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Abstract. In this paper, we study an iterative algorithm by viscosity method to approximate
a common zero of a finite family of m—accretive mappings in a reflexive Banach space, which

has a weakly continuous duality mapping.

1. INTRODUCTION

Let FE be a real Banach space and C' be a nonempty convex subset of E.
Let J denote the normalized duality mapping from E into 2F" given by

J)={f e B (z,f) = |z® = IfI"}, Vz € E,

where E* denotes the dual space of E and (.,.) denote the generalized duality
pairing. It is well known that if E* is strictly convex then J is single-valued.
In the sequel, we shall denote the single-valued normalized duallity mapping
by j. Recall that a self-mapping f : C' — C' is contraction on C' if there exists
a constant o € (0, 1) such that

1f(2) = FWIl < allz —yll, Va,y € C.

We use [[ to denote collection of all contraction mappings on C. That is,
[[o ={f: f: C — C is a contraction mapping}. Note that each f € [],
has a unique fixed point in C. Also, recall that a mapping T : C — C' is
called nonexpansive if

IT(x) =T <llz—yl, Vo,y € C,
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and T is called pseudocontractive if there exists j(x —y) € J(z — y) such that

A point z € C is a fixed point of T provided T'(z) = z. Denote by F(T') the
set of fixed points of T, that is, F(T) = {x € C : T(x) = z}. For a real
number ¢ € (0,1) and a contraction mapping f € [[,, we define a mapping
Ti(x) =tf(x)+ (1 —t)T(x) for all x € C, where T is nonexpansive mapping
on C. It is obviously that 7T} is a contraction mapping on C. Let z; be the
unique fixed point of T;. That is, x; is the unique solution of the fixed point
equation

A special case has been considered by Browder [2] in a Hilbert space as follow:
Fix u € C and define a contraction mapping S; on C' by

Si(x) =tu+ (1 —t)T(x), Yz € C.

If z; is the unique fixed point of S, then z; = tu + (1 — ¢)T'(z).

In 1967, Browder [3] proved that, in a Hilbert space H, as t — 0, {z}
converges strongly to a fixed point of T' which is closets to u, that is, the
nearest point projection of w onto F'(T)).

In 2000, Moudafi [11] proposed a viscosity approximation method which
was considered by many authors [5, 6, 11, 12, 13, 14, 17, 19, 20] of selecting
a particular fixed point of a given nonexpansive mapping in Hilbert spaces. If
H is a Hilbert space, T': C — C' is nonexpansive self-mapping on a nonempty
closed convex C' of H and f: C — C is a contraction mapping, he proved
the following results:

(1) The sequence {x,} in C generated by the iterative scheme:

En
1+e, 14+¢,
converges strongly to the unique solution of the variational inequality

T € F(T) such that ((I — f)(Z),T —z) <0, Vx € F(T),

where {e,} is a sequence of positive numbers tending to zero.
(2) With a initial zgp € C, define the sequence {z,} in C' by

xo € C, xp = T(xp) + f(zyn), Vn >0,

1 En
=—T Vn > 0.
Zn+1 1+¢, (zn) + 1+ gnf(zn)a n =
: o0 . 1 1
Suppose that lim, e, =0 and >~ &, = 400, and lim,_, - =
En+1 En

0. Then {z,} converges strongly to the unique solution of the variational in-
equality

T € F(T) such that (I — f)(z),z —x) <0, Vo € F(T).
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Recall that an (possibly multi-valued) operator A with the domain D(A)
and range R(A) in E is accretive if, for z,y € D(A) and u € A(x), v € A(y),
there exists j(x — y) € J(z — y) such that

<u - ,U7j($ - y)) > 0.
An accretive operator is said to be m—accretive if R(I + rA) = E for each
r > 0. The set of zeros of A is denoted by N(A). Hence we have

N(A)={z € D(A): 0€ A(z)} = A1(0).

For each r > 0, we denote by J, the resolvent of A, i.e., J. = (I +7A)"L.
Note that, if A is m—accretive operator, then J, : E — D(A) is a nonexpan-
sive single-valued mapping and F(J,) = N(A).

Forward, we will assume that J,. is a mapping from F to C'= D(A) and C
is convex.

Kim and Xu [9] and Xu [16] studied the sequence {x,} generated by the

following iterative algorithm
x0 € C, Tpi1 = apu+ (1 —ay)dy, (x,), Yo >0, (1.2)

where C' is a closed convex subset of a Banach space F and J,, is a resolvent
of a accretive operator. They proved strong convergence theorems of the iter-
ative (1.2) in the framework of uniformly smooth Banach spaces and reflexive
Banach spaces, respectively. Xu [17] studied the following iterative scheme by
viscosity approximation method introduced by Moudafi [11]:

zo € C, Tpt1 = anf(zy) + (1 — an)T(xy), Vn >0,

where f € [[, and T is nonexpansive mapping, and obtained a strong con-
vergence theorem in uniformly smooth Banach spaces.

Chen and Zhu [6] improved the results of Xu [16, 17] and also studied the
so-called viscosity approximation methods. More precisely, they considered
the following

T = tf(.l‘t) + (1 — t)T(ZL‘t), (13)
x0 € C, Tpy1 = anf(zn) + (1 — an)dy, (zn), Vn >0, (1.4)

where C'is a closed convex subset of a Banach space E and J,,, is the resolvent
of a accretive operator, and obtained the strong convergence theorems for
nonexpansive mappings and m—accretive mappings in reflexive Banach spaces,
respectively.

When A is maximal monotone in Hilbert space H, in 2006, Xu [17]; in
2009, Song and Yang [18] used the technique of nonexpansive mappings to
get convergence theorems for {z,} defined by the perturbed version of the
proximal point algorithm

Tp4+1 = Jé(tnu + (1 - tn)xn + en)7 u € H') (15)
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and proved strong convergence of iterative (1.5) to a zero of A.

Zegeye and Shahzed [20] studied the convergence problem of finding a com-
mon zero of a finite family of m—accretive mappings. More precisely, they
proved the following result.

Theorem 1.1. ([20]) Let E be strictly conver and reflexive Banach space
with a uniformly Gateauz differentiable norm, K be a nonempty closed convex
subset of E and A; : K — E (i = 1,2,....,7) be a family of m—accretive
mappings with N_{N(A;) # 0. For any u,zo € K, let {x,} be a sequence in
K generated by the algorithm:

Tnt1 = apu + (1 — ay)Sr(zy), Yn >0, (1.6)

where S, = apl + a1Ja, + agJa, + ... + apJa, with Ja, = (I + A;)~L for
0<a; <1, i=0,1,2,..,r, > qa; = 1 and {a,} is real sequence which
satisfies the following conditions:

(1) lim,, o0 iy = 0, 2720:1 Oy = 005

.. . Qp — Qe

(i) D07 Jan — 1] < 00 or limy, o0 lon = ana| _
If every nonempty closed bounded convex subset of EE has the fized point prop-
erty for monexpansive mapping, then {x,} converges strongly to a common
solution of the equations A;(x) =0 fori=1,2,...,r.

Motivated by Xu [15] and Zegeye and Shahzed [20], in this paper we intro-
duce an iterative algorithm as follow:

xg € C, xpy1 = Sp(anf(zn) + (1 —ap)xy), Vn >0, (1.7)

where S, := apl +a1Ja, +asJa, +...+a,J 4, with ag, a1, ..., a, be real numbers
in (0,1) such that Y ;_ja; =1 and {a,} C (0,1) be real sequence of positive
numbers.

We prove strong convergence theorems of iterative algorithm (1.7) for a
finite family of m—accretive mappings in a Banach space E by viscosity ap-
proximation method.

2. PRELIMINARIES

Let E be a real Banach space with dual E*. The norm on E is said to be
uniformly Gateaux differentiable if for each y € Sp = {x € X : ||z| = 1} the

t —
w exists uniformly for z € Sg.

limit lim;_q
Recall that a gauge is a continuous strictly incresing function ¢ : [0, 00) —
[0,00) such that ¢(0) = 0 and ¢(t) — oo as t — oo. The duality mapping

Jo: E— 2F" associated to a gauge ¢ is defined by
Jo(@) ={f € E": (x,f) = zlle(=])), ll=*]l = ¢(l=]))}, V& € E.
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Following Browder [4], we say that a Banach space E has a weakly contin-
uous duality mapping if there exists a gauge ¢ for which the duality mapping
J, is single-valued and weak-to-weak™® sequentially continuous, i.e., for each
{zn} C E with x,, =z, Jy(2,) = J,(x). it is well known that I has a weakly
continuous duality mapping for all 1 < p < co. Set ®(t) = fot o(r)dr, t > 0.
Then J,(x) = 0®(||z||), Vo € E, where 0 denotes the sub-diffrential in the
sense of convex analysis.

A Banach space F is said to be strictly convex if for a; € (0,1), i = 1,1,...,7,
such that >"._, a; = 1 we have |laiz1 + asxs + ... + a,z,|| < 1for z; € E, i =
1,2,...,r with ||a;]| =1, i =1,2,...,r and x; # z;, for some i # j.

In what follows, we shall make use of the following lemmas and theorems.
Lemma 2.1. ([1, 18]) Let {a,} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 < (1 —an)an + on, Vn >0,
where {an} C (0,1) for each n > 0 such that (i) limpoo ay, = 0; (ii)
Yoo Loy = 00. Suppose either (a) op = o(ay), or (b) .00 |on| < oo, or
(c) limsup& <0. Then a, — 0 as n — oo.
Qp
Lemma 2.2. ([10]) Assume that a Banach space E has a weakly continuous
duality mapping J, with a gauge ¢.
(i) For all x,y € E, the following inequality holds

([l + yll) < ([|lzll) + (v, Jo (= + v))-
In particular, for all z,y € E

lz +yl* < lll® +2{y, j(z + y)).

(ii) Assume that the sequence {xy} in E converges weakly to a point x € E.
Then the following identity holds:

lim sup (|2, — yll) = lim sup D(|Ja, — all) + (|ly — x]), ¥y € E.
n—oo n—oo

Lemma 2.3. ([20]) Let C' be a nonempty closed convex subset of a strictly
convexr Banach space E. Let A; - C — E, i = 1,2,...,r, be a family of
m—accretive mapping with Ni_yN(A;) # 0. Let ao, a1, ...,a, be real numbers
in (0,1) such thaty ;_,a; =1 and S, = agl+a1Ja, +a2J a,+...+arJ 4, , where
Ja, == (I+A;)"L. Then S, is nonexpansive mapping and F(S,) = N_; N(4;).

Lemma 2.4. ([6]) Let E be a real reflexive Banach space and have a weakly
continuous duality mapping J, with . Suppose C is a closed conver subset
of E, and T : C — C is a nonexpansive mapping, let f: C — C be a fixed
contraction mapping. For t € (0,1), {x:} is defined by (1.3). Then T has a
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fized point if and only if {x;} remains bounded as t — 07, and in this case,
{z+} converges strongly to a fived point of T ast — 0T.

Let Q@ : [[o — F(T) by Q(f) := limy_,o+ x4, f € [[». Cho and Qin [7]
showed the following inequality

(I = £)QR), Jo(Q(f) —p)) <0, Vp e F(T). (2.1)

Theorem 2.5. ([8]) Let A be a continuous and accretive operator on the real
Banach space E with D(A) = E. Then A is m—accretive.

3. MAIN RESULTS

Now, we give our main results in this paper.

Theorem 3.1. Let E be a strictly convex and reflexive Banach space which has
a weakly continuous duality mapping J, with gauge ¢. Let C be a nonempty
closed convex subset of E and f € [[~ with the contractive coefficient ¢ €
(0,1). Let A; : C — E, i = 1,2,...,r, be a finite family of m—accretive
mappings with NI_{N(A;) # 0. Let Ja, = (I + A;)™t fori =1,2,..,r. For
any o9 € C, let {x,} be a sequence generated by algorithm (1.7). If the
sequence {ay,} satisfies the following conditions

(i) limp 00 vy =0,

(i) D02 an = 00,

(i) 30 |am — ap_1| < oo or  (iii)* limy, e Jan = an-1]

= 07
Qn

then {x,} converges strongly to a common solution of the equations A;(x) =0
fori=1,2,...,r

Proof. By Lemma 2.3, we have that F(S,) = Ni_;N(4;) # 0. Now, for each
p € F(S;), we have
[@nt1 = pll = [[Sr(anf(zn) + (1 = an)zn) — Sk (p)||
< Hlen(f(2n) = f(p) + (1 = an)(2n — p) + an(f(p) — D)l

<11 a1~ e — ol + (1 — o P

Smax{Hxn_ I, Hf( ) CPH} (3.1)

< max{ o ol 122

1f(p) - pll}
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Hence {z,}, {f(z,)} are bounded and suppose that max{sup ||z,||, sup || f(zn)||} <

K. It follows that
2011 = Sr(@n) || = 1S (enf (zn) + (1 — an)xn) — Se(24)|| 52)
< apllf(xn) — xp]| = 0,a8 n — oo. )

From (1.7) we get that
[2nt1 = @nll = 1Sk (anf(2n) + (1 = an)zn) = Se(an-1f(zn-1) + (1 — an-1)zn-1)||
< anllf(zn) = f(@n-1)ll + |on — an—a|[| f(zn-1)ll
+ (1 = an)llzn — 2p-1|l + o — an—1||lzn-1]]
<[ —an(l = o)flzn = zn1ll + (1 = c)anfn,

‘an - an—1|

where 3, = 2K . We consider two cases.
an(l—c

Case 1. Condition (iii) is satisfied. Then

[Znt1 — 2nl| < [1—an(l = )]l|lzn — zn-1]l + o,
where 0, = 2K |y, — ap—1] so that Y o2 | oy < 00.
Case 2. Condition (iii)* is satisfied. Then,

[Zn41 — Tnll < [1 = an(l = )lllzn — Tp-1ll + on,

where o, = (1 — ¢)a, By, so that o, = o((1 — ¢)ay,).
In either case, Lemma 2.1 yields that ||z,+1 — @] — 0 as n — oo and hence
by (3.2) we obtain that

|2 — Sp(@n)|| < [Zn41 — ol + |2 — Sp(@n)|| > 0as n — oo, (3.3)
Next, we prove that

lim sup ((I = )Q(f), Jp(Q(f) — 2a)) <0, (3.4)

n—oo

where Q(f) is defined by Lemma 2.4. Take a subsequence {z, } of {x,} such
that

hmfl)llo)o«l — NQ(f), Jo(Qf) — 20))
= lim (I = /)Qf), Jo(QUf) = zny))-

Since Banach space F is reflexive, we may further assume that x,, — = for
some T € C. Since the duality mapping J,, is weakly continuous, we have, by
Lemma 2.2,

lim sup ®(||zy, — /) =lim sup ®(||z,, —Z|) + (|2 — Z||), Vx € E.

n—o0 n—oo

(3.5)

Putting
g(w) = lim sup ®(||zn, —z[), Vo € E,
n—o0
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then it follows that

9(x) = g(x) + @(|]x —T||), Vo € E. (3.6)
Thus, from (3.3), we arrive at

9(5-(7)) = limnsggo O([|zp, — Sr(@)I))

= lim sup ®(||S,(xn,) — Sr(@)]]) (3.7)
n—oo
< lim sup O(||zp, — 7)) = 9(T).

On the other hand, from (3.6), we have

9(5:(x)) — 9(7) = @([|S-(7) —z]). (3.8)
Combining (3.7) and (3.8), we get ®(||.S,(Z) —Z||) < 0. Hence we have S,(T) =
T, that is, T € F(S,). It follows that
lim sup (1 = F)Qf), Jo(Qf) = 2n))

= (I = NR(): J,(Q(f) = 7)) < 0.

That is, (3.4) holds.
Now, we prove the sequence {z,} converges strongly to Q(f) as n — oc.
By the property of ® and by Lemma 2.2, we have

O([lzntr = QNI = @ISk (anf(2n) + (1 = an)zn) = S(Qf))I])
q’(llanf(wn) + (1= an)zn = Q)
®(anllf(zn) = FQUI+ anll F(Q(F)) = QNI
+ (1= an)llzn = QNI
([1 = an(l = lllzn = QUNI + anllF(Q()) = QNI
< <I>([1 — an(l = |z — QNI
+ an(f(Q(f)) = QUS); Jo(xnt1 — Q(f)))
<[ = an(l = )]@([lzn — QNI
+ an(f(Q(f)) = Q). Jp(@ns1 — Q(S)))-

By the condition (i) and (3.4), we know that all the conditions in Lemma 2.1
are satisfied. Therefore, it follows that ®(||x,+1 —Q(f)]]) = 0 as n — oo, that

is, x, = Q(f). g

Remark 3.2. If we take r = 1, then we may take Sy := J4 = (I + A)~! and
that strict convexity of E and real constant a;, ¢ = 0,1, may not be needed.
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Corollary 3.3. Let E be a reflexive Banach space which has a weakly con-
tinuous duality mapping J, with gauge ¢. Let C' be a nonempty closed con-
vex subset of E and f € [[~ with the contractive coefficient ¢ € (0,1). Let
A: C — E be an m—accretive mapping with N(A) # 0. For given xg € C,
let {x,} be generated by

Tt = Jalanf(xn) + (1 — ap)zy), Vn >0, (3.9)
where Jo == (I + A)~" and {a,} C (0,1). If the sequence {ay,} satisfies the
following conditions

(i) 2oniy an = o0,

) 5% o — | < 00 or (iii)* limy, e 107 —0n=1l _
n=1

0,
On
then {x,} converges strongly to a common solution of the equations A; = 0

fori=1,2,..,r.

Proof. The proof follows as in the proof of Theorem 3.1 with use of Remark
3.2. O

Remark 3.4. The Corollary 3.3 is more general than the result of Xu [15]
(Theorem 3.3). The result of Xu [15] is only a particular case of Corollary 3.3,
when F is a Hilbert space and f(z) = u for all z € C.

Theorem 3.5. Let E be a strictly convex and reflexive Banach space which has
a weakly continuous duality mapping J, with gauge ¢. Let C be a nonempty
closed convex subset of E and f € [[~ with the contractive coefficient ¢ €
(0,1). LetT; : E — E, i = 1,2,...,r be a family of continuous pseudo-
contractive mappings on E with Ni_F(T;) # 0. Let Jr, == (21 — T;)~! for
i=1,2,...,r. For given x9 € E, let {x,} be generated by

Tng1 = Sr(anf(xn) + (1 — an)zp), Yn >0, (3.10)
where S, = apl +a1Jp +...+a, Iy, for0 < a; <1, i=1,2,..,r, > _a; = 1.
and {an} C (0,1). If the sequence {ay,} satisfies the following conditions
(i) limy 00 vy =0,
(i) D02 an = 0o,

(i) 32, Jom — 1| < 00 o (iii)* limy_ye lom = anal _

0,
o

then {x,} converges strongly to a common fized point of Ty, Ta, ..., T;.
Proof. For each i = 1,2,...,r, then A; = I — T} is continuous accretive with

D(A;) = E. Hence, from Theorem 2.5, we deduce A; is m—accretive operator.
Apply Theorem 3.1, we obtain the proof of this theorem. O
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Now, we consider a single pseudocontractive mapping, we obtain the ana-
logue of Corollary 3.3.

Corollary 3.6. Let E be a reflexive Banach space which has a weakly con-
tinuous duality mapping J, with gauge ¢. Let C be a nonempty closed con-
vex subset of E and f € [[~ with the contractive coefficient ¢ € (0,1). Let
T: E — FE be a continuous pseudocontractive mapping on E with F(T) # (.
Let Jp = (21 —T)~'. For given xq € E, let {x,} be generated by the algorithm

Tnt1 = Jr(anf(zn) + (1 — an)zy), VR >0, (3.11)

where {an} C (0,1). If the sequence {ay,} satisfies the following conditions

(i) limp 00 ay =0,
(if) Dony an = o0,

(i) 3% |om — 1| < 00 or (ii)* limy_ye on = ana| _

0,
Qp

then {x,} converges strongly to a fixed point of T
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