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Abstract. In this paper, we consider complete b−fuzzy metric space and prove common

fixed point theorem for R-weakly commuting maps in this spaces. Our results generalize the

recent result many other known results.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [15] in 1965.
Since then, to use this concept in topology and analysis, many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [5], Kramosil and Michalek [7] have introduced the concept of fuzzy
topological spaces induced by fuzzy metric which have very important applica-
tions in quantum particle physics, particularly in connections with both string
and E-infinity theory which were given and studied by El Naschie [1, 2, 3, 4].
Many authors [6, 8, 10, 12, 13] have proved fixed point theorem in fuzzy (prob-
abilistic) metric spaces.

Definition 1.1. A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
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(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b =
min(a, b).

Definition 1.2. A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and
t, s > 0,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Definition 1.3. A 3-tuple (X,M, ∗) is called a b−fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X, t, s > 0
and b ≥ 1 be a given real number,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, tb) ∗M(y, z, sb ) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

It should be noted that, the class of b−fuzzy metric spaces is effectively
larger than that of fuzzy metric spaces, since a b−fuzzy metric is a fuzzy
metric when b = 1.

We present an example shows that a b−fuzzy metric on X need not be a
fuzzy metric on X.

Example 1.4. Let M(x, y, t) = e
−|x−y|p

t , where p > 1 is a real number. We
show that M is a b−fuzzy metric with b = 2p−1.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied.
If 1 < p <∞, then the convexity of the function f(x) = xp (x > 0) implies(

a+ c

2

)p

≤ 1

2
(ap + cp) ,

and hence, (a+ c)p ≤ 2p−1(ap + cp) holds. Therefore,
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|x− y|p

t+ s
≤ 2p−1

|x− z|p

t+ s
+ 2p−1

|z − y|p

t+ s

≤ 2p−1
|x− z|p

t
+ 2p−1

|z − y|p

s

=
|x− z|p

t/2p−1
+
|z − y|p

s/2p−1
.

Thus, for each x, y, z ∈ X, we obtain

M(x, y, t+ s) = e
−|x−y|p

t+s

≥ M(x, z,
t

2p−1
) ∗M(z, y,

s

2p−1
),

where a ∗ b = a.b. So condition (4) of Definition 1.3 is hold and M is a b−
fuzzy metric.

It should be noted that in preceding example, for p = 2 it is easy to see
that (X,M, ∗) is not a fuzzy metric space.

Example 1.5. Let M(x, y, t) = e
−d(x,y)

t or M(x, y, t) = t
t+d(x,y) , where d is a

b-metric on X and a ∗ b = a.b. Then it is easy to show that M is a b−fuzzy
metric.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied. For
each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−d(x,y)

t+s

≥ e−b
d(x,z)+d(z,y)

t+s

= e−b
d(x,z)
t+s .e−b

d(z,y)
t+s

≥ e
−d(x,z)

t/b .e
−d(z,y)

s/b

= M(x, z,
t

b
) ∗M(z, y,

s

b
).

So condition (4) of Definition 1.3 is hold and M is a b−fuzzy metric.

Before stating and proving our results, we present some definition and
proposition in b−metric space.

Definition 1.6. Let f : R −→ R be a function. Then f is called b−nondecrea-
sing, if x > by this implies f(x) ≥ f(y) for each x, y ∈ R.

Lemma 1.7. ([11]) Let (X,M, ∗) be a b−fuzzy metric space. Then M(x, y, t)
is b−nondecreasing with respect to t, for all x, y in X. Also,

M(x, y, bnt) ≥M(x, y, t), ∀n ∈ N.
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Let (X,M, ∗) be a b−fuzzy metric space. For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
We recall the notions of convergence and completeness in a b−fuzzy metric

space. Let (X,M, ∗) be a b−fuzzy metric space. Let τ be the set of all
A ⊂ X with x ∈ A if and only if there exists t > 0 and 0 < r < 1 such that
B(x, r, t) ⊂ A. Then τ is a topology on X (induced by the b−fuzzy metric
M). A sequence {xn} in X converges to x if and only if M(xn, x, t) → 1 as
n→∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.
The b−fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy
sequence is convergent. A subset A of X is said to be F-bounded if there
exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 1.8. ([11]) In a b−fuzzy metric space (X,M, ∗) the following asser-
tions hold:

(i) If sequence {xn} in X converges to x, then x is unique.
(ii) If sequence {xn} in X is converges to x, then sequence {xn} is a

Cauchy sequence.

In b−fuzzy metric space we have the following propositions.

Proposition 1.9. ([11] Prop. 1.8) Let (X,M, ∗) be a b−fuzzy metric space
and suppose that {xn} and {yn} are b-convergent to x, y respectively then we
have

M(x, y,
t

b2
) ≤ lim sup

n−→∞
M(xn, yn, t) ≤ M(x, y, b2t),

M(x, y,
t

b2
) ≤ lim inf

n−→∞
M(xn, yn, t) ≤M(x, y, b2t).

Proposition 1.10. Let (X,M, ∗) be a b−fuzzy metric space and suppose that
{xn} is b-convergent to x then we have

M(x, y,
t

b
) ≤ lim sup

n−→∞
M(xn, y, t) ≤ M(x, y, bt),

M(x, y,
t

b
) ≤ lim inf

n−→∞
M(xn, y, t) ≤M(x, y, bt).

Proof. By condition (4) of Definition 1.3 we have:

M(x, y, t) ≥M(x, xn,
δ

b
) ∗M(xn, y,

t− δ
b

),
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taking the upper limit as n→∞ we get

M(x, y, t) ≥ lim sup
n−→∞

M(x, xn,
δ

b
) ∗ lim sup

n−→∞
M(xn, y,

t− δ
b

)

= lim sup
n−→∞

M(xn, y,
t− δ
b

),

as δ −→ 0 we have

M(x, y, bt) ≥ lim sup
n−→∞

M(xn, y, t).

Also, by condition (4) of Definition 1.3 we have:

M(xn, y, t) ≥M(xn, x,
δ

b
) ∗M(x, y,

t− δ
b

),

taking the upper limit as n→∞ we get

lim sup
n−→∞

M(xn, y, t) ≥M(x, y,
t− δ
b

),

as δ −→ 0 we have

lim sup
n−→∞

M(xn, y, t) ≥M(x, y,
t

b
).

It follows that

M(x, y,
t

b
) ≤ lim sup

n−→∞
M(xn, y, t) ≤M(x, y, bt).

Similarly, we can show that

M(x, y,
t

b
) ≤ lim inf

n−→∞
M(xn, y, t) ≤M(x, y, bt).

�

Remark 1.11. In general, a b−fuzzy metric is not continuous.

2. The main results

Definition 2.1. ([9], Definition 1.2) Let (X, d) be a metric space and F :
X −→ X be a map. F is called sequentially convergent if {yn} is convergent
provided {Fyn} is convergent.

We start our work by proving the following crucial theorem.

Definition 2.2. Let f and g be maps from a b−fuzzy metric space (X,M, ∗)
into itself. The maps f and g are said to be weakly commuting if

M(fgx, gfx, t) ≥M(fx, gx, t)

for each x ∈ X and t > 0.
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Definition 2.3. Let f and g be maps from a b−fuzzy metric space (X,M, ∗)
into itself. The maps f and g are said to be R-weakly commuting if there
exists some positive real number R such that

M(fgx, gfx, t) ≥M(fx, gx, t/R)

for each x ∈ X and t > 0.

Weak commutativity impliesR-weak commutativity in b−fuzzy metric space.
However, R-weak commutativity implies weak commutativity only when R ≤
1.

Example 2.4. Let X = R. Let a ∗ b = ab for all a, b ∈ [0, 1] and let M be the
b−fuzzy set on X ×X× ]0,+∞[ defined as follows:

M(x, y, t) = e
−(x−y)2

t ,

for all t ∈ R+. Then (X,M, ∗) is a b−fuzzy metric space. Define f(x) = 2x−1
and g(x) = x2. Then

M(fgx, gfx, t) = e
−4(x−1)4

t

= e
−(x−1)4

t/4 = M(fx, gx, t/4)

< e
−(x−1)4

t = M(fx, gx, t).

Therefore, for R = 4, f and g are R-weakly commuting. But f and g are not
weakly commuting since exponential function is strictly increasing.

Theorem 2.5. Let F, f and g be maps from a complete b−fuzzy metric space
(X,M, ∗) into itself. Let f and g be R-weakly commuting self-mappings of X
satisfying the following conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) M(Ffx, Ffy, t) ≥ γ(M(Fgx, Fgy, b4t)), where γ : [0, 1] → [0, 1] is a

continuous function such that γ(a) > a for each a ∈]0, 1[.

Also, if F is one to one, continuous and sequentially convergent. Then we
have

(i) f and g have a unique common fixed point a ∈ X.
(ii) If Ff = fF and Fg = gF , then F, f and g have a unique common

fixed point.

Proof. Let x0 be an arbitrary point in X. By (a), choose a point x1 in X
such that fx0 = gx1. In general choose xn+1 such that fxn = gxn+1 and
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yn = Ffxn = Fgxn+1. Then, for t > 0,

M(yn, yn+1, t) = M(Ffxn, Ffxn+1, t)

≥ γ(M(Fgxn, Fgxn+1, b
4t)) = γ(M(Ffxn−1, Ffxn, b

4t))

≥M(Ffxn−1, Ffxn, b
4t)

≥M(Ffxn−1, Ffxn, t).

Thus {M(Ffxn, Ffxn+1, t);n ≥ 0} is increasing sequence in [0, 1]. Therefore,
tends to a limit a(t) ≤ 1. We claim that a(t) = 1. For if a(t) < 1 on making
n −→∞ in the above inequality we get a(t) ≥ γ(a(t)) > a(t), a contradiction.
Hence a(t) = 1, i.e.,

lim
n
M(Ffxn, Ffxn+1, t) = 1.

If we define

cn(t) = M(Ffxn, Ffxn+1, t), (2.1)

then limn→∞ cn(t) = 1. Now, we prove that {yn = Ffxn} is a Cauchy se-
quence in f(X) for n = 1, 2, 3, · · · . Suppose that {yn} is not a Cauchy se-
quence in f(X). Then there is an ε ∈]0, 1[ such that for each integer k, there
exist integers m(k) and n(k) with m(k) > n(k) ≥ k such that

dk(t) = M(yn(k), ym(k), t) ≤ 1− ε for k = 1, 2, · · · . (2.2)

We may assume that

M(yn(k), ym(k)−1, t) > 1− ε, (2.3)

by choosing m(k) be the smallest number exceeding n(k) for which (2.2) holds.
Using (2.1), we have

1− ε ≥ dk(t) ≥M
(
yn(k), ym(k)−1,

t

2b

)
∗M

(
ym(k)−1, ym(k),

t

2b

)
≥ ck

(
t

2b

)
∗ (1− ε)

(2.4)

Hence, dk(t) −→ 1− ε for every t > 0 as k −→∞.
Also notice

dk(t) = M(yn(k), ym(k), t)

≥M
(
yn(k), yn(k)+1,

t

3b

)
∗M

(
yn(k)+1, ym(k)+1,

t

3b

)
∗M

(
ym(k)+1, ym(k),

t

3b

)
≥ ck

(
t

3b

)
∗ γ

(
M

(
yn(k), ym(k),

tb3

3

))
∗ ck

(
t

3b

)
= ck

(
t

3b

)
∗ γ

(
dk

(
tb3

3

))
∗ ck

(
t

3b

)
.



292 Shaban Sedghi and Nabi Shobkolaei

Thus, as k −→∞ in the above inequality we have

1− ε ≥ γ(1− ε) > 1− ε

which is a contradiction. Thus, {Ffxn}n is Cauchy and by the completeness
of X, {Ffxn}n converges to z in X. Also {Fgxn}n converges to z in X. Since
F is sequentially convergent, {fxn} and {gxn} converges to some a ∈ X and
also from the continuity of F, {Ffxn} converges to Fa. That is, since {yn}
converges to z, then yn = Ffxn = Fgxn+1 −→ Fa = z. Let us suppose that
the mapping f is continuous. Then limn ffxn = fa and limn fgxn = fa.
Further we have since f and g are R-weakly commuting

M(fgxn, gfxn, t) ≥M(fxn, gxn, t/R).

Taking the lower limit as n→∞in the above inequality

M(fa, lim inf
n−→∞

gfxn, b
2t) ≥ lim inf

n−→∞
M(fgxn, gfxn, t)

≥ lim inf
n−→∞

M(fxn, gxn,
t

R
) ≥M(a, a,

t

Rb2
) = 1.

Similarly,

M(fa, lim sup
n−→∞

gfxn, b
2t) = 1,

hence we get limn gfxn = fa. We now prove that a = fa. Suppose a 6= fa,
since F is one to one we get Ffa 6= Fa = z. then M(Fa, Ffa, t) < 1. By (c)

M(Ffa, Fa, b2t) ≥ lim inf
n−→∞

M(Fffxn, Ffxn, t)

≥ γ(lim inf
n−→∞

M(Fgfxn, Fgxn, b
4t))

≥ γ(M(Ffa, Fa, b2t))

> M(Ffa, Fa, b2t),

a contradiction. Therefore, Ffa = Fa, this implies that fa = a. Since
f(X) ⊆ g(X) we can find a1 in X such that a = fa = ga1. Now,

M(Fffxn, Ffa1, t) ≥ γ(M(Fgfxn, Fga1, b
4t)).

Taking limit inf as n→∞ we get

M(Ffa, Ffa1, bt) ≥ lim inf
n−→∞

M(Fffxn, Ffa1, t)

≥ γ( lim inf
n−→∞

M(Fgfxn, Fga1, b
4t))

≥ γ(M(Ffa, Fga1, b
3t))

= γ(M(Ffa, Ffa, b3t)) = 1,
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since γ(1) = 1, which implies that Ffa = Ffa1. Since F is one to one, then
a = fa = fa1 = ga1. Also for any t > 0,

M(fa, ga, t) = M(fga1, gfa1, t) ≥M(fa1, ga1, t/R) = 1

which again implies that fa = ga. Thus a is a common fixed point of f and
g.

Now to prove uniqueness let if possible a′ 6= a be another common fixed
point of f and g, hence Fa 6= Fa′. Then there exists t > 0 such that
M(Fa, Fa′, t) < 1, and

M(Fa, Fa′, t) = M(Ffa, Ffa′, t)

≥ γ(M(Fga, Fga′, b4t)) = γ(M(Fa, Fa′, b4t))

> M(Fa, Fa′, b4t) ≥M(Fa, Fa′, t)

which is contradiction. Therefore, Fa = Fa′, since F is one to one this implies
that a = a′ is a unique common fixed point of f and g. Now, we need only
prove f, g and F have a unique common fixed point. Let a be the unique
fixed point of f. Suppose to the contrary that Fa 6= a. Since F is one to one,
F 2a 6= Fa. Then

M(Fa, F 2a, t) = M(Ffa, FFfa, t) = M(Ffa, FfFa, t)

≥ γ(M(Fga, FgFa, b4t)

= γ(M(Fga, FFga, b4t)

= γ(M(Fa, F 2a, b4t)

> M(Fa, F 2a, t)

which is contradiction. Therefore, Fa = F 2a implies that Fa = a. This proves
that a is a unique common fixed point of f, g and F. �

Corollary 2.6. Let f and g be maps from a complete b−fuzzy metric space
(X,M, ∗) into itself. Let f and g be R-weakly commuting self-mappings of X
satisfying the following conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) M(fx, fy, t) ≥ γ(M(gx, gy, b4t)), where γ : [0, 1]→ [0, 1] is a continu-

ous function such that γ(a) > a for each a ∈]0, 1[.

Then f and g have a unique common fixed point a ∈ X.

Proof. If we take F as identity map on X, then Theorem 2.5 follows that f
and g have a unique common fixed point. �
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Corollary 2.7. Let F, f and g be maps from a complete b−fuzzy metric space
(X,M, ∗) into itself. Let Ff and Fg be R-weakly commuting self-mappings of
X satisfying the following conditions:

(a) Ff(X) ⊆ Fg(X);
(b) Ff or Fg is continuous;
(c) M(Ffx, Ffy, t) ≥ γ(M(Fgx, Fgy, b4t)), where γ : [0, 1] → [0, 1] is a

continuous function such that γ(a) > a for each a ∈]0, 1[.

If Ff = fF and Fg = gF , then F, f and g have a unique common fixed point.

Proof. By Corollary 2.6 follows that Ff and Fg have a unique common fixed
point a ∈ X, i.e. Ffa = Fga = a. Now, we show that Fa = a.

M(Fa, a, t) = M(FFfa, Ffa, t) = M(FfFa, Ffa, t)

≥ γ(M(FgFa, Fga, b4t)

= γ(M(FFga, Fga, b4t)

= γ(M(Fa, a, b4t)

> M(Fa, a, t)

which is contradiction. Therefore, Fa = a. Hence, Ffa = Fga = a = Fa,
also fa = fFa = Ffa = a and ga = gFa = Fga = a it follows that fa =
ga = a. �

Now we give an example to support our Theorem 2.5.

Example 2.8. Consider Example 1.4 in which X = [0, 1]. Let a ∗ c = ac for
all a, c ∈ [0, 1] and let M be the b−fuzzy set on X × X× ]0,+∞[ defined as
follows:

M(x, y, t) = e
−(x−y)2

t ,

for all t ∈ R+. Then (X,M, ∗) is a b−fuzzy metric space for b = 2. Define
f(x) = x

12 , g(x) = x
2 and F (x) = x

2 . It is evident that f(X) ⊆ g(X), f is
continuous. Define γ : (0, 1)→ (0, 1) by γ(a) =

√
a, for 0 < a < 1. Since

(
x

24
− y

24
)2 ≤ (

1

24
)2(x− y)2 ≤ 1

2
.

1

16
(x− y)2 =

1

2
(
x

4
− y

4
)2,

hence it follows that

M(Ffx, Ffy, t) = e
−( x

24−
y
24 )2

t

≥ e
−(x4−

y
4 )2

2t = γ(M(Fgx, Fgy, b4t))

for all x, y in X, f and g are R-weakly commuting. Thus all the conditions of
last theorem are satisfied and 0 is a common fixed point of f and g.
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Corollary 2.9. Let (X,M, ∗) be a complete fuzzy metric space and let Ff
and Fg be R-weakly commuting self-mappings of X satisfying the following
conditions:

(a) Ff(X) ⊆ Fg(X);
(b) Ff or Fg is continuous;
(c) M(Ffx, Ffy, t) ≥ γ(M(Fgx, Fgy, t)), where γ : [0, 1] → [0, 1] is a

continuous function such that γ(a) > a for each a ∈]0, 1[.

Also, if Ff = fF and Fg = gF , then F, f and g have a unique common fixed
point.

Proof. If we take b = 1, then Corollary 2.7 follows that F, f and g have a
unique common fixed point. �
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[8] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys., 2004;
144:431–9.

[9] S. Moradi and M. Omid, A fixedpoint theorem for integral type inequality depending on
another function, Int. J. Math. Analysis, 4(30) (2010), 1491–1499.

[10] B. Schweizer, H. Sherwood and RM. Tardiff, Contractions on PM-space examples and
counterexamples, Stochastica, 1988; 1:5–17.

[11] S. Sedghi and N. Shobe, Common fixed point Theorem in b-fuzzy metric space, Nonlinear
Functional Analysis and Applications, 17(3) (2012), 349–359.

[12] S. Sedghi, N. Shobe and M.A. Selahshoor, A common fixed point theorem for Four
mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics, 1(1)
(2006).

[13] S. Sedghi, D. Turkoglu and N. Shobe, Generalization common fixed point theorem in
complete fuzzy metric spaces, Journal of Computational Analysis and Applictions, 9(3)
(2007), 337–348 .

[14] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos,
Solitons and Fractals, 2005; 24:407–22.

[15] LA. Zadeh, Fuzzy sets, Inform and Control, 1965; 8:338–53.


