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Abstract. In this paper, we consider complete b—fuzzy metric space and prove common
fixed point theorem for R-weakly commuting maps in this spaces. Our results generalize the

recent result many other known results.

1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [15] in 1965.
Since then, to use this concept in topology and analysis, many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [5], Kramosil and Michalek [7] have introduced the concept of fuzzy
topological spaces induced by fuzzy metric which have very important applica-
tions in quantum particle physics, particularly in connections with both string
and E-infinity theory which were given and studied by El Naschie [1, 2, 3, 4].
Many authors [6, 8, 10, 12, 13] have proved fixed point theorem in fuzzy (prob-
abilistic) metric spaces.

Definition 1.1. A binary operation x : [0, 1] x [0, 1] — [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) * is associative and commutative,

(2) * is continuous,
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(3) ax1=aforallacl0,1],
(4) a*b < cxd whenever a < ¢ and b < d, for each a,b,c,d € [0, 1].

Two typical examples of a continuous ¢-norm are a *b = ab and a x b =
min(a, b).

Definition 1.2. A 3-tuple (X, M, x) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, x is a continuous t-norm and M is a fuzzy set
on X? x (0,00), satisfying the following conditions for each z,7,z € X and
t,s >0,

(1) M(z,y,t) >0,

(2) M(z,y,t) =1 if and only if x =y,

(3) M(z,y,t) = M(y, 1),

(4) Mz, y.t) % M(y, 2,3) < M(z, 2,1 + 5),
(5) M(z,y,.): (0,00) — [0, 1] is continuous.

Definition 1.3. A 3-tuple (X, M, ) is called a b—fuzzy metric space if X is
an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on
X2 x (0,00), satisfying the following conditions for each z,y,z € X, t,5s > 0
and b > 1 be a given real number,

(1) M(z,y,t) >0,

(2) M(z,y,t) =1 if and only if z = v,

(3) M(x,y,t) = M(y,z,1),

(4) M(z,y,5)* M(y,2,3) < M(z,2,t +5),
(5) M(z,y,.): (0,00) — [0, 1] is continuous.

It should be noted that, the class of b—fuzzy metric spaces is effectively
larger than that of fuzzy metric spaces, since a b—fuzzy metric is a fuzzy
metric when b = 1.

We present an example shows that a b—fuzzy metric on X need not be a
fuzzy metric on X.

Example 1.4. Let M (z,y,t) = eM, where p > 1 is a real number. We
show that M is a b—fuzzy metric with b = 2P~

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied.

If 1 < p < o0, then the convexity of the function f(x) = 2P (z > 0) implies

and hence, (a + ¢)’ < 2P~ (a? + cP) holds. Therefore,
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’x_y’p < 2p—1‘x_2’p +2p—1‘z_y‘p
t+s - t+ s t+ s
T

t S

IN

[z —2P  [z—ylf
t/or=1 =~ g/2p—1"

Thus, for each z,y, 2z € X, we obtain

—lz—y|P
Magt+s) =
t S
> M(QZ,Z,W)*M(Z,Z/,F%

where a x b = a.b. So condition (4) of Definition 1.3 is hold and M is a b—
fuzzy metric.

It should be noted that in preceding example, for p = 2 it is easy to see
that (X, M, %) is not a fuzzy metric space.

Example 1.5. Let M(z,y,t) = GM or M(z,y,t) = m, where d is a
b-metric on X and a * b = a.b. Then it is easy to show that M is a b—fuzzy
metric.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied. For
each x,y, z € X we obtain

—d(z,y)
M(z,y,t+s) = e t+s
) td(=)
e t+s

v

d(e.2) _pd(z.y)
==y ==
—d(w.z)  —d(zy)

e t/b e s/b

v

t
= M($,Z, 5) *M(z,y,g)

So condition (4) of Definition 1.3 is hold and M is a b—fuzzy metric.

Before stating and proving our results, we present some definition and
proposition in b—metric space.

Definition 1.6. Let f : R — R be a function. Then f is called b—nondecrea-
sing, if = > by this implies f(x) > f(y) for each z,y € R.

Lemma 1.7. ([11]) Let (X, M, *) be a b—fuzzy metric space. Then M (z,y,t)
18 b—nondecreasing with respect to t, for all x,y in X. Also,

M(x,y,b"t) > M(z,y,t), VneN.
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Let (X, M, *) be a b—fuzzy metric space. For t > 0, the open ball B(z,,t)
with center x € X and radius 0 < r < 1 is defined by

B(z,r,t)={ye X : M(z,y,t) >1—r}.

We recall the notions of convergence and completeness in a b—fuzzy metric
space. Let (X, M, x) be a b—fuzzy metric space. Let 7 be the set of all
A C X with « € A if and only if there exists ¢ > 0 and 0 < r < 1 such that
B(xz,r,t) C A. Then 7 is a topology on X (induced by the b—fuzzy metric
M). A sequence {z,} in X converges to x if and only if M(z,,x,t) — 1 as
n — oo, for each ¢ > 0. It is called a Cauchy sequence if for each 0 < € < 1 and
t > 0, there exists ng € N such that M (z,, z,,,t) > 1 — ¢ for each n,m > ng.
The b—fuzzy metric space (X, M, *) is said to be complete if every Cauchy
sequence is convergent. A subset A of X is said to be F-bounded if there
exists t > 0 and 0 < r < 1 such that M (xz,y,t) > 1 —r for all z,y € A.

Lemma 1.8. ([11]) In a b—fuzzy metric space (X, M, *) the following asser-
tions hold:

(i) If sequence {x,} in X converges to x, then x is unique.
(i) If sequence {x,} in X is converges to x, then sequence {x,} is a
Cauchy sequence.

In b—fuzzy metric space we have the following propositions.

Proposition 1.9. ([11] Prop. 1.8) Let (X, M,x) be a b—fuzzy metric space
and suppose that {x,} and {y,} are b-convergent to x,y respectively then we
have

¢
M(z,y, 75) < limsup M (zn, yn, 1) < M(z,y,b*t),

n——ao0

/
M(z,y, bﬁ) < liminf M(z,,yn,t) < M(z,y,b*t).

n——:oo

Proposition 1.10. Let (X, M, *) be a b—fuzzy metric space and suppose that
{zn} is b-convergent to x then we have

t
M(z,y, ) < limsup M(xp,y,t) < M(x,y,bt),

b n—»o00
t

Proof. By condition (4) of Definition 1.3 we have:

M(a,9,1) > M2, 20, 3) « Mz, 50,
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taking the upper limit as n — oo we get

) t—90
M(x,y,t) > limsup M(z,x,, —)* limsup M(x,,y, —)
n—>o0 b n—s00 b
. t—96
= limsup M(zp,y, —),
n—so0 b

as § — 0 we have
M(x,y,bt) > limsup M(zn,y,t).

n—aoo

Also, by condition (4) of Definition 1.3 we have:

0 t—0
M(zy,y,t) > M(zy, z, E) x M(x,y, T)’
taking the upper limit as n — oo we get
t—9§
hmsup M(xnayvt) Z M(l‘,y, 7)7
n—300 b
as 6 — 0 we have
t
limsup M(xnayvt) > M(l‘,y, 7)'
n—300 b

It follows that
t

n——o0

Similarly, we can show that

t
M(x,y,g) < liminf M(zp,y,t) < M(z,y,bt).

n——oo

Remark 1.11. In general, a b—fuzzy metric is not continuous.

2. THE MAIN RESULTS

Definition 2.1. (][9], Definition 1.2) Let (X,d) be a metric space and F :
X — X be a map. F is called sequentially convergent if {y,} is convergent
provided {Fyy,} is convergent.

We start our work by proving the following crucial theorem.

Definition 2.2. Let f and g be maps from a b—fuzzy metric space (X, M, *)
into itself. The maps f and ¢ are said to be weakly commuting if

M(fgx,gfx,t) > M(fx,gx,t)
for each x € X and t > 0.
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Definition 2.3. Let f and g be maps from a b—fuzzy metric space (X, M, *)
into itself. The maps f and g are said to be R-weakly commuting if there
exists some positive real number R such that

M(fgx,gfx,t) > M(fz,gz,t/R)
for each x € X and t > 0.
Weak commutativity implies R-weak commutativity in b—fuzzy metric space.

However, R-weak commutativity implies weak commutativity only when R <
1.

Example 2.4. Let X = R. Let axb = ab for all a,b € [0,1] and let M be the
b—fuzzy set on X x X x |0, 400 defined as follows:

—(2—y)?
M(x? y? t) =€ ¢ ’ Y

for all t € R*. Then (X, M, %) is a b—fuzzy metric space. Define f(z) = 2z —1
and g(x) = 2%. Then

—4(z—1)4
M(fgz,gfx,t) = e 7
—(a—1*
= e " = M(fx,gx,t/4)
~(e—1)*
< e = M(fx,gz,t).

Therefore, for R = 4, f and g are R-weakly commuting. But f and g are not
weakly commuting since exponential function is strictly increasing.

Theorem 2.5. Let F, f and g be maps from a complete b— fuzzy metric space
(X, M, %) into itself. Let f and g be R-weakly commuting self-mappings of X
satisfying the following conditions:
(a) f(X)C g(X);
(b) f or g is continuous;
(¢c) M(Ffx,Ffy,t) > ~(M(Fgz, Fgy,b*t)), where v : [0,1] = [0,1] is a
continuous function such that y(a) > a for each a €]0, 1].

Also, if F is one to one, continuous and sequentially convergent. Then we
have

(i) f and g have a unique common fized point a € X.
(ii) If Ff = fF and Fg = gF, then F, f and g have a unique common
fixed point.

Proof. Let xy be an arbitrary point in X. By (a), choose a point z1 in X
such that fxg = gx1. In general choose z,41 such that fx, = gx,+1 and
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Yn = F fo, = Fgxpy1. Then, for t > 0,
M (Yns Yn+1,t) = M(F foy, Ffrni,t)
> Y(M(Fgan, Fgani,b't)) = y(M(F fan-1, F f1,,b't))
> M(Ffxn_1,Ffx,,b')
> M(Ffzn_1, Ffn,t).
Thus {M(F fxy, F frn1,t);n > 0} is increasing sequence in [0, 1]. Therefore,
tends to a limit a(¢) < 1. We claim that a(f) = 1. For if a(t) < 1 on making

n — oo in the above inequality we get a(t) > v(a(t)) > a(t), a contradiction.
Hence a(t) =1, i.e.,

Um M (F fen, F frpi,t) = 1.
n

If we define

en(t) = M(F fop, Ffrpg,t), (2.1)
then lim, o ¢, (t) = 1. Now, we prove that {y, = Ffz,} is a Cauchy se-
quence in f(X) for n = 1,2,3,---. Suppose that {y,} is not a Cauchy se-

quence in f(X). Then there is an € €0, 1] such that for each integer k, there
exist integers m(k) and n(k) with m(k) > n(k) > k such that

dk(t) = M(yn(k),ym(k),t) <1-—¢€ for k= 1,2, HRI (2.2)
We may assume that

M(yn(k)>ym(k)—1a t) >1—c¢, (23)

by choosing m(k) be the smallest number exceeding n(k) for which (2.2) holds.
Using (2.1), we have

t t
1—e>d(t) > M<yn(k)>ym(k)—la ) * M(%n(k)—laym(k)v 2b>

2%
20k<2tb> f(1— e

Hence, di(t) — 1 — € for every t > 0 as k — oo.
Also notice

di(t) = M (Yn(k) Ym(k)> t)
t

t t
> M <yn(k)ayn(k)+la 3b> * M <yn(k:)+1a Ym(k)+1> 3b> *M( m(k)+15 Ym(k)» 3b>

(55) 2 (4 (e 7))+ (5)

3b n(k)s Ym(k)> 3 k\ 3
t tv? t

() (4(5)) o (5)

(2.4)

Y
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Thus, as kK — oo in the above inequality we have
l—e>v(l—¢)>1—c¢

which is a contradiction. Thus, {F fz,}, is Cauchy and by the completeness
of X, {F fx,}, converges to z in X. Also {Fgx,}, converges to z in X. Since
F is sequentially convergent, {fz,} and {gx,} converges to some a € X and
also from the continuity of F, {F' fz,} converges to Fa. That is, since {y,}
converges to z, then y, = F fx, = Fgr,11 — Fa = z. Let us suppose that
the mapping f is continuous. Then lim, ffz, = fa and lim, fgz, = fa.
Further we have since f and g are R-weakly commuting

M(fgxn’gfxn’t) > M(fﬂﬁn,gxn,t/R).

Taking the lower limit as n — ooin the above inequality
M(fa, iminf gfz,,b%t) > liminf M(fgz,,gfzn,t)
n—so0 n—>0o0

t t
> lérggof M(fxmgl'm E) > M(aa a, W) =1
Similarly,

M(fa, limsup gfz,,b*t) =1,

n——aoo

hence we get lim,, gfz,, = fa. We now prove that a = fa. Suppose a # fa,
since F' is one to one we get F'fa # Fa = z. then M(Fa, Ffa,t) < 1. By (c)

M(Ffa, Fa,b’t) > lim inf M(Fffan, Ffan,t)
> y(liminf M (Fgfn, Fgzn,b't))
> y(M(F fa, Fa,b’t))
> M(F fa, Fa,bt),

a contradiction. Therefore, Ffa = Fa, this implies that fa = a. Since
f(X) C g(X) we can find a; in X such that a = fa = ga;. Now,

M(Fffan, Ffai,t) > y(M(Fgfwn, Fgai,b't)).
Taking limit inf as n — oo we get
M(Ffa, Ffay,bt) > liminf M(F[fw,, Ffas,1)
> y(liminf M(Fgfwn, Fgai,b't))
> y(M(F fa, Fga1,b’t))
= y(M(F fa,Ffa,bt)) = 1,
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since (1) = 1, which implies that F fa = F fa;. Since F is one to one, then
a= fa= fa1 = gay. Also for any t > 0,

M(fa,ga,t) = M(fga1,gfai,t) > M(fa,gar,t/R) =1

which again implies that fa = ga. Thus a is a common fixed point of f and
g.

Now to prove uniqueness let if possible @’ # a be another common fixed
point of f and g, hence Fa # Fa'. Then there exists ¢ > 0 such that
M(Fa,Fd,t) <1, and

M(Fa,Fad,t) = M(F fa,Ffd,t)
> y(M(Fga, Fga',b't)) = v(M(Fa, Fd',b't))
> M(Fa, Fd',b*) > M(Fa, Fd,t)

which is contradiction. Therefore, F'a = Fa’, since F is one to one this implies
that @ = a’ is a unique common fixed point of f and g. Now, we need only
prove f, g and F have a unique common fixed point. Let a be the unique
fixed point of f. Suppose to the contrary that Fa # a. Since F is one to one,
F2a # Fa. Then

M(Fa, F?a,t)

M(Ffa,FFfa,t) = M(Ffa,FfFa,t)
M(Fga, FgFa,b't)

M (Fga, FFga,b't)

= y(M(Fa, F?a,b't)

> M(Fa, F?a,t)

>

v(
ol

which is contradiction. Therefore, Fa = F2a implies that Fa = a. This proves
that a is a unique common fixed point of f, g and F. O

Corollary 2.6. Let f and g be maps from a complete b—fuzzy metric space
(X, M, %) into itself. Let f and g be R-weakly commuting self-mappings of X
satisfying the following conditions:
(a) f(X)C g(X);
(b) f or g is continuous;
(c) M(fz, fy,t) > ~v(M(gx, gy,b*t)), where v : [0,1] — [0,1] is a continu-
ous function such that v(a) > a for each a €]0,1].

Then f and g have a unique common fixed point a € X.

Proof. If we take F' as identity map on X, then Theorem 2.5 follows that f
and ¢g have a unique common fixed point. O
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Corollary 2.7. Let F, f and g be maps from a complete b—fuzzy metric space
(X, M, %) into itself. Let Ff and Fg be R-weakly commuting self-mappings of
X satisfying the following conditions:

(a) Ff(X) C Fg(X);

(b) F'f or Fg is continuous;

(¢) M(Ffx,Ffy,t) > v(M(Fgx, Fgy,b't)), where v : [0,1] = [0,1] is a

continuous function such that y(a) > a for each a €]0, 1].

If Ff=fF and Fg = gF, then F, f and g have a unique common fized point.

Proof. By Corollary 2.6 follows that F'f and F¢g have a unique common fixed
point @ € X, i.e. Ffa = Fga = a. Now, we show that Fa = a.
M(Fa,a,t) = M(FF fa,Ffa,t) = M(FfFa,Ffa,t)
> ~v(M(FgFa, Fga,b't)
= v(M(FFga, Fga, b*t)
= y(M(Fa,a,b't)
> M(Fa,a,t)
which is contradiction. Therefore, F'a = a. Hence, F fa = Fga = a = Fa,

also fa = fFa = Ffa = a and ga = gFa = Fga = a it follows that fa =
ga = a. Il

Now we give an example to support our Theorem 2.5.

Example 2.8. Consider Example 1.4 in which X = [0,1]. Let a % ¢ = ac for
all a,c € [0,1] and let M be the b—fuzzy set on X x X x ]0,4o00| defined as

follows: ,

M(:E7 ) —(xt—y) :
for all t € RT. Then (X, M, x) is a b—fuzzy metric space for b = 2. Define
flz) = 5, g(z) = § and F(x 5. It is evident that f(X) C g(X), f is

) =
continuous. Define v: (0,1) — (0,1) b

y v(a) = +/a, for 0 < a < 1. Since
z Y \2 1.9 1 1 o Lax yo
hence it follows that
,(I,U)Q
M(Ffz,Ffyt)=e
T _Yy2

—(
>em = y(M(Fgx, Fgy,b't))

for all z,y in X, f and g are R-weakly commuting. Thus all the conditions of
last theorem are satisfied and 0 is a common fixed point of f and g.
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Corollary 2.9. Let (X, M,x*) be a complete fuzzy metric space and let F'f
and Fg be R-weakly commuting self-mappings of X satisfying the following
conditions:
(a) Ff(X) < Fg(X);
(b) Ff or Fg is continuous;
(¢) M(Ffz,Ffy.t) > r(M(Fgz, Fgy,t)), where v - [0,1] - [0,1] is a
continuous function such that y(a) > a for each a €]0, 1].

Also, if Ff = fF and Fg = gF, then F, f and g have a unique common fized
point.

Proof. If we take b = 1, then Corollary 2.7 follows that F, f and g have a
unique common fixed point. Il
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