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Abstract. We prove that if X is a strictly convex reflexive Banach space, C is a bounded,

closed, convex subset of X with finite extreme points, then all the points in C except extreme

points can be non-diametral points, hence C has normal structure, every non-expansive self-

mapping T on C has a fixed point. Also, if C has countable extreme points, then C is

compact, every non-expansive self- mapping T on C has a fixed point. Further-more, if T is

also surjective, we show which points are fixed points of T .

1. Introduction

The concept of normal structure was introduced by Brodskii and Milman
[1]. By using this concept “normal structure”, Kirk [2] in 1965 proved that if
a Banach space X has normal structure, then it has fixed point property(FPP
for short). Also in [2], Kirk raised a question: if normal structure is essential
for FPP? This question was given a negative answer by W.L. Bynum [3] in
1972. In 1965, F. Browder [4] proved uniformly convex Banach spaces have
normal structure, hence uniformly convex Banach spaces have FPP. Then
people wanted to known if FPP was enjoyed by wider spaces: Banach spaces.
This question was also given a negative answer by a counter example L1, this
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example was given by Alspach [5] in 1981. But Maurey [6] proved that every
reflexive subset of L1 has the FPP. Then people wanted to know if every strictly
convex reflexive Banach space further-more every reflexive Banach space has
FPP. However, these questions are still open till now.

Since Browder [4] proved the FPP was enjoyed by uniformly convex Banach
spaces, many people have shown that this property is also enjoyed by Banach
spaces which are wider than uniformly convex Banach spaces. Jesús Garćia-
Falset and other authors [7] proved that uniformly nonsquare Banach spaces,
which are wider than uniformly convex Banach spaces, enjoy FPP for non-
expansive self-mappings in 2006. Dowling and other authors [8] proved that
E-convex Banach spaces, which are wider than uniformly nonsquare Banach
spaces, enjoy FPP for non-expansive self-mappings in 2008. However, whether
two more wider spaces than above mentioned spaces: super-reflexive Banach
spaces or reflexive Banach spaces enjoy FPP for non-expansive self-mappings
remains unknown. There is also a regret that we do not know whether strictly
convex Banach spaces have FPP for non-expansive self-mappings on every
bounded, closed, convex subset.

In this paper, We prove that if X is a strictly convex reflexive Banach space,
C is a bounded, closed, convex subset of X with finite extreme points, then
all the points in C except extreme points can be non-diametral points, hence
C has normal structure, every non-expansive self-mapping T on C has a fixed
point. Also, if C has countable extreme points, then C is compact, every non-
expansive self-mapping T on C has a fixed point. Further-more, if T is also
surjective, we show which points are fixed points of T . To fulfill our proof, we
use the basic tool: non-diametral point and normal structure.

2. Definitions

Suppose (M,d) is a metric space, a mapping T defined from M to M is
said to be non-expansive if d(Tx, Ty) ≤ d(x; y) for every x, y ∈M . A Banach
space X has FPP if, for every nonempty, closed, bounded convex subset C of
X, every non-expansive self-mapping on C has a fixed point.

Definition 2.1. ([9]) Suppose K is a convex set, a point x of K is called an
extreme point if x can not be written as a convex combination λy+(1−λ)z, 0 ≤
λ ≤ 1, of two distinct points y, z of K. All the extreme points of K will be
denoted by extK.

Definition 2.2. ([10]) Suppose X is a Banach space, if for each bounded,
closed, convex subset A, we have A = co(extA), then X is said to have Krein-
Milman Property(KMP for short). Every reflexive Banach space has KMP.
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Definition 2.3. ([3]) Let C be a bounded subset of a Banach space X. The
diameter of C, diam C, is sup{‖x − y‖ : x, y ∈ C}. A member x of C is a
non-diametral point provided that diam C > sup{‖x − u‖ : u ∈ C} and a
diametral point of C is a point x for which the previous inequality is replaced
by equality.

Remark 2.4. In this paper, we use strong diametral points to denote for the
points x, y ∈ C, such that ‖x− y‖ =diam C.

Definition 2.5. ([1]) Suppose X is a Banach space, a convex set K ⊂ X is
said to have normal structure if for each bounded convex subset H of K which
contains more than one point, there is some x ∈ Hwhich is not a diametral
point of H. X has normal structure if each bounded convex subset of X with
positive diameter has a non-diametral point.

3. Main results

Lemma 3.1. Suppose (X, ‖ · ‖) is a strictly convex reflexive Banach space,
C is a bounded, closed, convex subset of X with countable extreme points
x1, x2, · · ·xn, · · · . If strong diametral points of C exist, then strong diametral
points can only be got in extreme points, that is if diam C = ‖x−y‖, x, y ∈ C,
then x, y must be extreme points.

Proof. We prove this lemma in terms of two cases.

Case 1. C has two or three extreme points.

If C has two extreme points x1, x2, then C = co(x1, x2). If diamC =
‖x − y‖, x is an extreme ponit, y is not an extreme point in C. We can let
x = x1, y = λx1 + (1− λ)x2, 0 < λ < 1, then

‖x− y‖ = ‖x1 − λx1 − (1− λ)x2‖
= (1− λ)‖x1 − x2‖
< ‖x1 − x2‖ < diamC.

If diamC = ‖x − y‖, x, y are not extreme points in C. We can let x =
µx1 + (1− µ)x2, y = νx1 + (1− ν)x2, 0 < µ, ν < 1, then

‖x− y‖ = ‖µx1 + (1− µ)x2 − νx1 − (1− ν)x2‖
= |µ− ν|‖x1 − x2‖
< ‖x1 − x2‖ < diamC.

If C has three extreme points x1, x2, x3, by C has KMP, then C = co(x1, x2, x3).
All the points in C are in a triangle with three vertexes x1, x2, x3. If diamC =
‖x− y‖, x is an extreme point, y is not an extreme point in C. Then we will
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show diamC > ‖x−y‖. In fact, we can let x = x1, by X is strictly convex, we
only need to show diamC > ‖x1−y‖, where y ∈ {λx2+(1−λ)x3 : 0 < λ < 1}.
Suppose y = λ0x2 + (1− λ0)x3, 0 < λ0 < 1, then we have

‖x1 − y‖ = ‖x1 − λ0x2 − (1− λ0)x3‖
≤ λ0‖x1 − x2‖+ (1− λ0)‖x1 − x3‖
≤ max{‖x1 − x2‖, ‖x1 − x3‖}.

If ‖x1 − x2‖ 6= ‖x1 − x3‖, we have ‖x1 − y‖ < max{‖x1 − x2‖, ‖x1 − x3‖}
≤ diamC. If ‖x1−x2‖ = ‖x1−x3‖, we have ‖x1−y‖ ≤ ‖x1−x2‖ = ‖x1−x3‖.
Since X is strictly convex, then ‖x1 − y‖ < ‖x1 − x2‖ ≤ diamC.

Next, we will show diamC > ‖x − y‖, where x, y ∈ C and x, y are not
extreme points. Obviously, if

x, y ∈
{
z : z =

3∑
i=1

λixi, 0 < λi < 1,

3∑
i=1

λi = 1

}
,

we can get two points x0, y0 in C, such that ‖x − y‖ < ‖x0 − y0‖ ≤ diamC.
If there exists a member in {x, y} such that this member belongs to a lateral
of the triangle with three vertexes x1, x2, x3. We can let this member be y,
suppose y = λx1 + (1− λ)x3, then

‖x− y‖ = ‖x− λx1 + (1− λ)x3‖
≤ λ‖x− x1‖+ (1− λ)‖x− x3‖
≤ max{‖x− x1‖, ‖x− x3‖}.

If ‖x− x1‖ 6= ‖x− x3‖, then ‖x− y‖ < max{‖x− x1‖, ‖x− x3‖} ≤ diamC. If
‖x− x1‖ = ‖x− x3‖, then ‖x− y‖ ≤ ‖x− x1‖ = ‖x− x3‖. Since X is strictly
convex, we have ‖x− y‖ < ‖x− x1‖ ≤ diamC.

Case 2. C has countable but more than three extreme points.

For every x, y ∈ C, and x, y are not all the extreme points, x, y must
belong to a triangle with three vertexes of extreme points. By case1, we have
‖x− y‖ < diamC.

By Case 1, Case 2 and the existence of the strong diametral points, if
diamC = ‖x−y‖, then x, y must be extreme points. So our proof is complete.

�

Lemma 3.2. Suppose X is a strictly convex reflexive Banach space, C is a
bounded, closed, convex subset of X with countable extreme points. The strong
diametral points set of C is A. Then for every a ∈ A, every surjective non-
expansive self-mapping T on C, we have Ta ∈ A.
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Proof. Suppose the extreme points set of C is B, by Lemma 3.1, we have
A ⊂ B. For each a ∈ A, by T is surjective, there must exist a y ∈ C, such
that Ty = a. Denote M = {y : Ty = a, a ∈ A}. Since T is non-expansive,
we can claim each point in M is a strong diametral point. In fact, for each
x ∈ A, there exists a y ∈ A, such that ‖x − y‖ = diamC. There also exists
two members x0, y0 ∈ C, such that Tx0 = x, Ty0 = y. If x0 is not a strong
diametral point, then

‖Tx0 − Ty0‖ = ‖x− y‖
≤ ‖x0 − y0‖.

But x, y are strong diametral points, so ‖x − y‖ > ‖x0 − y0‖, which is a
contradiction. Thus M ⊂ A.

Meantime, by not knowing whether T is 1-1, only knowing T is surjective,
then A ⊂ M . Thus M = A and for each a ∈ A, Ta ∈ A. So our proof is
complete. �

Remark 3.3. In fact, T |A is bijective. Since TA = A, the members in TA
and A are same, so T is 1-1. Since T is also surjective, then T is bijective.

Lemma 3.4. ([2]) Suppose K is a nonempty, bounded, closed and convex
subset of a reflexive Banach space X, and suppose that K has normal structure.
If φ is a mapping of K into itself which does not increase distances, then φ
has a fixed point.

Theorem 3.5. Suppose (X, ‖ · ‖) is a reflexive Banach space, C is a bounded,
closed, convex subset of X with two extreme points. Then, for every surjective
non-expansive self-mapping T on C, then x1, x2, or x1+x2

2 is a fixed point.

Proof. Suppose the two extreme points of C are x1, x2. Then C = co(x1, x2).
By the assumption and Lemma 3.2, Txi = xj , 1 ≤ i, j ≤ 2. If i = j, then both

x1 and x2 are fixed points. If i 6= j, that is Tx1 = x2, Tx2 = x1, then
x1 + x2

2
is a fixed point.

In fact,

‖Tx1 − T (
x1 + x2

2
)‖ = ‖x2 − T (

x1 + x2
2

)‖

≤ ‖x1 −
x1 + x2

2
‖ = ‖x1 − x2

2
‖.

So

T (
x1 + x2

2
) ∈ B(x2, ‖

x1 − x2
2
‖),
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whereB(x2, ‖
x1 − x2

2
‖) stands for a ball centered at x2 with a radius ‖x1 − x2

2
‖.

Meantime T (
x1 + x2

2
) ∈ B(x1, ‖

x1 − x2
2
‖). So

T (
x1 + x2

2
) ∈

2⋂
i=1

B(xi, ‖
x1 − x2

2
‖) ∩ C.

Thus, by C has two extreme points, then

2⋂
i=1

B(xi, ‖
x1 − x2

2
‖) ∩ C =

x1 + x2
2

.

So T (
x1 + x2

2
) =

x1 + x2
2

, our proof is complete. �

Theorem 3.6. Suppose X is a strictly convex reflexive Banach space, C is
a bounded, closed, convex subset of X with countable extreme points x1, · · · ,
xn, · · · . T is a surjective non-expansive self-mapping on C. We have

(i) if ‖xi0 − xj0‖ = max{‖xi − xj‖ : xi and xj are extreme points of C},
then

xi0 + xj0
2

must be a fixed point of T on C;

(ii) if ‖xi0 − xj0‖ = ‖xi0 − xt0‖ = max{‖xi − xj‖ : xi and xj are extreme
points of C}, then xi0 must be a fixed point of T on C;

(iii) when the dimension of X ≤ 3, if ‖xi0 − xj0‖ = ‖xj0 − xt0‖ = ‖xt0 −
xi0‖ = max{‖xi − xj‖ : xi and xj are extreme points of C}, then
xi0 + xj0 + xt0

3
must be a fixed point of T on C.

Proof. (i) Since ‖xi0−xj0‖ = max{‖xi−xj‖}, xi0 , xj0 must be strong diametral
points. By T is surjective and Lemma 3.2, we have Txi0 = xi0 , Txj0 = xj0 or
Txi0 = xj0 , Txj0 = xi0 .

If Txi0 = xj0 , Txj0 = xi0 , then T (
xi0 + xj0

2
) =

xi0 + xj0
2

. In fact

‖Txi0 − T (
xi0 + xj0

2
)‖ = ‖xj0 − T (

xi0 + xj0
2

)‖

≤ ‖xi0 −
xi0 + xj0

2
‖ = ‖xi0 − xj0

2
‖.

So, T (
xi0 + xj0

2
) ∈ B(xj0 , ‖

xi0 − xj0
2

‖). Similarly, we can get T (
xi0 + xj0

2
) ∈

B(xi0 , ‖
xi0 − xj0

2
‖). So,

T (
xi0 + xj0

2
) ∈ B(xj0 , ‖

xi0 − xj0
2

‖) ∩B(xi0 , ‖
xi0 − xj0

2
‖) ∩ C.
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Since X is strictly convex,

B(xj0 , ‖
xi0 − xj0

2
‖) ∩B(xi0 , ‖

xi0 − xj0
2

‖) ∩ C =
xi0 + xj0

2
.

If Txi0 = xi0 , Txj0 = xj0 , using the same method as above, we can get

T (
xi0 + xj0

2
) =

xi0 + xj0
2

.

(ii) If ‖xi0 − xj0‖ = ‖xi0 − xt0‖ = max{‖xi − xj‖}, then the strong diametral
points of C are xi0 , xj0 , xt0 . Suppose A = {xi0 , xj0 , xt0}. By Lemma 3.2, for
each a ∈ A, we have Ta ∈ A, and T |A is bijective. So, if Txi0 = xj0 , then
there are two cases for T |A.

Case 1. Txi0 = xj0 , Txj0 = xt0 , Txt0 = xi0 .
Case 2. Txi0 = xj0 , Txj0 = xi0 , Txt0 = xt0 .

In both Case 1 and Case 2, we have

‖Txj0 − Txt0‖ = ‖xt0 − xi0‖
≤ ‖xj0 − xt0‖.

But in our assumption, ‖xt0 − xi0‖ = max{‖xi − xj‖} > ‖xt0 − xj0‖, which
is a contradiction. So Txi0 = xt0 or Txi0 = xi0 . using the same method as
above, we can get Txi0 6= xt0 . So Txi0 = xi0 .

(iii) In this assumption, strong diametral points set A = {xi0 , xj0 , xt0}. By
Lemma 3.2, there exists three cases for T |A.

Case 1. Txi = xi, i = i0, j0, t0.
Case 2. Txi = xj , Txj = xk, Txk = xi, i, j, k ∈ {i0, j0, t0}, i 6= j 6= k.
Case 3. Txi = xi, Txj = xk, Txk = xj , i, j, k ∈ {i0, j0, t0}, i 6= j 6= k.

But in any cases, by T is non-expansive, we have

‖Txi − T (
xi0 + xj0 + xt0

3
)‖ = ‖xj − T (

xi0 + xj0 + xt0
3

)‖

≤ ‖xi −
xi0 + xj0 + xt0

3
‖,

i, j ∈ {i0, j0, t0}. Since ‖xi0 − xj0‖ = ‖xj0 − xt0‖ = ‖xt0 − xi0‖, then

‖xi −
xi0 + xj0 + xt0

3
‖

is a constant, denote this constant as R. Thus, we have

T (
xi0 + xj0 + xt0

3
) ∈ B(xi0 , R) ∩B(xj0 , R) ∩B(xt0 , R).

By X is strictly convex and dimension X ≤ 3, then

B(xi0 , R) ∩B(xj0 , R) ∩B(xt0 , R) =
xi0 + xj0 + xt0

3



304 B. R. Zhang and X. D. Wang

and

T (
xi0 + xj0 + xt0

3
) =

xi0 + xj0 + xt0
3

.

Hence, the proof is complete. �

Theorem 3.7. Suppose X is a strictly convex reflexive Banach space. C is
a bounded, closed, convex subset of X with finite extreme points. Then every
point between two extreme points in C is a non-diametral point. Hence C has
normal structure, every non-expansive self-mapping on C has a fixed point.

Proof. If C has two extreme points: x1, x2, then, diamC ≥ ‖x1 − x2‖, and
for every x = λx1 + (1 − λ)x2, 0 ≤ λ ≤ 1, x ∈ C and y = µx1 + (1 − µ)x2,
0 < µ < 1, y ∈ C,, we have

‖y − x‖ = ‖µx1 + (1− µ)x2 − λx1 − (1− λ)x2‖
= |λ− µ|‖x1 − x2‖
< ‖x1 − x2‖.

So, y = µx1 + (1−µ)x2, 0 < µ < 1, y ∈ C is a non-diametral point, by y is an
arbitrary point between two extreme points in C, so when C has two extreme
points, every point between two extreme points in C is a non-diametral point.

If C has n extreme points x1, · · · , xn, n ∈ N, n > 2, then C = co(x1, · · · , xn).
For each x ∈ C, where x is a point between two extreme points, denoteR =
max{‖x − xi‖ : 1 ≤ i ≤ n, i ∈ N}. Take x as the center of the ball, r is the
radius makes a ball B(x,R). We will prove x is a non-diametral point of C.

In fact, suppose max{‖x − xi‖ : 1 ≤ i ≤ n, i ∈ N}= ‖x − xm0‖ and x =
λxt + (1− λ)xs, 0 < λ < 1, 1 ≤ t, s ≤ n, t 6= s, t, s ∈ N. If xm0 = xt, then for
each y ∈ C, x, y must belong to a triangle with three vertexes of three extreme
points, if y is an inner point of the triangle or a point between two extreme
points, by X is strictly convex and the proof of Lemma 3.2, then there must
exist an extreme point z ∈ {x1, x2, · · · , xn}, such that ‖x− y‖ ≤ ‖x− z‖. If y
is an extreme point, then we can let z = y. So we have

‖x− y‖ ≤ ‖x− xm0‖ = ‖x− xt‖
= ‖λxt + (1− λ)xs − xt‖
= (1− λ)‖xt − xs‖
< ‖xt − xs‖ ≤ diamC.

If xm0 = xs, we can also get ‖x−y‖ < diamC. So, x is a non-diametral point,
when xm0 = xt or xm0 = xs.

If xm0 6= xt, xm0 6= xs, then in triangle ∆xm0xtxs, we have
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‖x− xm0‖ = ‖λxt + (1− λ)xs − xm0‖

= ‖λxt + (1− λ)xs − λxm0 − (1− λ)xm0‖

≤ λ‖xt − xm0‖+ (1− λ)‖xs − xm0‖

≤ max{‖xt − xm0‖, ‖xs − xm0‖}.

(∗)

If ‖xt − xm0‖ 6= ‖xs − xm0‖, then (∗) is ‖x − xm0‖ < max{‖xt − xm0‖, ‖xs −
xm0‖}. If ‖xt−xm0‖ = ‖xs−xm0‖, byX is strictly convex, we have ‖x−xm0‖ <
‖xt − xm0‖. Thus, for each y ∈ C, by (∗), we have

‖x− y‖ ≤ ‖x− xm0‖ < max{‖xt − xm0‖, ‖xs − xm0‖} ≤ diamC.
Thus, x is a non-diametral point. Hence C has normal structure, by Lemma
3.4 [2], every non-expansive self-mapping on C has a fixed point. Our proof is
complete. �

Corollary 3.8. Suppose X is a strictly convex reflexive Banach space, C is a
bounded, closed, convex subset of X with finite extreme points x1, x2, · · · , xn.
Then all the points in C except extreme points can be non-diametral points.

Proof. In Theorem 3.7, we proved all the points between two extreme points
are non-diametral points. Now, we will prove if x ∈ C is not an extreme point
or a point between two extreme points, then x is a non-diametral point.

In fact, for every n ∈ N, n ≥ 3, suppose the extreme points are x1, x2, · · · , xn,
and

max{‖x− xi‖ : 1 ≤ i ≤ n, i ∈ N}
= ‖x− xm0‖, 1 ≤ m0 ≤ n, m0 ∈ N.

Then for every y ∈ C, by Lemma 3.2, we have

‖x− y‖ ≤ max{‖x− xi‖ : 1 ≤ i ≤ n, i ∈ N} = ‖x− xm0‖.
By x is not an extreme point or a point between two extreme points, there
exists a z ∈ C such that x = λxm0 + (1− λ)z, 0 < λ < 1. Then

‖x− y‖ = ‖λxm0 + (1− λ)z − y‖
≤ ‖λxm0 + (1− λ)z − xm0‖
< ‖z − xm0‖
< diamC.

So x is a non-diametral point when C has extreme points x1, x2, · · · , xn, n ∈ N,
n ≥ 3. If C has two extreme points, then the points in C between two extreme
points are non-diametral points. Hence when C has n, n ∈ N extreme points,
all the points in C except extreme points are non-diametral points. Our proof
is complete. �
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Theorem 3.9. Suppose X is a strictly convex reflexive Banach space, C is
a bounded, closed, convex subset of X with countable extreme points x1, · · · ,
xn, · · · . Then X has FPP for every non-expansive self-mapping T on C.

Proof. Since C is a bounded, closed, convex subset of a reflexive Banach space
X, then X has KMP and C = co(extC). By C = co(extC) and extC is
countable, we can get C is a compact subset of X. Every non-expansive
self-mapping T on a compact set C has a fixed point, so X has FPP for
non-expansive self-mappings on C, then our proof is complete. �
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