1]$ is continuous,

(2-N7) $\lim_{t\to\infty} N(f_1, f_2, \dots, f_n, t) = 1.$

Then $(\Im(X), N)$ is a fuzzy n-normed linear space or (X, N) is a 2-fuzzy n-normed linear space.

Remark 3.5. ([7]) In a 2-fuzzy n-normed linear space (X, N), $N(f_1, f_2, \dots, f_n, \cdot)$ is a nondecreasing function of \mathbb{R} for all $f_1, f_2, \dots, f_n \in \Im(X)$.

The following example agrees with our notion of 2-fuzzy n-normed linear space.

Example 3.6. $(\Im(X), \|\cdot, \dots, \cdot\|)$ be an n-normed linear space as in Definition 3.3. Define

$$N(f_1, f_2, \dots, t) = \begin{cases} \frac{t}{t + \|f_1, f_2, \dots, f_n\|}, & \text{if } t > 0, \ t \in \mathbb{R}; \\ 0, & \text{if } t \le 0. \end{cases}$$

for all $(f_1, f_2, \dots, f_n) \in \Im(X) \times \dots \times \Im(X)$. Then (X, N) is a 2- fuzzy n-normed linear space.

Theorem 3.7. ([7]) Let $(\Im(X), N)$ be a fuzzy n-normed linear space. Assume that

(2-N8) $N(f_1, f_2, \dots, f_n, t) > 0$ for all t > 0 implies f_1, f_2, \dots, f_n are linearly dependent.

Define

$$||f_1, f_2, \cdots, f_n||_{\alpha} = \inf\{t : N(f_1, f_2, \cdots, f_n, t) \ge \alpha, \ \alpha \in (0, 1)\}.$$

Then $\{\|\cdot,\cdot,\ldots,\cdot\|_{\alpha}:\alpha\in(0,1)\}$ is an ascending family of n-norms on $\Im(X)$.

Proof. The proof of Theorem is clear from [7, Theorem 3.1].

Remark 3.8. In Theorem 3.7, these n-norms are called α -n-norms on $\Im(X)$ corresponding to the 2-fuzzy n-norm on X.

4. On the Aleksandrov Problem

In this section, we give a new generalization of the Aleksandrov problem when X is a 2-fuzzy n-normed linear space or $\Im(X)$ is a fuzzy n-normed linear space. Hereafter we use the notion of fuzzy n-normed linear space on $\Im(X)$ instead of 2-fuzzy n-normed linear space on X.

Definition 4.1. Let $\Im(X)$ and $\Im(Y)$ are fuzzy n-normed linear spaces and Ψ : $\Im(X) \to \Im(Y)$ is a mapping .We call Ψ an *n-isometry* if

$$||f_1 - f_0, \dots, f_n - f_0||_{\alpha} = ||\Psi(f_1) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)||_{\beta}$$
 for all $f_0, f_1, f_2, \dots, f_n \in \Im(X)$ and $\alpha, \beta \in (0, 1)$.

For a mapping Ψ , consider the following condition which is called the *n*-distance one preserving property (nDOPP).

Let
$$f_0, f_1, f_2, \dots, f_n \in \Im(X)$$
 with $||f_1 - f_0, \dots, f_n - f_0||_{\alpha} = 1$, then $||\Psi(f_1) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)||_{\beta} = 1$. $(nDOPP)$

Lemma 4.2. Let
$$f_0, f_1, f_2, \dots, f_n \in \Im(X)$$
, $\alpha \in (0,1)$ and $\lambda \in \mathbb{R}$. Then, $||f_1, \dots, f_i, \dots, f_j, \dots, f_n||_{\alpha} = ||f_1, \dots, f_i, \dots, f_j + \lambda f_i, \dots, f_n||_{\alpha}$, for all $1 \le i \ne j \le n$.

Proof. It is obviously true.

Definition 4.3. The elements $f_0, f_1, f_2, \dots, f_n \in \Im(X)$ are said to be *n*-collinear if for every $i, \{f_j - f_i : 0 \le j \ne i \le n\}$ is linearly dependent.

Definition 4.4. The elements f_0 , f_1 and f_2 are said to be 2-collinear if and only if $f_2 - f_0 = r(f_1 - f_0)$ for some real number r.

Definition 4.5. We call Ψ an *n-Lipschitz mapping* if there is a $k \geq 0$ such that

$$\|\Psi(f_1) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \le k\|f_1 - f_0, \cdots, f_n - f_0\|_{\alpha}$$

for all $f_0, f_1, f_2, \dots, f_n \in \Im(X)$ and $\alpha, \beta \in (0, 1)$. The smallest such k is called the n-Lipschitz constant.

We only consider in this paper the n-Lipschitz constant $k \leq 1$.

Definition 4.6. We call Ψ a locally n-Lipschitz mapping if there is a $k \geq 0$ such that

$$\|\Psi(f_1) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \le k\|f_1 - f_0, \dots, f_n - f_0\|_{\alpha},$$

whenever $||f_1 - f_0, \dots, f_n - f_0||_{\alpha} \le 1$, for all $f_0, f_1, f_2, \dots, f_n \in \Im(X)$ and $\alpha, \beta \in (0, 1)$.

Theorem 4.7. (see [7]) Let Ψ be n-Lipschitz mapping with n-Lipschitz constant $k \leq 1$. Assume that if f_0, f_1, \dots, f_m are m-collinear then $\Psi(f_0), \Psi(f_1), \dots, \Psi(f_m)$ are m-collinear, m = 2, n, and that Ψ satisfies (nDOPP), then Ψ is an n-isometry.

Theorem 4.8. (see [7]) Assume that f_0 , f_1 and f_2 are 2-collinear then $\Psi(f_0)$, $\Psi(f_1)$ and $\Psi(f_2)$ are 2-collinear, and Ψ satisfies (nDOPP). Then Ψ preserves the n-distance k for each $k \in \mathbb{N}$.

Lemma 4.9. If a mapping $\Psi \colon \Im(X) \to \Im(Y)$ is locally n-Lipschitz mapping, then Ψ is a n-Lipschitz mapping.

Proof. We may assume that $||f_1 - f_0, \dots, f_n - f_0||_{\alpha} > 1$, then there is $n_0 \in \mathbb{N}$ such that $n_0 - 1 < ||f_1 - f_0, \dots, f_n - f_0||_{\alpha} \le n_0$. Let $g_i = f_0 + \frac{i}{n_0}(f_1 - f_0)$. Then

$$||g_{i} - g_{i-1}, f_{2} - g_{i-1}, \cdots, f_{n} - g_{i-1}||_{\alpha} = ||g_{i} - g_{i-1}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}||_{\alpha}$$

$$= ||\frac{f_{1} - f_{0}}{n_{0}}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}||_{\alpha}$$

$$= \frac{||f_{1} - f_{0}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}||_{\alpha}}{n_{0}}$$

$$\leq 1.$$

And

$$\begin{split} &\|\Psi(g_{i}) - \Psi(g_{i-1}), \Psi(f_{2}) - \Psi(f_{0}), \cdots, \Psi(f_{n}) - \Psi(f_{0})\|_{\beta} \\ &= \|\Psi(g_{i}) - \Psi(g_{i-1}), \Psi(f_{2}) - \Psi(g_{i-1}), \cdots, \Psi(f_{n}) - \Psi(g_{i-1})\|_{\beta} \\ &\leq \|g_{i} - g_{i-1}, f_{2} - g_{i-1}, \cdots, f_{n} - g_{i-1}\|_{\alpha} \\ &= \frac{\|f_{1} - f_{0}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha}}{n_{0}}, \\ &\|\Psi(f_{1}) - \Psi(f_{0}), \Psi(f_{2}) - \Psi(f_{0}), \cdots, \Psi(f_{n}) - \Psi(f_{0})\|_{\beta} \\ &= \|\sum_{i=1}^{n_{0}} (\Psi(g_{i}) - \Psi(g_{i-1})), \Psi(f_{2}) - \Psi(f_{0}), \cdots, \Psi(f_{n}) - \Psi(f_{0})\|_{\beta} \\ &\leq \sum_{i=1}^{n_{0}} \|\Psi(g_{i}) - \Psi(g_{i-1}), \Psi(f_{2}) - \Psi(f_{0}), \cdots, \Psi(f_{n}) - \Psi(f_{0})\|_{\beta} \end{split}$$

$$= \sum_{i=1}^{n_0} \frac{\|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha}}{n_0}$$
$$= \|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha}.$$

Remark 4.10. Assume that Ψ is a locally n-Lipschitz mapping and f_0, f_1, \dots, f_n are n-collinear, then $\Psi(f_0), \Psi(f_1), \dots, \Psi(f_n)$ are n-collinear.

Indeed f_0, f_1, \dots, f_n are n-collinear if and only if $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} = 0$. Since

$$\|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta}$$

$$\leq \|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha}$$

thus

$$\|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} = 0,$$

it followings that $\Psi(f_0), \Psi(f_1), \dots, \Psi(f_n)$ are n-collinear.

So Theorem 4.7 and Theorem 4.8 [7] can be simplified as Theorem 4.11 and Theorem 4.12:

Theorem 4.11. Assume that Ψ is a locally n-Lipschitz mapping and satisfies (nDOPP), then Ψ is an n-isometry.

Theorem 4.12. Assume that Ψ is a locally n-Lipschitz mapping and satisfies (nDOPP), then Ψ preserves the n-distance k for each $k \in \mathbb{N}$.

Theorem 4.13. If $f_0, f_1, \dots, f_n \in \Im(X)$ and $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} \neq 0$, there exists a $w \in \Im(X)$ such that

$$||f_0 - w, f_1 - w, f_2 - w, \dots, f_{n-1} - w||_{\alpha}$$

= $||f_1 - w, f_2 - w, f_3 - w, \dots, f_n - w||_{\alpha} = 1$.

Proof. By hypothesis, $\gamma = \|f_1 - f_0, f_2 - f_0, \dots, f_n - f_0\|_{\alpha} > 0$. Set $w = f_1 + \frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1)$, we have

$$\begin{aligned} &\|f_0 - w, f_1 - w, f_2 - w, \cdots, f_{n-1} - w\|_{\alpha} \\ &= \|f_0 - f_1 - \frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1), -\frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1), \cdots, \\ &f_{n-1} - f_1 - \frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1)\|_{\alpha} \end{aligned}$$

$$&= \|f_0 - f_1, -\frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1), f_2 - f_1, \cdots, f_{n-1} - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_0 - f_1, f_0 - f_1 + f_n - f_1, f_2 - f_1, \cdots, f_{n-1} - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_0 - f_1, f_n - f_1, f_2 - f_1, \cdots, f_{n-1} - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha} = 1,$$

$$&\|f_1 - w, f_2 - w, f_3 - w, \cdots, f_n - w\|_{\alpha}$$

$$&= \| -\frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1), f_2 - f_1 - \frac{2}{\gamma} (\frac{f_0 + f_n}{2} - f_1), \cdots, f_{n-1} - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_0 - f_1 + f_n - f_1, f_2 - f_1, f_3 - f_1, \cdots, f_n - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_0 - f_1, f_2 - f_1, f_3 - f_1, \cdots, f_n - f_1\|_{\alpha}$$

$$&= \frac{1}{\gamma} \|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha} = 1.$$

This completes the proof.

Lemma 4.14. Assume that if f_0, f_1 and f_2 are 2-collinear then $\Psi(f_0), \Psi(f_1)$ and $\Psi(f_2)$ are 2-collinear, and that Ψ satisfies (nDOPP). Then Ψ preserves the n-distance $\frac{1}{k}$ for any positive integer k.

Proof. Suppose that there exist $f_0, f_1 \in \Im(X)$ with $f_0 \neq f_1$ such that $\Psi(f_0) = \Psi(f_1)$. Since $\dim \Im(X) \geq n$, there are $f_2, \dots, f_n \in \Im(X)$ such that $f_1 - f_0, f_2 - f_0, \dots, f_n - f_0$ are linearly dependent. Since $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} \neq 0$, we can set

$$g_2 = f_0 + \frac{f_2 - f_0}{\|f_1 - f_0, f_2 - f_0, \dots, f_n - f_0\|_{\alpha}}$$

Then we have

$$||f_1 - f_0, g_2 - f_0, f_3 - f_0 \cdots, f_n - f_0||_{\alpha}$$

$$= ||f_1 - f_0, \frac{f_2 - f_0}{||f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0||_{\alpha}}, f_3 - f_0 \cdots, f_n - f_0||_{\alpha}$$

$$= 1.$$

Since Ψ preserves the unit n-distance,

$$\|\Psi(f_1) - \Psi(f_0), \Psi(g_2) - \Psi(f_0), \Psi(f_3) - \Psi(f_0) \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} = 1$$

But it follows from $\Psi(f_0) = \Psi(f_1)$ that

$$\|\Psi(f_1) - \Psi(f_0), \Psi(g_2) - \Psi(f_0), \Psi(f_3) - \Psi(f_0), \Psi(f_0) - \Psi(f_0)\|_{\beta} = 0$$

which is a contradiction. Hence, Ψ is a injective.

By Theorem 4.8, Ψ preserves the n-distance k for each positive integer k. We claim that Ψ preserves the n-distance k for each positive integer $\frac{1}{k}$. Let $f_0, f_1, \dots, f_n \in \Im(X)$ satisfies

$$||f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0||_{\alpha} = \frac{1}{k}.$$

By Theorem 4.13, there is an element w of $\Im(X)$ such that

$$||f_0 - w, f_1 - w, f_2 - w, \dots, f_{n-1} - w||_{\alpha}$$

= $||f_0 - w, f_1 - w, f_2 - w, \dots, f_{n-1} - w||_{\alpha} = 1$.

Let $p_{ij} = w + j(f_i - w)$ for each positive integer j and each $i = 0, 1, \dots, n$. First, we show that

$$\Psi(p_{ij}) = \Psi(w) + j(\Psi(f_i) - \Psi(w))$$

for each positive integer j and each $i=0,1,\cdots,n$. We prove it by the induction on j. When j=1, it is clear. Assume that the above statement holds for all positive integers less than j+1. Let i=0. Since

$$||p_{0j+1} - p_{0j}, f_1 - w, \dots, f_{n-1} - w||_{\alpha}$$

= $||f_0 - w, f_1 - w, \dots, f_{n-1} - w||_{\alpha} = 1$,

we have

$$\|\Psi(p_{0j+1}) - \Psi(p_{0j}), \Psi(f_1) - \Psi(w), \cdots, \Psi(f_{n-1}) - \Psi(w)\|_{\beta}$$

$$= \|\Psi(f_0) - \Psi(w), \Psi(f_1) - \Psi(w), \cdots, \Psi(f_{n-1}) - \Psi(w)\|_{\beta}$$

$$= 1$$

By the inductive hypothesis, $\Psi(p_{0j}) = \Psi(w) + j(\Psi(f_0) - \Psi(w))$. Since w, f_0, p_{0j+1} are 2-collinear, $\Psi(w), \Psi(f_0), \Psi(p_{0j+1})$ are 2-collinear. Let

$$\Psi(p_{0j+1}) = \Psi(w) + \alpha(\Psi(f_0) - \Psi(w)).$$

Then we have

$$\Psi(p_{0j+1}) - \Psi(p_{0j}) = (\alpha - j)(\Psi(f_0) - \Psi(w))$$

and

$$1 = \|\Psi(p_{0j+1}) - \Psi(p_{0j}), \Psi(f_1) - \Psi(w), \cdots, \Psi(f_{n-1}) - \Psi(w)\|_{\beta}$$

$$= \|(\alpha - j)(\Psi(f_0) - \Psi(w)), \Psi(f_1) - \Psi(w), \cdots, \Psi(f_{n-1}) - \Psi(w)\|_{\beta}$$

$$= |\alpha - j| \|\Psi(f_0) - \Psi(w), \Psi(f_1) - \Psi(w), \cdots, \Psi(f_{n-1}) - \Psi(w)\|_{\beta}$$

$$= |\alpha - j|.$$

Assume that $\alpha - j = -1$, that is $\alpha = j - 1$. Then

$$\Psi(p_{0j+1}) = \Psi(w) + (j-1)(\Psi(f_0) - \Psi(w)) = \Psi(p_{0j-1}).$$

Since Ψ is a injective, which is a contradition. Thus we have $\alpha = j + 1$. Hence

$$\Psi(p_{0j+1}) = \Psi(w) + (j+1)(\Psi(f_0) - \Psi(w)).$$

By induction

$$\Psi(p_{0j}) = \Psi(w) + j(\Psi(f_0) - \Psi(w))$$

for all positive integers j. Similarly,

$$\Psi(p_{ij}) = \Psi(w) + j(\Psi(f_i) - \Psi(w))$$

for all positive integers j and each $i = 0, 1, \dots, n$. Thus we obtain that

$$||p_{1k} - p_{0k}, p_{2k} - p_{0k}, \cdots, p_{nk} - p_{0k}||_{\alpha}$$

$$= ||w + k(f_1 - w) - (w + k(f_0 - w)), w + k(f_2 - w) - (w + k(f_0 - w)),$$

$$\cdots, w + k(f_n - w) - (w + k(f_0 - w))||_{\alpha}$$

$$= ||k(f_1 - f_0), k(f_2 - f_0), \cdots, k(f_n - f_0)||_{\alpha}$$

$$= k^n ||f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0||_{\alpha}$$

$$= k^n \cdot \frac{1}{k} = k^{n-1}.$$

By Theorem 4.8,

$$k^{n-1} = \|\Psi(p_{1k}) - \Psi(p_{0k}), \Psi(p_{2k}) - \Psi(p_{0k}), \cdots, \Psi(p_{nk}) - \Psi(p_{0k})\|_{\beta}$$

$$= \|\Psi(w) + k(\Psi(f_1) - \Psi(w)) - (\Psi(w) + k(\Psi(f_0) - \Psi(w))),$$

$$\cdots, \Psi(w) + k(\Psi(f_n) - \Psi(w)) - (\Psi(w) + k(\Psi(f_0) - \Psi(w)))\|_{\beta}$$

$$= \|k(\Psi(f_1) - \Psi(f_0)), k(\Psi(f_2) - \Psi(f_0)), \cdots, k(\Psi(f_n) - \Psi(f_0))\|_{\beta}$$

$$= k^n \|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta}.$$

Therefore,

$$\|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} = \frac{1}{k}$$

which completes the proof.

Theorem 4.15. Assume that if f_0, f_1, \dots, f_m are m-collinear then $\Psi(f_0)$, $\Psi(f_1), \dots, \Psi(f_m)$ are m-collinear, m = 2, n, and that if $g_1 - g_2 = \lambda(g_3 - g_2)$ for some $\lambda \in (0, 1]$ then $\Psi(g_1) - \Psi(g_2) = \eta(\Psi(g_3) - \Psi(g_2))$ for some $\eta \in (0, 1]$. If Ψ satisfies (nDOPP), then Ψ is an n-isometry.

Proof. For $f_0, f_1, \dots, f_n \in \Im(X)$, there are two cases depending upon whether $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} = 0$ or not.

In the case $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} = 0$, $f_1 - f_0, f_2 - f_0, \dots, f_n - f_0$ are linearly dependent, that is, n-collinear. Thus $\Psi(f_0), \Psi(f_1), \dots, \Psi(f_n)$ are n-collinear. Thus $\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)$ are linearly dependent, Hence

$$\|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)\|_{\beta} = 0.$$

In the case $||f_1 - f_0, f_2 - f_0, \dots, f_n - f_0||_{\alpha} > 0$, let

$$\frac{s-1}{r} < \|f_1 - f_0, f_2 - f_0, \cdots, f_n - f_0\|_{\alpha} \le \frac{s}{r},$$

where s and r are positive integers with $s \ge 2$. By Theorem 4.7, it suffices to show that Ψ is an n-Lipschitz mapping with n-Lipschitz constant 1. Let

$$p_j = f_0 + \frac{j}{r} \cdot \frac{1}{\|f_1 - f_0, f_2 - f_0, \dots, f_n - f_0\|_{\alpha}} (f_1 - f_0)$$

for each $j = 0, 1, \dots, s$. Then

$$\begin{aligned} &\|p_{j} - p_{j-1}, f_{2} - p_{j-1}, \cdots, f_{n} - p_{j-1}\|_{\alpha} \\ &= \|p_{j} - p_{j-1}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha} \\ &= \|\frac{1}{r} \cdot \frac{1}{\|f_{1} - f_{0}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha}} (f_{1} - f_{0}), f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha} \\ &= \frac{1}{r} \cdot \frac{1}{\|f_{1} - f_{0}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha}} \|f_{1} - f_{0}, f_{2} - f_{0}, \cdots, f_{n} - f_{0}\|_{\alpha} \\ &= \frac{1}{r} \end{aligned}$$

for all $j = 1, 2, \dots, s$. By Lemma 4.14, we have

$$\|\Psi(p_{j}) - \Psi(p_{j-1}), \Psi(f_{2}) - \Psi(f_{0}), \cdots, \Psi(f_{n}) - \Psi(f_{0})\|_{\beta}$$

$$= \|\Psi(p_{j}) - \Psi(p_{j-1}), \Psi(f_{2}) - \Psi(p_{j-1}), \cdots, \Psi(f_{n}) - \Psi(p_{j-1})\|_{\beta}$$

$$= \frac{1}{r}$$

for all $j = 1, 2, \dots, s$. Since $f_1 = p_{s-1} + \lambda(p_s - p_{s-1})$ for some $\lambda \in (0, 1]$. We obtain that

$$\Psi(f_1) = \Psi(p_{s-1}) + \eta(\Psi(p_s) - \Psi(p_{s-1}))$$

for some $\eta \in (0,1]$ by the hypothesis. Thus we have

$$\begin{split} &\|\Psi(f_1) - \Psi(p_{s-1}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &= \|\eta(\Psi(p_s) - \Psi(p_{s-1})), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &= \eta \|\Psi(p_s) - \Psi(p_{s-1}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &\leq \|\Psi(p_s) - \Psi(p_{s-1}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta}. \end{split}$$

Hence

$$\begin{split} &\|\Psi(f_1) - \Psi(f_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &\leq \|\Psi(p_1) - \Psi(p_0), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &+ \|\Psi(p_2) - \Psi(p_1), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &+ \cdots \\ &+ \|\Psi(p_{s-1}) - \Psi(p_{s-2}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &+ \|\Psi(f_1) - \Psi(p_{s-1}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &\leq \sum_{j=1}^{s} \|\Psi(p_j) - \Psi(p_{j-1}), \Psi(f_2) - \Psi(f_0), \cdots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \\ &= \frac{s}{r}. \end{split}$$

Therefore,

$$\|\Psi(f_1) - \Psi(f_0), \dots, \Psi(f_n) - \Psi(f_0)\|_{\beta} \le \|f_1 - f_0, f_2 - f_0, \dots, f_n - f_0\|_{\alpha}$$
 for all $f_0, f_1, \dots, f_n \in \Im(X)$. This completes the proof.

References

- A.K. Katasaras, Fuzzy topological vector space, Fuzzy Sets and Systems, 12 (1984), 143–154.
- [2] C. Wu and J. Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Tech., 1 (1984), 1–7.
- [3] S.C. Cheng, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc, 86 (1994), 429–436.
- [4] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy. Math., 11 (2003), 687–705.
- [5] S.S Kim, Strict convexity in linear n-normed spaces, Demonstratio Math., 29 (1996), 739–744.
- [6] A.L. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Intern. J. Math. Sci., 24 (2005), 3963–3977.
- [7] C.G. Park and C. Alaca, An introduction to 2-fuzzy n-normed linear spaces and a new perspective to the Mazur-Ulam problem, Journal of Inequalities and Applications, 2012:14.
- [8] Y.J. Cho, P.C. Lin and S.S. Kim, A Theory of 2-Inner Product Spaces, Nova Science Publishers, New York (2001).

- [9] C. Alaca, A new perspective to the Mazur-Ulam problem in 2-fuzzy 2-normed linear spaces, Iranian J. Fuzzy Syst., 7 (2010), 109–119.
- [10] J. Gao, On the Aleksandrov problem of distance preserving mapping, J. Math. Anal. Appl., **352** (2009), 583–590.
- [11] H.Y. Chu and C.G. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl., 289 (2004), 666–672.
- [12] G.G. Ding, On isometric extensions and distance one preserving mappings, Taiwanese J. Math., 10(1) (2006), 243–249.
- [13] J.M. Rassias and S. Xiang, On the Aleksandrov and triangle isometry Ulam stability problem, Int. J. Appl. Math. Stat., 7 (2007), 133–142.
- [14] Y.M. Ma and J.Y. Wang, On the A.D. Aleksandrov problem of isometry mapping, J. Math. Res. Exposition, 23(4) (2003), 623–630.
- [15] R.M. Somasundaram and T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc., 32(2) (2009), 211–221.
- [16] C. Park and C. Alaca, Mazur-Ulam theorem under weaker conditions in the framework of 2-fuzzy 2-normed linear spaces, Journal of Inequalities and Applications, 78 (2013). doi:10.1186/1029-242X-2013-78.
- [17] H.Y. Chu and S.H. Ku, A Mazur-Ulam problem in non-Archimedean n-normed spaces, Journal of Inequalities and Applications, 2013:34. doi:10.1186/1029-242X-2013-34.