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Abstract. In this paper, we study an iterative algorithm by viscosity method to approximate

a common zero of a finite family of m−accretive mappings in a reflexive Banach space, which

has a weakly continuous duality mapping.

1. Introduction

Let E be a real Banach space and C be a nonempty convex subset of E.
Let J denote the normalized duality mapping from E into 2E

∗
given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,
where E∗ denotes the dual space of E and 〈., .〉 denote the generalized duality
pairing. It is well known that if E∗ is strictly convex then J is single-valued.
In the sequel, we shall denote the single-valued normalized duallity mapping
by j. Recall that a self-mapping f : C → C is contraction on C if there exists
a constant α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.
We use

∏
C to denote collection of all contraction mappings on C. That is,∏

C = {f : f : C → C is a contraction mapping}. Note that each f ∈
∏

C
has a unique fixed point in C. Also, recall that a mapping T : C → C is
called nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C,
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and T is called pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

〈T (x)− T (y), j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ C.
A point x ∈ C is a fixed point of T provided T (x) = x. Denote by F (T ) the
set of fixed points of T , that is, F (T ) = {x ∈ C : T (x) = x}. For a real
number t ∈ (0, 1) and a contraction mapping f ∈

∏
C , we define a mapping

Tt(x) = tf(x) + (1 − t)T (x) for all x ∈ C, where T is nonexpansive mapping
on C. It is obviously that Tt is a contraction mapping on C. Let xt be the
unique fixed point of Tt. That is, xt is the unique solution of the fixed point
equation

xt = tf(xt) + (1− t)T (xt). (1.1)

A special case has been considered by Browder [2] in a Hilbert space as follow:
Fix u ∈ C and define a contraction mapping St on C by

St(x) = tu+ (1− t)T (x), ∀x ∈ C.
If zt is the unique fixed point of St, then zt = tu+ (1− t)T (zt).

In 1967, Browder [3] proved that, in a Hilbert space H, as t → 0, {zt}
converges strongly to a fixed point of T which is closets to u, that is, the
nearest point projection of u onto F (T ).

In 2000, Moudafi [11] proposed a viscosity approximation method which
was considered by many authors [5, 6, 11, 12, 13, 14, 17, 19, 20] of selecting
a particular fixed point of a given nonexpansive mapping in Hilbert spaces. If
H is a Hilbert space, T : C → C is nonexpansive self-mapping on a nonempty
closed convex C of H and f : C → C is a contraction mapping, he proved
the following results:

(1) The sequence {xn} in C generated by the iterative scheme:

x0 ∈ C, xn =
1

1 + εn
T (xn) +

εn
1 + εn

f(xn), ∀n ≥ 0,

converges strongly to the unique solution of the variational inequality

x ∈ F (T ) such that 〈(I − f)(x), x− x〉 ≤ 0, ∀x ∈ F (T ),

where {εn} is a sequence of positive numbers tending to zero.
(2) With a initial z0 ∈ C, define the sequence {zn} in C by

zn+1 =
1

1 + εn
T (zn) +

εn
1 + εn

f(zn), ∀n ≥ 0.

Suppose that limn→∞ εn = 0 and
∑∞

n=1 εn = +∞, and limn→∞

∣∣∣∣ 1

εn+1
− 1

εn

∣∣∣∣ =

0. Then {zn} converges strongly to the unique solution of the variational in-
equality

x ∈ F (T ) such that 〈(I − f)(x), x− x〉 ≤ 0, ∀x ∈ F (T ).
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Recall that an (possibly multi-valued) operator A with the domain D(A)
and range R(A) in E is accretive if, for x, y ∈ D(A) and u ∈ A(x), v ∈ A(y),
there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0.

An accretive operator is said to be m−accretive if R(I + rA) = E for each
r > 0. The set of zeros of A is denoted by N(A). Hence we have

N(A) = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0).

For each r > 0, we denote by Jr the resolvent of A, i.e., Jr = (I + rA)−1.
Note that, if A is m−accretive operator, then Jr : E → D(A) is a nonexpan-
sive single-valued mapping and F (Jr) = N(A).

Forward, we will assume that Jr is a mapping from E to C = D(A) and C
is convex.

Kim and Xu [9] and Xu [16] studied the sequence {xn} generated by the
following iterative algorithm

x0 ∈ C, xn+1 = αnu+ (1− αn)Jrn(xn), ∀n ≥ 0, (1.2)

where C is a closed convex subset of a Banach space E and Jrn is a resolvent
of a accretive operator. They proved strong convergence theorems of the iter-
ative (1.2) in the framework of uniformly smooth Banach spaces and reflexive
Banach spaces, respectively. Xu [17] studied the following iterative scheme by
viscosity approximation method introduced by Moudafi [11]:

x0 ∈ C, xn+1 = αnf(xn) + (1− αn)T (xn), ∀n ≥ 0,

where f ∈
∏

C and T is nonexpansive mapping, and obtained a strong con-
vergence theorem in uniformly smooth Banach spaces.

Chen and Zhu [6] improved the results of Xu [16, 17] and also studied the
so-called viscosity approximation methods. More precisely, they considered
the following

xt = tf(xt) + (1− t)T (xt), (1.3)

x0 ∈ C, xn+1 = αnf(xn) + (1− αn)Jrn(xn), ∀n ≥ 0, (1.4)

where C is a closed convex subset of a Banach space E and Jrn is the resolvent
of a accretive operator, and obtained the strong convergence theorems for
nonexpansive mappings andm−accretive mappings in reflexive Banach spaces,
respectively.

When A is maximal monotone in Hilbert space H, in 2006, Xu [17]; in
2009, Song and Yang [18] used the technique of nonexpansive mappings to
get convergence theorems for {xn} defined by the perturbed version of the
proximal point algorithm

xn+1 = JA
rn(tnu+ (1− tn)xn + en), u ∈ H, (1.5)
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and proved strong convergence of iterative (1.5) to a zero of A.
Zegeye and Shahzed [20] studied the convergence problem of finding a com-

mon zero of a finite family of m−accretive mappings. More precisely, they
proved the following result.

Theorem 1.1. ([20]) Let E be strictly convex and reflexive Banach space
with a uniformly Gateaux differentiable norm, K be a nonempty closed convex
subset of E and Ai : K → E (i = 1, 2, ..., r) be a family of m−accretive
mappings with ∩ri=1N(Ai) 6= ∅. For any u, x0 ∈ K, let {xn} be a sequence in
K generated by the algorithm:

xn+1 = αnu+ (1− αn)Sr(xn), ∀n ≥ 0, (1.6)

where Sr := a0I + a1JA1 + a2JA2 + ... + arJAr with JAi = (I + Ai)
−1 for

0 < ai < 1, i = 0, 1, 2, ..., r,
∑r

i=0 ai = 1 and {αn} is real sequence which
satisfies the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn =∞;

(ii)
∑∞

n=1 |αn − αn−1| <∞ or limn→∞
|αn − αn−1|

αn
= 0.

If every nonempty closed bounded convex subset of E has the fixed point prop-
erty for nonexpansive mapping, then {xn} converges strongly to a common
solution of the equations Ai(x) = 0 for i = 1, 2, ..., r.

Motivated by Xu [15] and Zegeye and Shahzed [20], in this paper we intro-
duce an iterative algorithm as follow:

x0 ∈ C, xn+1 = Sr(αnf(xn) + (1− αn)xn), ∀n ≥ 0, (1.7)

where Sr := a0I+a1JA1 +a2JA2 + ...+arJAr with a0, a1, ..., ar be real numbers
in (0, 1) such that

∑r
i=0 ai = 1 and {αn} ⊂ (0, 1) be real sequence of positive

numbers.
We prove strong convergence theorems of iterative algorithm (1.7) for a

finite family of m−accretive mappings in a Banach space E by viscosity ap-
proximation method.

2. Preliminaries

Let E be a real Banach space with dual E∗. The norm on E is said to be
uniformly Gateaux differentiable if for each y ∈ SE = {x ∈ X : ‖x‖ = 1} the

limit limt→0
‖x+ ty‖ − ‖x‖

t
exists uniformly for x ∈ SE .

Recall that a gauge is a continuous strictly incresing function ϕ : [0,∞)→
[0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. The duality mapping
Jϕ : E → 2E

∗
associated to a gauge ϕ is defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ E.
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Following Browder [4], we say that a Banach space E has a weakly contin-
uous duality mapping if there exists a gauge ϕ for which the duality mapping
Jϕ is single-valued and weak-to-weak* sequentially continuous, i.e., for each

{xn} ⊂ E with xn ⇀ x, Jϕ(xn)
∗
⇀ Jϕ(x). it is well known that lp has a weakly

continuous duality mapping for all 1 < p < ∞. Set Φ(t) =
∫ t
0 ϕ(τ)dτ, t ≥ 0.

Then Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E, where ∂ denotes the sub-diffrential in the
sense of convex analysis.

A Banach space E is said to be strictly convex if for ai ∈ (0, 1), i = 1, 1, ..., r,
such that

∑r
i=1 ai = 1 we have ‖a1x1 + a2x2 + ...+ arxr‖ < 1 for xi ∈ E, i =

1, 2, ..., r with ‖xi‖ = 1, i = 1, 2, ..., r and xi 6= xj , for some i 6= j.

In what follows, we shall make use of the following lemmas and theorems.
Lemma 2.1. ([1, 18]) Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1− αn)an + σn, ∀n ≥ 0,

where {αn} ⊂ (0, 1) for each n ≥ 0 such that (i) limn→∞ αn = 0; (ii)∑∞
n=1 αn = ∞. Suppose either (a) σn = o(αn), or (b)

∑∞
n=1 |σn| < ∞, or

(c) lim sup
σn
αn
≤ 0. Then an → 0 as n→∞.

Lemma 2.2. ([10]) Assume that a Banach space E has a weakly continuous
duality mapping Jϕ with a gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x+ y)〉.
In particular, for all x, y ∈ E

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.
(ii) Assume that the sequence {xn} in E converges weakly to a point x ∈ E.

Then the following identity holds:

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖), ∀y ∈ E.

Lemma 2.3. ([20]) Let C be a nonempty closed convex subset of a strictly
convex Banach space E. Let Ai : C → E, i = 1, 2, ..., r, be a family of
m−accretive mapping with ∩ri=1N(Ai) 6= ∅. Let a0, a1, ..., ar be real numbers
in (0, 1) such that

∑r
i=0 ai = 1 and Sr := a0I+a1JA1+a2JA2+...+arJAr , where

JAi := (I+Ai)
−1. Then Sr is nonexpansive mapping and F (Sr) = ∩ri=1N(Ai).

Lemma 2.4. ([6]) Let E be a real reflexive Banach space and have a weakly
continuous duality mapping Jϕ with ϕ. Suppose C is a closed convex subset
of E, and T : C → C is a nonexpansive mapping, let f : C → C be a fixed
contraction mapping. For t ∈ (0, 1), {xt} is defined by (1.3). Then T has a
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fixed point if and only if {xt} remains bounded as t → 0+, and in this case,
{xt} converges strongly to a fixed point of T as t→ 0+.

Let Q :
∏

C → F (T ) by Q(f) := limt→0+ xt, f ∈
∏

C . Cho and Qin [7]
showed the following inequality

〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, ∀p ∈ F (T ). (2.1)

Theorem 2.5. ([8]) Let A be a continuous and accretive operator on the real
Banach space E with D(A) = E. Then A is m−accretive.

3. Main results

Now, we give our main results in this paper.

Theorem 3.1. Let E be a strictly convex and reflexive Banach space which has
a weakly continuous duality mapping Jϕ with gauge ϕ. Let C be a nonempty
closed convex subset of E and f ∈

∏
C with the contractive coefficient c ∈

(0, 1). Let Ai : C → E, i = 1, 2, ..., r, be a finite family of m−accretive
mappings with ∩ri=1N(Ai) 6= ∅. Let JAi = (I + Ai)

−1 for i = 1, 2, ..., r. For
any x0 ∈ C, let {xn} be a sequence generated by algorithm (1.7). If the
sequence {αn} satisfies the following conditions

(i) limn→∞ αn = 0,
(ii)

∑∞
n=1 αn =∞,

(iii)
∑∞

n=1 |αn − αn−1| <∞ or (iii)* limn→∞
|αn − αn−1|

αn
= 0,

then {xn} converges strongly to a common solution of the equations Ai(x) = 0
for i = 1, 2, ..., r.

Proof. By Lemma 2.3, we have that F (Sr) = ∩ri=1N(Ai) 6= ∅. Now, for each
p ∈ F (Sr), we have

‖xn+1 − p‖ = ‖Sr(αnf(xn) + (1− αn)xn)− Sr(p)‖
≤ ‖αn(f(xn)− f(p)) + (1− αn)(xn − p) + αn(f(p)− p)‖

≤ [1− αn(1− c)]‖xn − p‖+ αn(1− c)‖f(p)− p‖
1− c

≤ max

{
‖xn − p‖,

‖f(p)− p‖
1− c

}
...

≤ max

{
‖x0 − p‖,

‖f(p)− p‖
1− c

}
.

(3.1)
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Hence {xn}, {f(xn)} are bounded and suppose that max{sup ‖xn‖, sup ‖f(xn)‖} ≤
K. It follows that

‖xn+1 − Sr(xn)‖ = ‖Sr(αnf(xn) + (1− αn)xn)− Sr(xn)‖
≤ αn‖f(xn)− xn‖ → 0, as n→∞.

(3.2)

From (1.7) we get that

‖xn+1 − xn‖ = ‖Sr(αnf(xn) + (1− αn)xn)− Sr(αn−1f(xn−1) + (1− αn−1)xn−1)‖
≤ αn‖f(xn)− f(xn−1)‖+ |αn − αn−1|‖f(xn−1)‖

+ (1− αn)‖xn − xn−1‖+ |αn − αn−1|‖xn−1‖
≤ [1− αn(1− c)]‖xn − xn−1‖+ (1− c)αnβn,

where βn = 2K
|αn − αn−1|
αn(1− c)

. We consider two cases.

Case 1. Condition (iii) is satisfied. Then

‖xn+1 − xn‖ ≤ [1− αn(1− c)]‖xn − xn−1‖+ σn,

where σn = 2K|αn − αn−1| so that
∑∞

n=1 σn <∞.
Case 2. Condition (iii)* is satisfied. Then,

‖xn+1 − xn‖ ≤ [1− αn(1− c)]‖xn − xn−1‖+ σn,

where σn = (1− c)αnβn so that σn = o((1− c)αn).
In either case, Lemma 2.1 yields that ‖xn+1 − xn‖ → 0 as n→∞ and hence
by (3.2) we obtain that

‖xn − Sr(xn)‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Sr(xn)‖ → 0 as n→∞. (3.3)

Next, we prove that

lim sup
n→∞

〈(I − f)Q(f), Jϕ(Q(f)− xn)〉 ≤ 0, (3.4)

where Q(f) is defined by Lemma 2.4. Take a subsequence {xnk
} of {xn} such

that

lim sup
n→∞

〈(I − f)Q(f), Jϕ(Q(f)− xn)〉

= lim
n→∞

〈(I − f)Q(f), Jϕ(Q(f)− xnk
)〉.

(3.5)

Since Banach space E is reflexive, we may further assume that xnk
⇀ x for

some x ∈ C. Since the duality mapping Jϕ is weakly continuous, we have, by
Lemma 2.2,

lim sup
n→∞

Φ(‖xnk
− x‖) = lim sup

n→∞
Φ(‖xnk

− x‖) + Φ(‖x− x‖), ∀x ∈ E.

Putting

g(x) = lim sup
n→∞

Φ(‖xnk
− x‖), ∀x ∈ E,
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then it follows that

g(x) = g(x) + Φ(‖x− x‖), ∀x ∈ E. (3.6)

Thus, from (3.3), we arrive at

g(Sr(x)) = lim sup
n→∞

Φ(‖xnk
− Sr(x)‖)

= lim sup
n→∞

Φ(‖Sr(xnk
)− Sr(x)‖)

≤ lim sup
n→∞

Φ(‖xnk
− x‖) = g(x).

(3.7)

On the other hand, from (3.6), we have

g(Sr(x))− g(x) = Φ(‖Sr(x)− x‖). (3.8)

Combining (3.7) and (3.8), we get Φ(‖Sr(x)−x‖) ≤ 0. Hence we have Sr(x) =
x, that is, x ∈ F (Sr). It follows that

lim sup
n→∞

〈(I − f)Q(f), Jϕ(Q(f)− xn)〉

= 〈(I − f)Q(f), Jϕ(Q(f)− x)〉 ≤ 0.

That is, (3.4) holds.
Now, we prove the sequence {xn} converges strongly to Q(f) as n → ∞.

By the property of Φ and by Lemma 2.2, we have

Φ(‖xn+1 −Q(f)‖) = Φ(‖Sr(αnf(xn) + (1− αn)xn)− Sr(Q(f))‖)
≤ Φ(‖αnf(xn) + (1− αn)xn −Q(f)‖)
≤ Φ(αn‖f(xn)− f(Q(f))‖+ αn‖f(Q(f))−Q(f)‖

+ (1− αn)‖xn −Q(f)‖)
≤ Φ([1− αn(1− c)]‖xn −Q(f)‖+ αn‖f(Q(f))−Q(f)‖)
≤ Φ([1− αn(1− c)]‖xn −Q(f)‖)

+ αn〈f(Q(f))−Q(f), Jϕ(xn+1 −Q(f))〉
≤ [1− αn(1− c)]Φ(‖xn −Q(f)‖)

+ αn〈f(Q(f))−Q(f), Jϕ(xn+1 −Q(f))〉.

By the condition (i) and (3.4), we know that all the conditions in Lemma 2.1
are satisfied. Therefore, it follows that Φ(‖xn+1−Q(f)‖)→ 0 as n→∞, that
is, xn → Q(f). �

Remark 3.2. If we take r = 1, then we may take S1 := JA = (I + A)−1 and
that strict convexity of E and real constant ai, i = 0, 1, may not be needed.
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Corollary 3.3. Let E be a reflexive Banach space which has a weakly con-
tinuous duality mapping Jϕ with gauge ϕ. Let C be a nonempty closed con-
vex subset of E and f ∈

∏
C with the contractive coefficient c ∈ (0, 1). Let

A : C → E be an m−accretive mapping with N(A) 6= ∅. For given x0 ∈ C,
let {xn} be generated by

xn+1 := JA(αnf(xn) + (1− αn)xn), ∀n ≥ 0, (3.9)

where JA := (I + A)−1 and {αn} ⊂ (0, 1). If the sequence {αn} satisfies the
following conditions

(i) limn→∞ αn = 0,
(ii)

∑∞
n=1 αn =∞,

(iii)
∑∞

n=1 |αn − αn−1| <∞ or (iii)* limn→∞
|αn − αn−1|

αn
= 0,

then {xn} converges strongly to a common solution of the equations Ai = 0
for i = 1, 2, ..., r.

Proof. The proof follows as in the proof of Theorem 3.1 with use of Remark
3.2. �

Remark 3.4. The Corollary 3.3 is more general than the result of Xu [15]
(Theorem 3.3). The result of Xu [15] is only a particular case of Corollary 3.3,
when E is a Hilbert space and f(x) = u for all x ∈ C.

Theorem 3.5. Let E be a strictly convex and reflexive Banach space which has
a weakly continuous duality mapping Jϕ with gauge ϕ. Let C be a nonempty
closed convex subset of E and f ∈

∏
C with the contractive coefficient c ∈

(0, 1). Let Ti : E → E, i = 1, 2, ..., r be a family of continuous pseudo-
contractive mappings on E with ∩ri=1F (Ti) 6= ∅. Let JTi := (2I − Ti)−1 for
i = 1, 2, ..., r. For given x0 ∈ E, let {xn} be generated by

xn+1 := Sr(αnf(xn) + (1− αn)xn), ∀n ≥ 0, (3.10)

where Sr = a0I+a1JT1 +...+arJTr , for 0 < ai < 1, i = 1, 2, ..., r,
∑r

i=0 ai = 1.
and {αn} ⊂ (0, 1). If the sequence {αn} satisfies the following conditions

(i) limn→∞ αn = 0,
(ii)

∑∞
n=1 αn =∞,

(iii)
∑∞

n=1 |αn − αn−1| <∞ or (iii)* limn→∞
|αn − αn−1|

αn
= 0,

then {xn} converges strongly to a common fixed point of T1, T2, ..., Tr.

Proof. For each i = 1, 2, ..., r, then Ai = I − Ti is continuous accretive with
D(Ai) = E. Hence, from Theorem 2.5, we deduce Ai is m−accretive operator.
Apply Theorem 3.1, we obtain the proof of this theorem. �
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Now, we consider a single pseudocontractive mapping, we obtain the ana-
logue of Corollary 3.3.

Corollary 3.6. Let E be a reflexive Banach space which has a weakly con-
tinuous duality mapping Jϕ with gauge ϕ. Let C be a nonempty closed con-
vex subset of E and f ∈

∏
C with the contractive coefficient c ∈ (0, 1). Let

T : E → E be a continuous pseudocontractive mapping on E with F (T ) 6= ∅.
Let JT = (2I−T )−1. For given x0 ∈ E, let {xn} be generated by the algorithm

xn+1 := JT (αnf(xn) + (1− αn)xn), ∀n ≥ 0, (3.11)

where {αn} ⊂ (0, 1). If the sequence {αn} satisfies the following conditions

(i) limn→∞ αn = 0,
(ii)

∑∞
n=1 αn =∞,

(iii)
∑∞

n=1 |αn − αn−1| <∞ or (iii)* limn→∞
|αn − αn−1|

αn
= 0,

then {xn} converges strongly to a fixed point of T .
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