Nonlinear Functional Analysis and Applications Vol. 19, No. 2 (2014), pp. 285-295

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2014 Kyungnam University Press

COMMON FIXED POINT THEOREM FOR R-WEAKLY COMMUTING MAPS IN b−FUZZY METRIC SPACES

Shaban Sedghi¹ and Nabi Shobkolaei²

¹Department of Mathematics, Qaemshahr Branch Islamic Azad University, Qaemshahr, Iran e-mail: sedghi_gh@yahoo.com

²Department of Mathematics, Babol Branch Islamic Azad University, Babol, Iran e-mail: nabi_shobe@yahoo.com

Abstract. In this paper, we consider complete b −fuzzy metric space and prove common fixed point theorem for R-weakly commuting maps in this spaces. Our results generalize the recent result many other known results.

1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [15] in 1965. Since then, to use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [5], Kramosil and Michalek [7] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics, particularly in connections with both string and E-infinity theory which were given and studied by El Naschie [1, 2, 3, 4]. Many authors [6, 8, 10, 12, 13] have proved fixed point theorem in fuzzy (probabilistic) metric spaces.

Definition 1.1. A binary operation $\ast : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions:

- (1) ∗ is associative and commutative,
- (2) \ast is continuous,

 0 Received December 11, 2013. Revised April 12, 2014.

⁰ 2010 Mathematics Subject Classification: 47H10, 54H25.

⁰Keywords: b−fuzzy metric space, common fixed point theorem.

⁰The corresponding author: sedghi gh@yahoo.com (Shaban Sedghi).

286 Shaban Sedghi and Nabi Shobkolaei

- (3) $a * 1 = a$ for all $a \in [0, 1]$,
- (4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in [0, 1]$.

Two typical examples of a continuous t-norm are $a * b = ab$ and $a * b =$ $\min(a, b)$.

Definition 1.2. A 3-tuple $(X, M, *)$ is called a *fuzzy metric space* if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and $t, s > 0,$

(1) $M(x, y, t) > 0$, (2) $M(x, y, t) = 1$ if and only if $x = y$, (3) $M(x, y, t) = M(y, x, t),$ (4) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s),$ (5) $M(x, y, ...) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

Definition 1.3. A 3-tuple $(X, M, *)$ is called a b-fuzzy metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm and M is a fuzzy set on $X^2 \times (0,\infty)$, satisfying the following conditions for each $x, y, z \in X$, $t, s > 0$ and $b \geq 1$ be a given real number,

(1) $M(x, y, t) > 0$, (2) $M(x, y, t) = 1$ if and only if $x = y$, (3) $M(x, y, t) = M(y, x, t),$ (4) $M(x, y, \frac{t}{b}) * M(y, z, \frac{s}{b}) \leq M(x, z, t + s),$ (5) $M(x, y, \cdot) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

It should be noted that, the class of b−fuzzy metric spaces is effectively larger than that of fuzzy metric spaces, since a b −fuzzy metric is a fuzzy metric when $b = 1$.

We present an example shows that a b −fuzzy metric on X need not be a fuzzy metric on X.

Example 1.4. Let $M(x, y, t) = e^{\frac{-|x-y|^p}{t}}$, where $p > 1$ is a real number. We show that M is a b–fuzzy metric with $b = 2^{p-1}$.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied.

If $1 < p < \infty$, then the convexity of the function $f(x) = x^p$ $(x > 0)$ implies

$$
\left(\frac{a+c}{2}\right)^p \le \frac{1}{2} \left(a^p + c^p\right),\,
$$

and hence, $(a+c)^p \leq 2^{p-1}(a^p+c^p)$ holds. Therefore,

Common fixed point theorems in b−fuzzy metric spaces 287

$$
\frac{|x-y|^p}{t+s} \le 2^{p-1} \frac{|x-z|^p}{t+s} + 2^{p-1} \frac{|z-y|^p}{t+s}
$$

\n
$$
\le 2^{p-1} \frac{|x-z|^p}{t} + 2^{p-1} \frac{|z-y|^p}{s}
$$

\n
$$
= \frac{|x-z|^p}{t/2^{p-1}} + \frac{|z-y|^p}{s/2^{p-1}}.
$$

Thus, for each $x, y, z \in X$, we obtain

$$
M(x, y, t + s) = e^{\frac{-|x-y|^p}{t+s}} \geq M(x, z, \frac{t}{2^{p-1}}) * M(z, y, \frac{s}{2^{p-1}}),
$$

where $a * b = a.b$. So condition (4) of Definition 1.3 is hold and M is a b− fuzzy metric.

It should be noted that in preceding example, for $p = 2$ it is easy to see that $(X, M, *)$ is not a fuzzy metric space.

Example 1.5. Let $M(x, y, t) = e^{\frac{-d(x, y)}{t}}$ or $M(x, y, t) = \frac{t}{t + d(x, y)}$, where d is a b-metric on X and $a * b = a.b$. Then it is easy to show that M is a b-fuzzy metric.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied. For each $x, y, z \in X$ we obtain

$$
M(x, y, t + s) = e^{\frac{-d(x, y)}{t+s}} \n\geq e^{-b\frac{d(x, z) + d(z, y)}{t+s}} \n= e^{-b\frac{d(x, z)}{t+s}} \cdot e^{-b\frac{d(z, y)}{t+s}} \n\geq e^{\frac{-d(x, z)}{t/b}} \cdot e^{\frac{-d(z, y)}{s/b}} \n= M(x, z, \frac{t}{b}) * M(z, y, \frac{s}{b}).
$$

So condition (4) of Definition 1.3 is hold and M is a b -fuzzy metric.

Before stating and proving our results, we present some definition and proposition in b−metric space.

Definition 1.6. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Then f is called b–nondecreasing, if $x > by$ this implies $f(x) \ge f(y)$ for each $x, y \in \mathbb{R}$.

Lemma 1.7. ([11]) Let $(X, M, *)$ be a b-fuzzy metric space. Then $M(x, y, t)$ is b−nondecreasing with respect to t, for all x, y in X . Also,

$$
M(x, y, b^n t) \ge M(x, y, t), \quad \forall n \in \mathbb{N}.
$$

Let $(X, M, *)$ be a b-fuzzy metric space. For $t > 0$, the open ball $B(x, r, t)$ with center $x \in X$ and radius $0 < r < 1$ is defined by

$$
B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.
$$

We recall the notions of convergence and completeness in a b −fuzzy metric space. Let $(X, M, *)$ be a b-fuzzy metric space. Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exists $t > 0$ and $0 < r < 1$ such that $B(x, r, t) \subset A$. Then τ is a topology on X (induced by the b-fuzzy metric M). A sequence $\{x_n\}$ in X converges to x if and only if $M(x_n, x, t) \to 1$ as $n \to \infty$, for each $t > 0$. It is called a Cauchy sequence if for each $0 < \varepsilon < 1$ and $t > 0$, there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for each $n, m \ge n_0$. The b−fuzzy metric space $(X, M, *)$ is said to be complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists $t > 0$ and $0 < r < 1$ such that $M(x, y, t) > 1 - r$ for all $x, y \in A$.

Lemma 1.8. ([11]) In a b–fuzzy metric space $(X, M, *)$ the following assertions hold:

- (i) If sequence $\{x_n\}$ in X converges to x, then x is unique.
- (ii) If sequence $\{x_n\}$ in X is converges to x, then sequence $\{x_n\}$ is a Cauchy sequence.

In b−fuzzy metric space we have the following propositions.

Proposition 1.9. ([11] Prop. 1.8) Let $(X, M, *)$ be a b-fuzzy metric space and suppose that $\{x_n\}$ and $\{y_n\}$ are b-convergent to x, y respectively then we have

$$
M(x, y, \frac{t}{b^2}) \le \limsup_{n \to \infty} M(x_n, y_n, t) \le M(x, y, b^2t),
$$

$$
M(x, y, \frac{t}{b^2}) \le \liminf_{n \to \infty} M(x_n, y_n, t) \le M(x, y, b^2t).
$$

Proposition 1.10. Let $(X, M, *)$ be a b-fuzzy metric space and suppose that ${x_n}$ is b-convergent to x then we have

$$
M(x, y, \frac{t}{b}) \le \limsup_{n \to \infty} M(x_n, y, t) \le M(x, y, bt),
$$

$$
M(x, y, \frac{t}{b}) \le \liminf_{n \to \infty} M(x_n, y, t) \le M(x, y, bt).
$$

Proof. By condition (4) of Definition 1.3 we have:

$$
M(x, y, t) \ge M(x, x_n, \frac{\delta}{b}) * M(x_n, y, \frac{t - \delta}{b}),
$$

taking the upper limit as $n \to \infty$ we get

$$
M(x, y, t) \geq \limsup_{n \to \infty} M(x, x_n, \frac{\delta}{b}) * \limsup_{n \to \infty} M(x_n, y, \frac{t - \delta}{b})
$$

=
$$
\limsup_{n \to \infty} M(x_n, y, \frac{t - \delta}{b}),
$$

as $\delta \longrightarrow 0$ we have

$$
M(x, y, bt) \ge \limsup_{n \to \infty} M(x_n, y, t).
$$

Also, by condition (4) of Definition 1.3 we have:

$$
M(x_n, y, t) \ge M(x_n, x, \frac{\delta}{b}) * M(x, y, \frac{t - \delta}{b}),
$$

taking the upper limit as $n \to \infty$ we get

$$
\limsup_{n \to \infty} M(x_n, y, t) \ge M(x, y, \frac{t - \delta}{b}),
$$

as $\delta \longrightarrow 0$ we have

$$
\limsup_{n \to \infty} M(x_n, y, t) \ge M(x, y, \frac{t}{b}).
$$

It follows that

$$
M(x, y, \frac{t}{b}) \le \limsup_{n \to \infty} M(x_n, y, t) \le M(x, y, bt).
$$

Similarly, we can show that

$$
M(x, y, \frac{t}{b}) \le \liminf_{n \to \infty} M(x_n, y, t) \le M(x, y, bt).
$$

Remark 1.11. In general, a b−fuzzy metric is not continuous.

2. The main results

Definition 2.1. ([9], Definition 1.2) Let (X, d) be a metric space and F : $X \longrightarrow X$ be a map. F is called sequentially convergent if $\{y_n\}$ is convergent provided ${F y_n}$ is convergent.

We start our work by proving the following crucial theorem.

Definition 2.2. Let f and g be maps from a b−fuzzy metric space $(X, M, *)$ into itself. The maps f and g are said to be weakly commuting if

$$
M(fgx, gfx, t) \ge M(fx, gx, t)
$$

for each $x \in X$ and $t > 0$.

Definition 2.3. Let f and g be maps from a b−fuzzy metric space $(X, M, *)$ into itself. The maps f and g are said to be R -weakly commuting if there exists some positive real number R such that

$$
M(fgx, gfx, t) \ge M(fx, gx, t/R)
$$

for each $x \in X$ and $t > 0$.

Weak commutativity implies R -weak commutativity in b −fuzzy metric space. However, R-weak commutativity implies weak commutativity only when $R \leq$ 1.

Example 2.4. Let $X = \mathbb{R}$. Let $a * b = ab$ for all $a, b \in [0, 1]$ and let M be the b−fuzzy set on $X \times X \times]0, +\infty[$ defined as follows:

$$
M(x, y, t) = e^{\frac{-(x-y)^2}{t}},
$$

for all $t \in \mathbb{R}^+$. Then $(X, M, *)$ is a b-fuzzy metric space. Define $f(x) = 2x - 1$ and $g(x) = x^2$. Then

$$
M(fgx, gfx, t) = e^{\frac{-4(x-1)^4}{t}}
$$

= $e^{\frac{-(x-1)^4}{t/4}} = M(fx, gx, t/4)$
< $e^{\frac{-(x-1)^4}{t}} = M(fx, gx, t).$

Therefore, for $R = 4$, f and g are R-weakly commuting. But f and g are not weakly commuting since exponential function is strictly increasing.

Theorem 2.5. Let F, f and g be maps from a complete b−fuzzy metric space $(X, M, *)$ into itself. Let f and g be R-weakly commuting self-mappings of X satisfying the following conditions:

- (a) $f(X) \subseteq g(X)$;
- (b) f or g is continuous;
- (c) $M(Ffx, Ffy, t) \ge \gamma(M(Fgx, Fgy, b^4t)),$ where $\gamma : [0, 1] \rightarrow [0, 1]$ is a continuous function such that $\gamma(a) > a$ for each $a \in]0,1[$.

Also, if F is one to one, continuous and sequentially convergent. Then we have

- (i) f and g have a unique common fixed point $a \in X$.
- (ii) If $Ff = fF$ and $Fg = gF$, then F, f and g have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. By (a), choose a point x_1 in X such that $fx_0 = gx_1$. In general choose x_{n+1} such that $fx_n = gx_{n+1}$ and

$$
y_n = Ffx_n = Fgx_{n+1}.
$$
 Then, for $t > 0$,
\n
$$
M(y_n, y_{n+1}, t) = M(Ffx_n, Ffx_{n+1}, t)
$$
\n
$$
\ge \gamma(M(Fgx_n, Fgx_{n+1}, b^4 t)) = \gamma(M(Ffx_{n-1}, Ffx_n, b^4 t))
$$
\n
$$
\ge M(Ffx_{n-1}, Ffx_n, b^4 t)
$$
\n
$$
\ge M(Ffx_{n-1}, Ffx_n, t).
$$

Thus $\{M(Ffx_n, Ffx_{n+1}, t); n \geq 0\}$ is increasing sequence in [0, 1]. Therefore, tends to a limit $a(t) \leq 1$. We claim that $a(t) = 1$. For if $a(t) < 1$ on making $n \longrightarrow \infty$ in the above inequality we get $a(t) \geq \gamma(a(t)) > a(t)$, a contradiction. Hence $a(t) = 1$, i.e.,

$$
\lim_n M(Ffx_n, Ffx_{n+1}, t) = 1.
$$

If we define

$$
c_n(t) = M(Ffx_n, Ffx_{n+1}, t), \qquad (2.1)
$$

then $\lim_{n\to\infty} c_n(t) = 1$. Now, we prove that $\{y_n = F f x_n\}$ is a Cauchy sequence in $f(X)$ for $n = 1, 2, 3, \cdots$. Suppose that $\{y_n\}$ is not a Cauchy sequence in $f(X)$. Then there is an $\epsilon \in]0,1[$ such that for each integer k, there exist integers $m(k)$ and $n(k)$ with $m(k) > n(k) \geq k$ such that

$$
d_k(t) = M(y_{n(k)}, y_{m(k)}, t) \le 1 - \epsilon \text{ for } k = 1, 2, \cdots.
$$
 (2.2)

We may assume that

$$
M(y_{n(k)}, y_{m(k)-1}, t) > 1 - \epsilon,
$$
\n(2.3)

by choosing $m(k)$ be the smallest number exceeding $n(k)$ for which (2.2) holds. Using (2.1) , we have

$$
1 - \epsilon \ge d_k(t) \ge M\left(y_{n(k)}, y_{m(k)-1}, \frac{t}{2b}\right) * M\left(y_{m(k)-1}, y_{m(k)}, \frac{t}{2b}\right)
$$

$$
\ge c_k\left(\frac{t}{2b}\right) * (1 - \epsilon)
$$
 (2.4)

Hence, $d_k(t) \longrightarrow 1 - \epsilon$ for every $t > 0$ as $k \longrightarrow \infty$. Also notice

$$
d_k(t) = M(y_{n(k)}, y_{m(k)}, t)
$$

\n
$$
\geq M\left(y_{n(k)}, y_{n(k)+1}, \frac{t}{3b}\right) * M\left(y_{n(k)+1}, y_{m(k)+1}, \frac{t}{3b}\right) * M\left(y_{m(k)+1}, y_{m(k)}, \frac{t}{3b}\right)
$$

\n
$$
\geq c_k\left(\frac{t}{3b}\right) * \gamma\left(M\left(y_{n(k)}, y_{m(k)}, \frac{tb^3}{3}\right)\right) * c_k\left(\frac{t}{3b}\right)
$$

\n
$$
= c_k\left(\frac{t}{3b}\right) * \gamma\left(d_k\left(\frac{tb^3}{3}\right)\right) * c_k\left(\frac{t}{3b}\right).
$$

Thus, as $k \longrightarrow \infty$ in the above inequality we have

$$
1 - \epsilon \ge \gamma(1 - \epsilon) > 1 - \epsilon
$$

which is a contradiction. Thus, ${Ffx_n}_n$ is Cauchy and by the completeness of X, ${Ffx_n}_n$ converges to z in X. Also ${Fgx_n}_n$ converges to z in X. Since F is sequentially convergent, $\{fx_n\}$ and $\{gx_n\}$ converges to some $a \in X$ and also from the continuity of F, ${Ffx_n}$ converges to Fa. That is, since ${y_n}$ converges to z, then $y_n = F f x_n = F g x_{n+1} \longrightarrow F a = z$. Let us suppose that the mapping f is continuous. Then $\lim_{n} f f(x_n) = fa$ and $\lim_{n} f g(x_n) = fa$. Further we have since f and g are R -weakly commuting

$$
M(fgx_n, gfx_n, t) \geq M(fx_n, gx_n, t/R).
$$

Taking the lower limit as $n \to \infty$ in the above inequality

$$
M(fa, \liminf_{n \to \infty} gfx_n, b^2t) \ge \liminf_{n \to \infty} M(fgx_n, gfx_n, t)
$$

$$
\ge \liminf_{n \to \infty} M(fx_n, gx_n, \frac{t}{R}) \ge M(a, a, \frac{t}{Rb^2}) = 1.
$$

Similarly,

$$
M(fa, \limsup_{n \to \infty} gfx_n, b^2t) = 1,
$$

hence we get $\lim_{n} gfx_n = fa$. We now prove that $a = fa$. Suppose $a \neq fa$, since F is one to one we get $F f a \neq Fa = z$. then $M(F a, F f a, t) < 1$. By (c)

$$
M(Ffa, Fa, b^2t) \ge \liminf_{n \to \infty} M(Fffx_n, Ffx_n, t)
$$

\n
$$
\ge \gamma(\liminf_{n \to \infty} M(Fgfx_n, Fgx_n, b^4t))
$$

\n
$$
\ge \gamma(M(Ffa, Fa, b^2t))
$$

\n
$$
> M(Ffa, Fa, b^2t),
$$

a contradiction. Therefore, $Ffa = Fa$, this implies that $fa = a$. Since $f(X) \subseteq g(X)$ we can find a_1 in X such that $a = fa = ga_1$. Now,

$$
M(Fffx_n, Ffa_1, t) \ge \gamma(M(Fgfx_n, Fga_1, b^4t)).
$$

Taking limit inf as $n \to \infty$ we get

$$
M(Ffa, Ffa_1, bt) \ge \liminf_{n \to \infty} M(Fffx_n, Ffa_1, t)
$$

\n
$$
\ge \gamma \left(\liminf_{n \to \infty} M(Fgfx_n, Fga_1, b^4t) \right)
$$

\n
$$
\ge \gamma (M(Ffa, Fga_1, b^3t))
$$

\n
$$
= \gamma (M(Ffa, Ffa, b^3t)) = 1,
$$

since $\gamma(1) = 1$, which implies that $Ffa = Ffa_1$. Since F is one to one, then $a = fa = fa₁ = ga₁$. Also for any $t > 0$,

$$
M(fa, ga, t) = M(fga_1, gfa_1, t) \ge M(fa_1, ga_1, t/R) = 1
$$

which again implies that $fa = ga$. Thus a is a common fixed point of f and g.

Now to prove uniqueness let if possible $a' \neq a$ be another common fixed point of f and g, hence $Fa \neq Fa'$. Then there exists $t > 0$ such that $M(Fa, Fa', t) < 1$, and

$$
M(Fa, Fa', t) = M(Ffa, Ffa', t)
$$

\n
$$
\ge \gamma(M(Fga, Fga', b^4t)) = \gamma(M(Fa, Fa', b^4t))
$$

\n
$$
> M(Fa, Fa', b^4t) \ge M(Fa, Fa', t)
$$

which is contradiction. Therefore, $Fa = Fa'$, since F is one to one this implies that $a = a'$ is a unique common fixed point of f and g. Now, we need only prove f, g and F have a unique common fixed point. Let a be the unique fixed point of f. Suppose to the contrary that $Fa \neq a$. Since F is one to one, $F^2a \neq Fa$. Then

$$
M(Fa, F^2a, t) = M(Ffa, FFfa, t) = M(Ffa, FfFa, t)
$$

\n
$$
\ge \gamma (M(Fga, FgFa, b^4t)
$$

\n
$$
= \gamma (M(Fga, FFga, b^4t)
$$

\n
$$
= \gamma (M(Fa, F^2a, b^4t))
$$

\n
$$
> M(Fa, F^2a, t)
$$

which is contradiction. Therefore, $Fa = F^2a$ implies that $Fa = a$. This proves that a is a unique common fixed point of f, g and F. \Box

Corollary 2.6. Let f and g be maps from a complete b−fuzzy metric space $(X, M, *)$ into itself. Let f and g be R-weakly commuting self-mappings of X satisfying the following conditions:

- (a) $f(X) \subseteq g(X)$;
- (b) f or g is continuous;
- (c) $M(fx, fy, t) \ge \gamma(M(gx, gy, b^4t)),$ where $\gamma : [0, 1] \to [0, 1]$ is a continuous function such that $\gamma(a) > a$ for each $a \in]0,1[$.

Then f and g have a unique common fixed point $a \in X$.

Proof. If we take F as identity map on X, then Theorem 2.5 follows that f and g have a unique common fixed point. \square Corollary 2.7. Let F, f and g be maps from a complete b−fuzzy metric space $(X, M, *)$ into itself. Let Ff and Fg be R-weakly commuting self-mappings of X satisfying the following conditions:

- (a) $Ff(X) \subseteq Fg(X);$
- (b) Ff or Fg is continuous;
- (c) $M(Ffx, Ffy, t) \ge \gamma(M(Fgx, Fgy, b^4t)),$ where $\gamma : [0, 1] \rightarrow [0, 1]$ is a continuous function such that $\gamma(a) > a$ for each $a \in]0,1[$.

If $F f = fF$ and $F g = gF$, then F, f and g have a unique common fixed point.

Proof. By Corollary 2.6 follows that Ff and Fg have a unique common fixed point $a \in X$, i.e. $Ffa = Fga = a$. Now, we show that $Fa = a$.

$$
M(Fa, a, t) = M(FFfa, Ffa, t) = M(FfFa, Ffa, t)
$$

\n
$$
\ge \gamma(M(FgFa, Fga, b4t)
$$

\n
$$
= \gamma(M(FFga, Fga, b4t)
$$

\n
$$
= \gamma(M(Fa, a, b4t))
$$

\n
$$
> M(Fa, a, t)
$$

which is contradiction. Therefore, $Fa = a$. Hence, $Ffa = Fga = a = Fa$, also $fa = fFa = Ffa = a$ and $ga = gFa = Fga = a$ it follows that $fa =$ $ga = a$.

Now we give an example to support our Theorem 2.5.

Example 2.8. Consider Example 1.4 in which $X = [0, 1]$. Let $a * c = ac$ for all $a, c \in [0,1]$ and let M be the b-fuzzy set on $X \times X \times [0, +\infty]$ defined as follows:

$$
M(x, y, t) = e^{\frac{-(x-y)^2}{t}},
$$

for all $t \in \mathbb{R}^+$. Then $(X, M, *)$ is a b-fuzzy metric space for $b = 2$. Define $f(x) = \frac{x}{12}$, $g(x) = \frac{x}{2}$ and $F(x) = \frac{x}{2}$. It is evident that $f(X) \subseteq g(X)$, f is continuous. Define $\gamma : (0,1) \to (0,1)$ by $\gamma(a) = \sqrt{a}$, for $0 < a < 1$. Since

$$
(\frac{x}{24} - \frac{y}{24})^2 \le (\frac{1}{24})^2 (x - y)^2 \le \frac{1}{2} \cdot \frac{1}{16} (x - y)^2 = \frac{1}{2} (\frac{x}{4} - \frac{y}{4})^2,
$$

hence it follows that

$$
M(Ffx, Ffy, t) = e^{\frac{-(\frac{x}{24} - \frac{y}{24})^2}{t}}
$$

$$
\geq e^{\frac{-(\frac{x}{4} - \frac{y}{4})^2}{2t}} = \gamma(M(Fgx, Fgy, b^4t))
$$

for all x, y in X, f and g are R-weakly commuting. Thus all the conditions of last theorem are satisfied and θ is a common fixed point of f and g .

Corollary 2.9. Let $(X, M, *)$ be a complete fuzzy metric space and let Ff and Fq be R-weakly commuting self-mappings of X satisfying the following conditions:

- (a) $F f(X) \subseteq F g(X);$
- (b) Ff or Fg is continuous;
- (c) $M(Ffx, Ffy, t) \ge \gamma(M(Fgx, Fgy, t))$, where $\gamma : [0, 1] \rightarrow [0, 1]$ is a continuous function such that $\gamma(a) > a$ for each $a \in]0,1[$.

Also, if $F f = fF$ and $F g = gF$, then F, f and g have a unique common fixed point.

Proof. If we take $b = 1$, then Corollary 2.7 follows that F, f and g have a unique common fixed point.

REFERENCES

- [1] MS. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals, 1998; 9:517–29.
- [2] MS. El Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals, 2004; 19:209–36.
- [3] MS. El Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int. J. of Nonlinear Science and Numerical Simulation, 2005; 6:95–8.
- [4] MS. El Naschie, The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation, Chaos, Solitons and Fractals, 2006; 27:9–13.
- [5] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 1994; 64:395–9.
- [6] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Sys., 2002; 125:245–52.
- [7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 1975; 11:326–34.
- [8] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys., 2004; 144:431–9.
- [9] S. Moradi and M. Omid, A fixedpoint theorem for integral type inequality depending on another function, Int. J. Math. Analysis, 4(30) (2010), 1491–1499.
- [10] B. Schweizer, H. Sherwood and RM. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica, 1988; 1:5–17.
- [11] S. Sedghi and N. Shobe, Common fixed point Theorem in b-fuzzy metric space, Nonlinear Functional Analysis and Applications, 17(3) (2012), 349–359.
- [12] S. Sedghi, N. Shobe and M.A. Selahshoor, A common fixed point theorem for Four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics, $1(1)$ (2006).
- [13] S. Sedghi, D. Turkoglu and N. Shobe, Generalization common fixed point theorem in complete fuzzy metric spaces, Journal of Computational Analysis and Applictions, 9(3) $(2007), 337-348$.
- [14] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals, 2005; 24:407–22.
- [15] LA. Zadeh, Fuzzy sets, Inform and Control, 1965; 8:338–53.