
Nonlinear Functional Analysis and Applications
Vol. 19, No. 3 (2014), pp. 317-328

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2014 Kyungnam University Press KUPress

CONVERGENCE THEOREMS FOR A GENERALIZED
EQUILIBRIUM PROBLEM AND TWO

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
IN HILBERT SPACES

Ying Liu

College of Mathematics and Computer, Hebei University
Baoding 071002, P.R.China

e-mail: ly−cyh2013@163.com

Abstract. In this paper, we introduce an iterative scheme for finding a common element

of the set of solutions of a generalized equilibrium problem and the set of common fixed

points of two asymptotically nonexpansive mappings in Hilbert spaces. Weak and strong

convergence theorems are established for the iterative scheme.

1. Introduction

H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Let C be a nonempty closed convex subset of H. Assume that a bifunction
F : C × C → R satisfies the following conditions:

(A1) F (x, x) = 0, ∀ x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀ x, y ∈ C;
(A3) limt↓0 F (tz + (1− t)x, y) ≤ F (x, y), ∀ x, y, z ∈ C;
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Let A : C → H be a nonlinear mapping. Then, we consider the following
generalized equilibrium problem(GEP) which is to find z ∈ C such that

GEP: F (z, y) + 〈Az, y − z〉 ≥ 0, ∀ y ∈ C. (1.1)
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In the case of A ≡ 0, this problem (1.1) reduces to the equilibrium prob-
lem(EP), which is to find z ∈ C such that

EP: F (z, y) ≥ 0, ∀ y ∈ C. (1.2)

In the case of F ≡ 0, this problem (1.1) reduces to the variational inequality
problem(VIP), which is to find z ∈ C such that

VIP: 〈Az, y − z〉 ≥ 0, ∀ y ∈ C. (1.3)

Denote the set of solutions of GEP by Ω, the set of solutions of EP by EP (F )
and the set of solutions of VIP by V I(C,A). The problem (1.1) is very gen-
eral in the sense that it includes, as special cases, optimization problems,
variational inequalities, minimax problems, the Nash equilibrium problem in
noncooperative games and others; see, for instance, [1,7]. Let T : C → C be a
mapping. Recall that T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C,
and T is asymptotically nonexpansive if there exists a sequence {tn} ⊂ [1,+∞)
with lim

n→∞
tn = 1 such that

‖Tnx− Tny‖ ≤ tn‖x− y‖, ∀ x, y ∈ C and n ∈ N.

The set of fixed points of T is denoted by F (T ). Many iterative methods
for finding a common element of the set of solutions of the equilibrium prob-
lem(EP) or the variational inequality problem(VIP) and the set of fixed points
of a nonexpansive mapping have been extensively investigated by many au-
thors(see, e.g., [2, 6, 8, 11, 13]). However iterative methods for finding a
common element of the set of solutions of the generalized equilibrium prob-
lem(GEP) and the set of common fixed points of two asymptotically nonex-
pansive mappings are rarely studied.

Recently, Takahashi and Takahashi [10] introduced an iterative method for
finding a common element of the set of solutions of the generalized equilibrium
problem(GEP) and the set of fixed points of a nonexpansive mapping. More
precisely, they proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F : C × C → R be a bifunction satisfying (A1)-(A4). Let
A be an α-inverse-strongly monotone mapping of C into H and let S be a
nonexpansive mapping of C into itself such that F (S)

⋂
Ω 6= ∅. Let u ∈ C and

x1 ∈ C and let {zn} ⊂ C and {xn} ⊂ C be sequences generated by
F (zn, y) + 〈Axn, y − zn〉+ 1

λn
〈y − zn, zn − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)zn], ∀ n ∈ N,

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1] and {λn} ⊂ [0, 2α] satisfy
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0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < 2α,

lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then {xn} converges strongly to z = PF (S)
⋂

Ωu, where PF (S)
⋂

Ω is the metric
projection from C onto F (S)

⋂
Ω.

In 1991, Schu [8] introduced the following modified Mann iteration process:

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1,

where {αn} is a sequence in (0, 1) which is bounded away from 0 and 1, i.e.,
0 < a ≤ αn ≤ b < 1 for all n and some constant a, b, to approximate some fixed
point of the asymptotically nonexpansive self-mapping T in Hilbert spaces.

In 1994, Tan and Xu [15] studied the modified Ishikawa iteration process:

xn+1 = (1− αn)xn + αnT
n
(
(1− βn)xn + βnT

nxn
)
, n ≥ 1,

where {αn} and {βn} are two sequences in (0, 1) such that {αn} is bounded
away from 0 and 1 and {βn} is bounded away from 1.

In 1998, Takahashi and Tamura [12] introduced the following iterative schemes
known as Ishikawa iterative schemes for a pair of nonexpansive mappings T
and S: 

x1 = x ∈ C,

yn = βnTxn + (1− βn)xn,

xn+1 = αnSyn + (1− αn)xn, n ≥ 1,

where αn, βn ∈ [0, 1]. They proved strong and weak convergence of the se-
quence to a common fixed point of T and S.

Recently, Wang [16] used a similar iterative scheme to prove strong and weak
convergence theorems for a pair of asymptotically nonexpansive mappings.

It is clear that the asymptotically nonexpansive mappings are important
generalizations of nonexpansive mappings. For details, we refer the reader to
[5].

Motivated and inspired by these facts, we introduce an iteration scheme for
finding a common element of the set of solutions of the generalized equilibrium
problem(GEP) and the set of common fixed points of two asymptotically non-
expansive mappings in Hilbert spaces. We obtain weak and strong convergence
theorems.
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2. Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. We write xn ⇀ x to indicate that the sequence {xn} converges weakly
to x. xn → x implies that {xn} converges strongly to x. We denote by N and
R the sets of positive integers and real numbers, respectively. For any x ∈ H,
there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀ y ∈ C.

Such a PC is called the metric projection of H onto C. It is known that PC is
nonexpansive and satisfies the following property:

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀ x ∈ H, y ∈ C. (2.1)

Furthermore, for x ∈ H and u ∈ C,

u = PCx⇔ 〈x− u, u− y〉 ≥ 0, ∀ y ∈ C. (2.2)

Let S be a asymptotically nonexpansive mapping. We know that the set F (S)
of fixed points of S is closed and convex. Further, if C is bounded, closed
and convex, then F (S) is nonempty. A mapping A : C → H is called inverse-
strongly monotone if there exists α > 0 such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀ x, y ∈ C.

Such a mapping A is also called α-inverse-strongly monotone. If A is an α-
inverse-strongly monotone mapping of C to H, then it is obvious that A is
1
α -Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

‖(I − λA)x− (I − λA)y‖2

= ‖(x− y)− λ(Ax−Ay)‖2

= ‖x− y‖2 − 2λ〈x− y,Ax−Ay〉+ λ2‖Ax−Ay‖2

≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2.

(2.3)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.

A mapping T : C → C is said to be semi-compact, if for any sequence {xn}
in C such that ‖xn − Txn‖ → 0 as n → ∞, there exists a subsequence {xnj}
of {xn} such that {xnj} converges strongly to x∗ ∈ C.

Lemma 2.1. ([1,4]) Let C be a nonempty closed convex subset of H and let F
be a bifunction from C × C into R satisfying (A1)-(A4). Then, for any r > 0
and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C.
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Further, if

Trx =

{
z ∈ C : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
,

then the following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e.,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀ x, y ∈ H;

(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

Lemma 2.2. There holds the identity in a Hilbert space H:

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.3. ([14]) Let {an} and {tn} be two sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ an + tn, ∀ n ≥ 1.

If
∞∑
n=1

tn <∞, then lim
n→∞

an exists.

Lemma 2.4. ([3]) Let X be a uniformly convex Banach space, C be a nonempty
closed convex subset of X, and let T : C → X be an asymptotically nonexpan-
sive mapping with a sequence {kn} ⊂ [1,+∞) and kn → 1 as n → ∞. Then
I−T is demiclosed at zero, i.e., if xn ⇀ x and xn−Txn → 0, then x ∈ F (T ),
where F (T ) is the set of fixed points of T .

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F : C×C → R be a bifunction satisfying (A1)-(A4). Let A be
an α-inverse-strongly monotone mapping of C into H and let S, T : C → C be
two asymptotically nonexpansive mappings with sequence {sn} ⊂ [1,+∞) and

{tn} ⊂ [1,+∞) such that
∞∑
n=1

(sn − 1) <∞,
∞∑
n=1

(tn − 1) <∞, sn → 1, tn → 1

as n → ∞, respectively and F = F (S)
⋂
F (T )

⋂
Ω 6= ∅. From an arbitrary
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x1 ∈ C, define the following sequence {xn}:

yn = αnxn + (1− αn)Tnzn,

zn = βnxn + (1− βn)Snxn,

xn+1 ∈ C such that
F (xn+1, y) + 〈Ayn, y − xn+1〉+ 1

λn
〈y − xn+1, xn+1 − yn〉 ≥ 0,

(3.1)

for all y ∈ C, n ∈ N, where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {λn} ⊂ [0, 2α]
satisfy:

(B1) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(B2) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(B3) λn ∈ [a, b] for some 0 < a < b < 2α.

Then {xn} converges weakly to z ∈ F, where z = lim
n→∞

PFxn. Further, if one

of T and S is completely continuous, then {xn} converges strongly to z ∈ F.
Again, if one of T and S is semi-compact, then {xn} also converges strongly
to z ∈ F.

Proof. Setting tn = 1+wn, sn = 1+vn. Since
∞∑
n=1

(sn−1) <∞,
∞∑
n=1

(tn−1) <∞,

so,
∞∑
n=1

vn <∞,
∞∑
n=1

wn <∞. Note that xn+1 can be rewritten as

xn+1 = Tλn(yn − λnAyn)

for each n ∈ N. Let p ∈ F. Since p = Tλn(p− λnAp), by Lemma 2.1 and (2.3),
we have ‖xn+1 − p‖ ≤ ‖yn − p‖. Using (3.1), we have

‖zn − p‖ ≤ βn‖xn − p‖+ (1− βn)(1 + vn)‖xn − p‖
= ‖xn − p‖+ (1− βn)vn‖xn − p‖ ≤ (1 + vn)‖xn − p‖

and so

‖xn+1 − p‖ ≤ ‖yn − p‖ ≤ αn‖xn − p‖+ (1− αn)(1 + wn)‖zn − p‖
≤ αn‖xn − p‖+ (1− αn)(1 + wn)(1 + vn)‖xn − p‖
= ‖xn − p‖+ (1− αn)[(1 + wn)(1 + vn)− 1]‖xn − p‖
≤ (1 + wn + vn + wnvn)‖xn − p‖

≤
n∏
i=1

(1 + wi + vi + wivi)‖x1 − p‖

≤ e
n∑

i=1
(wi+vi+wivi)

‖x1 − p‖.
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Since
∞∑
n=1

(wn + vn + wnvn) <∞, then {xn} is bounded. It implies that there

exists a constant M > 0 such that ‖xn − p‖ ≤M for all n ∈ N. So,

‖xn+1 − p‖ ≤ ‖xn − p‖+ (wn + vn + wnvn)M.

It follows from Lemma 2.3 that lim
n→∞

‖xn − p‖ exists. By (2.3) and Lemma

2.2, we have

‖xn+1 − p‖2

≤ ‖yn − p‖2 + λn(λn − 2α)‖Ayn −Ap‖2

≤ αn‖xn − p‖2 + (1− αn)t2n‖zn − p‖2 − αn(1− αn)‖xn − Tnzn‖2

+ λn(λn − 2α)‖Ayn −Ap‖2

= ‖xn − p‖2 + (1− αn)[t2n‖zn − p‖2 − ‖xn − p‖2]

− αn(1− αn)‖xn − Tnzn‖2 + λn(λn − 2α)‖Ayn −Ap‖2

≤ ‖xn − p‖2 + (1− αn)[t2n(‖xn − p‖2 + (1− βn)(s2
n − 1)‖xn − p‖2

− βn(1− βn)‖xn − Snxn‖2)− ‖xn − p‖2]

− αn(1− αn)‖xn − Tnzn‖2 + λn(λn − 2α)‖Ayn −Ap‖2

= ‖xn − p‖2 + (1− αn)[(t2n − 1)‖xn − p‖2

+ t2n(1− βn)(s2
n − 1)‖xn − p‖2]

− (1− αn)t2nβn(1− βn)‖xn − Snxn‖2

− αn(1− αn)‖xn − Tnzn‖2 + λn(λn − 2α)‖Ayn −Ap‖2

≤ ‖xn − p‖2 + [(t2n − 1) + t2n(s2
n − 1)]M2

− (1− αn)βn(1− βn)‖xn − Snxn‖2

− αn(1− αn)‖xn − Tnzn‖2 + λn(λn − 2α)‖Ayn −Ap‖2.

(3.2)

Hence,

(1− αn)βn(1− βn)‖xn − Snxn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + [(t2n − 1) + t2n(s2
n − 1)]M2,

αn(1− αn)‖xn − Tnzn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + [(t2n − 1) + t2n(s2
n − 1)]M2

and
− λn(λn − 2α)‖Ayn −Ap‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + [(t2n − 1) + t2n(s2
n − 1)]M2.
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By (B1)− (B3) and lim
n→∞

‖xn − p‖ exists, tn → 1, sn → 1, we have

lim
n→∞

‖xn − Snxn‖ = lim
n→∞

‖xn − Tnzn‖ = lim
n→∞

‖Ayn −Ap‖ = 0. (3.3)

Since
‖zn − xn‖ = (1− βn)‖Snxn − xn‖ → 0, as n→∞,

we have
‖xn − Tnxn‖ ≤ ‖xn − Tnzn‖+ ‖Tnzn − Tnxn‖

≤ ‖xn − Tnzn‖+ tn‖zn − xn‖
→ 0, as n→∞.

(3.4)

From (3.1) and (3.3), we have

‖yn − xn‖ = (1− αn)‖Tnzn − xn‖ → 0, as n→∞. (3.5)

Using Lemma 2.1 and (3.1), we have

‖xn+1 − p‖2

= ‖Tλn(yn − λnAyn)− Tλn(p− λnAp)‖2

≤ 〈yn − λnAyn − (p− λnAp), xn+1 − p〉

=
1

2

(
‖yn − λnAyn − (p− λnAp)‖2 + ‖xn+1 − p‖2

− ‖yn − λnAyn − (p− λnAp)− (xn+1 − p)‖2
)

≤ 1

2

(
‖yn − p‖2 + ‖xn+1 − p‖2 − ‖(yn − xn+1)− λn(Ayn −Ap)‖2

)
=

1

2

(
‖yn − p‖2 + ‖xn+1 − p‖2 − ‖yn − xn+1‖2

− λ2
n‖Ayn −Ap‖2 + 2λn〈yn − xn+1, Ayn −Ap〉

)
.

So, we have

‖xn+1 − p‖2 ≤ ‖yn − p‖2 − ‖yn − xn+1‖2

− λ2
n‖Ayn −Ap‖2 + 2λn〈yn − xn+1, Ayn −Ap〉.

(3.6)

Then, from (3.2) and (3.6), we have

‖xn+1 − p‖2 ≤ ‖yn − p‖2 − ‖yn − xn+1‖2 − λ2
n‖Ayn −Ap‖2

+ 2λn〈yn − xn+1, Ayn −Ap〉
≤ ‖xn − p‖2 + [(t2n − 1) + t2n(s2

n − 1)]M2

− ‖yn − xn+1‖2 + 2λn〈yn − xn+1, Ayn −Ap〉.
So, we have

‖yn − xn+1‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + [(t2n − 1) + t2n(s2
n − 1)]M2

+ 2λn〈yn − xn+1, Ayn −Ap〉.
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Since lim
n→∞

‖xn − p‖ exists, tn → 1, sn → 1, lim
n→∞

‖Ayn −Ap‖ = 0, we have

lim
n→∞

‖yn − xn+1‖ = 0. (3.7)

It follows from (3.5) and (3.7) that

‖xn − xn+1‖ ≤ ‖xn − yn‖+ ‖yn − xn+1‖ → 0, as n→∞.

Hence,

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tn+1xn+1‖
+ ‖Tn+1xn+1 − xn+1‖+ ‖xn+1 − xn‖
≤ t1‖xn − Tnxn‖+ (t∞ + 1)‖xn − xn+1‖

+ ‖Tn+1xn+1 − xn+1‖
→ 0, as n→∞,

(3.8)

where t∞ = sup{tn : n ∈ N}. Similarly, we have

‖Sxn − xn‖ → 0, as n→∞. (3.9)

Noticing that {xn} is bounded, we obtain that there exists a subsequence {xnk
}

of {xn} such that xnk
⇀ w ∈ C. By Lemma 2.4, we have w ∈ F (T )

⋂
F (S).

Let us show w ∈ Ω. From (3.5) and (3.7), we have ynk
⇀ w and xnk+1 ⇀ w.

Since xn+1 = Tλn(yn − λnAyn), for any y ∈ C we have

F (xn+1, y) + 〈y − xn+1, Ayn〉+
1

λn
〈y − xn+1, xn+1 − yn〉 ≥ 0.

From (A2), we also have

〈y − xn+1, Ayn〉+
1

λn
〈y − xn+1, xn+1 − yn〉 ≥ F (y, xn+1). (3.10)

Put zt = ty + (1− t)w for all t ∈ (0, 1] and y ∈ C. Then, we have zt ∈ C. So,
from (3.10) we have

〈zt − xn+1, Azt〉 ≥ 〈zt − xn+1, Azt〉 − 〈zt − xn+1, Ayn〉

− 〈zt − xn+1,
xn+1 − yn

λn
〉+ F (zt, xn+1)

= 〈zt − xn+1, Azt −Axn+1〉+ 〈zt − xn+1, Axn+1 −Ayn〉

− 〈zt − xn+1,
xn+1 − yn

λn
〉+ F (zt, xn+1).

Since ‖xn+1 − yn‖ → 0, we have ‖Axn+1 − Ayn‖ → 0. Further, from mono-
tonicity of A, we have 〈zt − xn+1, Azt − Axn+1〉 ≥ 0. So, replacing n by nk,
from (A4) we have

〈zt − w,Azt〉 ≥ F (zt, w), as k →∞. (3.11)
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From (A1),(A4) and (3.11), we also have

0 = F (zt, zt) ≤ tF (zt, y) + (1− t)F (zt, w)

≤ tF (zt, y) + (1− t)〈zt − w,Azt〉
= tF (zt, y) + (1− t)t〈y − w,Azt〉

and hence

0 ≤ F (zt, y) + (1− t)〈y − w,Azt〉.
Letting t→ 0, we have, for each y ∈ C,

0 ≤ F (w, y) + 〈y − w,Aw〉.
This implies w ∈ Ω. Therefore, w ∈ F. Define un = PFxn for all n ∈ N. Since
w ∈ F , we have ‖un − xn‖ ≤ ‖w − xn‖. Then {un} is bounded. From (3.2),
we have

‖xn+1 − un‖2 ≤ ‖xn − un‖2 + θn‖xn − un‖2, (3.12)

where θn = [(t2n − 1) + t2n(s2
n − 1)]. By un+1 = PFxn+1 and un = PFxn ∈ F ,

we have

‖un+1 − xn+1‖2 ≤ ‖un − xn+1‖2 ≤ ‖un − xn‖2 + θnM
∗,

where M∗ = sup{‖xn − un‖2 : n ∈ N}. Since
∞∑
n=1

θn < ∞, it follows from

Lemma 2.3 that lim
n→∞

‖un − xn‖ exists. Again, using (3.12), for all m ∈ N, we

have

‖xn+m − un‖2 ≤
m−1∏
i=0

(1 + θn+i)‖xn − un‖2.

From un+m = PFxn+m and un = PFxn ∈ F, we have

‖un − un+m‖2 ≤ ‖un − xn+m‖2 − ‖un+m − xn+m‖2

≤
m−1∏
i=0

(1 + θn+i)‖xn − un‖2 − ‖un+m − xn+m‖2

≤ e
m−1∑
i=0

θn+i

‖xn − un‖2 − ‖un+m − xn+m‖2.

Since
∞∑
n=1

θn <∞ and lim
n→∞

‖un− xn‖ exists, we obtain that {un} is a Cauchy

sequence. Since F is closed, we have that {un} converges strongly to z ∈ F.
On the other hand, noticing that w ∈ F and un = PFxn, we have

〈xnk
− unk

, unk
− w〉 ≥ 0.

Letting k →∞, we have

〈w − z, z − w〉 ≥ 0.
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Hence, w = z. Therefore, {xn} converges weakly to z ∈ F, where z =
lim
n→∞

PFxn.

If T or S is completely continuous, then we have Txnk
→ z or Sxnk

→ z,
as k →∞. By (3.8) or (3.9), we have xn → z.

If one of T and S is semi-compact, then, by (3.8) or (3.9), there exists
a subsequence {xnj} of {xn} such that {xnj} converges strongly to q ∈ C. It
follows from (3.8), (3.9) and Lemma 2.4 that q ∈ F . Since lim

n→∞
‖xn−q‖ exists,

then {xn} converges strongly to q. Since {xn} converges weakly to z ∈ F, we
have q = z, where z = lim

n→∞
PFxn. �

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F : C×C → R be a bifunction satisfying (A1)-(A4). Let A be
an α-inverse-strongly monotone mapping of C into H and let S, T : C → C be
two nonexpansive mappings such that F = F (S)

⋂
F (T )

⋂
Ω 6= ∅. If {αn} ⊂

(0, 1), {βn} ⊂ (0, 1) and {λn} ⊂ [0, 2α] satisfy (B1)− (B3), then the sequence
{xn} defined by:

x1 ∈ C, chosen arbitrarily,

yn = αnxn + (1− αn)Tzn,

zn = βnxn + (1− βn)Sxn,

xn+1 ∈ C such that
F (xn+1, y) + 〈Ayn, y − xn+1〉+ 1

λn
〈y − xn+1, xn+1 − yn〉 ≥ 0,

for all y ∈ C, n ∈ N, converges weakly to z ∈ F, where z = lim
n→∞

PFxn. Further,

if one of T and S is completely continuous, then {xn} converges strongly to
z ∈ F. Again, if one of T and S is semi-compact, then {xn} also converges
strongly to z ∈ F.

Proof. In Theorem 3.1, put tn = sn = 1 for all n ∈ N. Then, we can obtain
the desired result by Theorem 3.1. �
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