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Abstract. If P (z) be a polynomial of degree at most n which does not vanish in |z| < 1,
then for 0 ≤ p <∞ and R > 1, it is known that

‖B[P ◦ ρ](z)‖p ≤
‖Rnφn(λ0, λ1, λ2)z + λ0‖p

‖1 + z‖p
‖P (z)‖p ,

B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined by (1.13). The result is sharp as shown by

P (z) = azn + b, |a| = |b| = 1. In this paper, we present a compact generalization of above

and other related results.

1. Introduction

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of

degree at most n. For P ∈Pn, define

‖P (z)‖0 := exp

{
1

2π

∫ 2π

0
log
∣∣∣P (eiθ)

∣∣∣ dθ} ,
‖P (z)‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p}1/p

, 0 < p <∞,

‖P (z)‖∞ := Max
|z|=1

|P (z)| ,
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and denote for any complex function ρ : C→ C, the composite function P ◦ ρ
of P and ρ, defined by (P ◦ ρ) (z) := P (ρ(z)) (z ∈ C).

A famous known result as Bernstein’s inequality (for reference, see [13,
p.531], [18, p.508] or [20] states that if P ∈Pn, then∥∥P ′(z)∥∥∞ ≤ n ‖P (z)‖∞ , (1.1)

whereas concerning the maximum modulus of P (z) on the circle |z| = R >
r ≥ 1, we have

‖P (Rz)‖∞ ≤ R
n ‖P (z)‖∞ , R ≥ 1, (1.2)

(for reference, see [12, p.442] or [13, vol.I, p.137] ).
Inequalities (1.1) and (1.2) can be obtained by letting p→∞ in the inequali-
ties ∥∥P ′(z)∥∥

p
≤ n ‖P (z)‖p , p ≥ 1 (1.3)

and

‖P (Rz)‖p ≤ R
n ‖P (z)‖p , R > r ≥ 1, p > 0, (1.4)

respectively. Inequality (1.3) was found by Zygmund [22] whereas inequality
(1.4) is a simple consequence of a result of Hardy [9] (see also [16, Theorem
5.5]). Since inequality (1.3) was deduced from M. Riesz’s interpolation for-
mula [19] by means of Minkowski’s inequality, it was not clear, whether the
restriction on p was indeed essential. This question was open for a long time.
Finally Arestov [2] proved that (1.3) remains true for 0 < p < 1 as well.

If we restrict ourselves to the class of polynomials P ∈ Pn having no zero
in |z| < 1, then inequalities (1.1) and (1.2) can be respectively replaced by∥∥P ′(z)∥∥∞ ≤ n

2
‖P (z)‖∞ (1.5)

and

‖P (Rz)‖∞ ≤
Rn + 1

2
‖P (z)‖∞ , R > r ≥ 1. (1.6)

Inequality (1.5) was conjectured by Erdös and later verified by Lax [10],
whereas inequality (1.6) is due to Ankey and Ravilin [1].
Both the inequalities (1.5) and (1.6) can be obtain by letting p → ∞ in the
inequalities ∥∥P ′(z)∥∥

p
≤ n
‖P (z)‖p
‖1 + z‖p

, p ≥ 0 (1.7)

and

‖P (Rz)‖p ≤
‖Rnz + 1‖p
‖1 + z‖p

‖P (z)‖p , R > r ≥ 1, p > 0. (1.8)

Inequality (1.7) is due to De-Bruijn [7] for p ≥ 1. Rahman and Schmeisser
[17] extended it for 0 ≤ p < 1 whereas the inequality (1.8) was proved by Boas
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and Rahman [6] for p ≥ 1 and later it was extended for 0 ≤ p < 1 by Rahman
and Schmeisser [17].

Q.I. Rahman [14] (see also Rahman and Schmeisser [18, p. 538]) introduced
a class Bn of operators B that carries a polynomial P ∈Pn into

B[P ](z) := λ0P (z) + λ1

(nz
2

) P ′(z)
1!

+ λ2

(nz
2

)2 P ′′(z)
2!

, (1.9)

where λ0, λ1 and λ2 are such that all the zeros of

U(z) := λ0 + λ1C(n, 1)z + λ2C(n, 2)z2, (1.10)

where C(n, r) =
n!

r!(n− r)!
, 0 ≤ r ≤ n, lie in half plane |z| ≤ |z − n/2| .

As a generalization of inequality (1.1) and (1.5), Q.I. Rahman [14, inequality
5.2 and 5.3] proved that if P ∈Pn and B ∈ Bn, then

|B[P ](z)| ≤ |φn(λ0, λ1, λ2)|‖P (z)‖∞ for |z| ≥ 1 (1.11)

and if P ∈Pn, P (z) 6= 0 in |z| < 1, then

|B[P ](z)| ≤ 1

2
{|φn(λ0, λ1, λ2)|+ |λ0|} ‖P (z)‖∞ for |z| ≥ 1, (1.12)

where

φn(λ0, λ1, λ2) = λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
. (1.13)

As a corresponding generalization of inequalities (1.2) and (1.4), Rahman
and Schmeisser [18, p. 538] proved that if P ∈Pn, then

|B[P ◦ ρ](z)| ≤ Rn|φn(λ0, λ1, λ2)| ‖P (z)‖∞ for |z| = 1 (1.14)

and if P ∈Pn, P (z) 6= 0 in |z| < 1, then as a special case of Corollary 14.5.6
in [18, p. 539], we have

|B[P ◦ ρ](z)| ≤ 1

2
{Rn|φn(λ0, λ1, λ2)|+ |λ0|} ‖P (z)‖∞ for |z| = 1, (1.15)

where ρ(z) := Rz, R ≥ 1 and φn(λ0, λ1, λ2) is defined by (1.13).
Inequality (1.15) also follows by combining the inequalities (5.2) and (5.3)

due to Rahman [14].

As an extension of inequality (1.14) to Lp-norm, recently Shah and Liman
[21, Theorem 1] proved:

Theorem 1.1. If P ∈Pn, then for every R ≥ 1 and p ≥ 1,

‖B[P ◦ ρ](z)‖p ≤ R
n|φn(λ1, λ2, λ3)| ‖P (z)‖p , (1.16)

where B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined by (1.13).
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While seeking the analogue of (1.15) in Lp norm, they [21, Theorem 2] have
made an incomplete attempt by claiming to have proved the following result:

Theorem 1.2. If P ∈Pn and P (z) does not vanish for |z| ≤ 1, then for each
p ≥ 1, R ≥ 1,

‖B[P ◦ ρ](z)‖p ≤
Rn|φn(λ1, λ2, λ3)|+ |λ0|

‖1 + z‖p
‖P (z)‖p , (1.17)

where B ∈ Bn, ρ(z) = Rz and φn(λ1, λ2, λ3) is defined by (1.13).

Unfortunately the proof of inequality (1.17) and other related results in-
cluding the key lemma [21, Lemma 4] given by Shah and Liman is not correct
as is pointed out by Rather and Shah [18] who in the same paper have given
a correct proof of the inequality (1.17) and also extended it for 0 ≤ p < 1 as
well. More precisely they proved:

Theorem 1.3. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for
0 ≤ p <∞ and R > 1,

‖B[P ◦ ρ](z)‖p ≤
‖Rnφn(λ0, λ1, λ2)z + λ0‖p

‖1 + z‖p
‖P (z)‖p , (1.18)

B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined by (1.13). The result is sharp
as shown by P (z) = azn + b, |a| = |b| = 1.

2. Preliminaries

For the proofs of this theorem, we need the following lemmas. The first
lemma follows from Corollary 18.3 of [11, p. 86].

Lemma 2.1. If P ∈Pn and P (z) has all zeros in |z| ≤ 1, then all the zeros
of B[P ](z) also lie in |z| ≤ 1.

Lemma 2.2. If P ∈Pn and P (z) have all its zeros in |z| ≤ 1, then for every
R > r ≥ 1 and |z| = 1,

|P (Rz)| ≥
(
R+ 1

r + 1

)n
|P (z)| .

Proof. Since all the zeros of P (z) lie in |z| ≤ 1, we write

P (z) = C

n∏
j=1

(
z − rjeiθj

)
,
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where rj ≤ 1. Now for 0 ≤ θ < 2π, R > 1, we have∣∣∣∣Reiθ − rjeiθjeiθ − rjeiθj

∣∣∣∣ =

{
R2 + r2j − 2Rrj cos(θ − θj)

1 + r2j − 2rj cos(θ − θj)

}1/2

≥
{
R+ rj
1 + rj

}
≥
{
R+ 1

r + 1

}
, for j = 1, 2, · · · , n.

Hence ∣∣∣∣P (Reiθ)

P (eiθ)

∣∣∣∣ =
n∏
j=1

∣∣∣∣Reiθ − rjeiθjeiθ − rjeiθj

∣∣∣∣
≥

n∏
j=1

(
R+ 1

r + 1

)

=

(
R+ 1

r + 1

)n
,

for 0 ≤ θ < 2π. This implies for |z| = 1,

|P (Rz)| ≥
(
R+ 1

r + 1

)n
|P (z)| ,

which completes the proof of Lemma 2.2. �

Lemma 2.3. If P ∈Pn and P (z) has all its zeros in |z| ≤ 1, then for every
real or complex number α with |α| ≤ 1 and |z| ≥ 1,

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≥ |Rn − β||φ(λ0, λ1, λ2)||z|nm, (2.1)

where m = Min
|z|=1
|P (z)|, ρ(z) = Rz and φ(λ0, λ1, λ2) is given by (1.13).

Proof. By hypothesis, all the zeros of P (z) lie in |z| ≤ 1 and

m|z|n ≤ |P (z)| for |z| = 1.

We first show that the polynomial g(z) = P (z) − βmzn has all its zeros in
|z| ≤ 1 for every real or complex number β with |β| < 1. This is obvious if
m = 0, that is if P (z) has a zero on |z| = 1. Henceforth, we assume P (z) has
all its zeros in |z| < 1, then m > 0 and it follows by Rouche’s theorem that the
polynomial g(z) has all its zeros in |z| < 1 for every real or complex number
β with |β| < 1. Applying Lemma 2.2 to the polynomial g(z), we deduce

|g(Rz)| ≥
(
R+ 1

r + 1

)n
|g(z)| for |z| = 1.
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Since R > r, therefore R+1
r+1 > 1, this gives

|g(Rz)| > |g(z)| for |z| = 1. (2.2)

Since all the zeros of G(Rz) lie in |z| < 1/R < 1, by Rouche’s theorem again
it follows from (2.2) that all the zeros of polynomial

H(z) = g(Rz)− αg(z) = P (Rz)− αP (z)− β(Rn − αrn)znm

lie in |z| < 1, for every α, β with |α| ≤ 1, |β| < 1. Applying Lemma 2.1 to
H(z) and noting that B is a linear operator, it follows that all the zeros of
polynomial

B[H](z) = B[g ◦ ρ](z)− αB[g](z)

= {B[P ◦ ρ](z)− αB[P ◦ %](z)} − β(Rn − αrn)mB[zn] (2.3)

lie in |z| < 1. This gives for |z| ≥ 1,

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≥ |Rn − αrn||φ(λ0, λ1, λ2)||z|nm. (2.4)

If (2.4) is not true, then there is point w with |w| ≥ 1 such that

|B[P ◦ ρ](w)− αB[P ◦ %](w)| < |Rn − αrn||φ(λ0, λ1, λ2)||w|nm. (2.5)

We choose

β =
B[P ◦ ρ](w)− αB[P ◦ %](w)

(Rn − αrn)φ(λ0, λ1, λ2)wnm
,

then clearly |β| < 1 and with this choice of β, from (2.3), we get B[H](w) = 0
with |w| ≥ 1. This is clearly a contradiction to the fact that all the zeros of
H(z) lie in |z| < 1. Thus for every real or complex α with |α| ≤ 1,

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≥ |Rn − αrn||φ(λ0, λ1, λ2)||z|nm

for |z| ≥ 1 and R > r ≥ 1. �

Lemma 2.4. If P ∈ Pn and P (z) has no zero in |z| < 1, then for every
α ∈ C with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| , (2.6)

where P ?(z) = znP (1/z) and ρ(z) = Rz.

Proof. Since the polynomial P (z) has all its zeros in |z| ≥ 1, therefore, for every
real or complex number λ with |λ| > 1, the polynomial f(z) = P (z)−λP ?(z),
where P ?(z) = znP (1/z), has all zeros in |z| ≤ 1. Applying Lemma 2.2 to the
polynomial f(z), we obtain for every R > 1 and 0 ≤ θ < 2π,

|f(Reiθ)| ≥
(
R+ 1

r + 1

)n
|f(eiθ)|. (2.7)
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Since f(Reiθ) 6= 0 for every R > r ≥ 1, 0 ≤ θ < 2π and R + 1 > 2, it follows
from (2.7) that

|f(Reiθ)| >
(
R+ 1

r + 1

)n
|f(Reiθ)| ≥ |f(eiθ)|,

for every R > r ≥ 1 and 0 ≤ θ < 2π. This gives

|f(z)| < |f(Rz)| for |z| = 1, R > 1.

Using Rouche’s theorem and noting that all the zeros of f(Rz) lie in |z| ≤
1/R < 1, we conclude that the polynomial

T (z) = f(Rz)− αf(z) = {P (Rz)− αP (z)} − λ {P ?(Rz)− αP ?(z)}
has all its zeros in |z| < 1 for every real or complex α with |α| ≥ 1 and R > 1.
Applying Lemma 2.1 to polynomial T (z) and noting thatB is a linear operator,
it follows that all the zeros of polynomial

B[T ](z) = B[f ◦ ρ](z)− αB[f ](z)

= {B[P ◦ ρ](z)− αB[P ◦ %](z)} − λ {B[P ? ◦ ρ](z)− αB[P ?](z)}
lie in |z| < 1 where ρ(z) = Rz. This implies

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| (2.8)

for |z| ≥ 1 and R > r ≥ 1. If inequality (2.8) is not true, then there exits a
point z = z0 with |z0| ≥ 1 such that

|B[P ◦ ρ](z0)− αB[P ◦ %](z0)| > |B[P ? ◦ ρ](z0)− αB[P ?](z0)|. (2.9)

But all the zeros of P ?(Rz) lie in |z| < 1/R < 1, therefore, it follows (as in
case of f(z)) that all the zeros of P ?(Rz) − αP ?(z) lie in |z| < 1. Hence, by
Lemma 2.1, we have

B[P ? ◦ ρ](z0)− αB[P ?](z0) 6= 0.

We take

λ =
B[P ◦ ρ](z0)− αB[P ◦ %](z0)

B[P ? ◦ ρ](z0)− αB[P ?](z0)
,

then λ is well defined real or complex number with |λ| > 1 and with this choice
of λ, we obtain B[T ](z0) = 0 where |z0| ≥ 1. This contradicts the fact that
all the zeros of B[T ](z) lie in |z| < 1. Thus (2.8) holds true for |α| ≤ 1 and
R > r ≥ 1. �

Lemma 2.5. If P ∈ Pn and P (z) has no zero in |z| < 1, then for every
α ∈ C with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,∣∣B[P ◦ ρ](z)− αB[P ◦ %](z)

∣∣
≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| − (|Rn − αrn| − |1− α||λ0|)m, (2.10)
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where P ?(z) = znP (1/z), m = Min
|z|=1
|P (z)| and ρ(z) = Rz.

Proof. By hypothesis P (z) has all its zeros in |z| ≥ 1 and

m ≤ |P (z)| for |z| = 1. (2.11)

We show F (z) = P (z)+λm does not vanish in |z| < 1 for every λ with |λ| < 1.
This is obvious if m = 0 that is, if P (z) has a zero on |z| = 1. So we assume
all the zeros of P (z) lie in |z| > 1, then m > 0 and by the maximum modulus
principle, it follows from (2.11),

m < |P (z)| for |z| < 1. (2.12)

Now if F (z) = P (z) + λm = 0 for some z0 with |z0| < 1, then

P (z0) + λm = 0.

This implies

|P (z0)| = |λ|m ≤ m for |z0| < 1, (2.13)

which is clearly contradiction to (2.12). Thus the polynomial F (z) does not
vanish in |z| < 1 for every λ with |λ| < 1. Applying Lemma 2.4 to the poly-
nomial F (z), we get

|B[F ◦ ρ](z)− αB[F ](z)| ≤ |B[F ? ◦ ρ](z)− αB[F ?](z)

for |z| = 1 and R > r ≥ 1. Replacing F (z) by P (z) + λm, we obtain

|B[P ◦ ρ](z)− αB[P ◦ %](z) + λ(1− α)λ0m|
≤ |B[P ? ◦ ρ](z)− αB[P ?](z) + λ̄(Rn − αrn)φ(λ0, λ1, λ2)z

nm|. (2.14)

Now choosing the argument of λ in the right hand side of (2.14) such that

|B[P ? ◦ ρ](z)− αB[P ?](z) + λ̄(Rn − αrn)φ(λ0, λ1, λ2)z
nm|

= |B[P ? ◦ ρ](z)− αB[P ?](z)| − |λ||Rn − αrn||φ(λ0, λ1, λ2)|m

for |z| = 1, which is possible by Lemma 2.3, we get

|B[P ? ◦ ρ](z)− αB[P ?](z)| − |λ||1− α||λ0|m
≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| − |λ||Rn − αrn||φ(λ0, λ1, λ2)|m.

Equivalently,

|B[P ◦ ρ](z)− αB[P ◦ %](z)|
≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| − (|Rn − αrn| − |1− α||λ0|)m.

This completes the proof of Lemma 2.5. �
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Next we describe a result of Arestov [2]. For δ = (δ0, δ1, · · · , δn) ∈ Cn+1

and P (z) =
∑n

j=0 ajz
j ∈Pn, we define

ΛδP (z) =

n∑
j=0

δjajz
j .

The operator Λδ is said to be admissible if it preserves one of the following
properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1} ,
(ii) P (z) has all its zeros in {z ∈ C : |z| ≥ 1} .

The result of Arestov [2] may now be stated as follows.

Lemma 2.6. ([2, Theorem 4]) Let φ(x) = ψ(logx) where ψ is a convex non
decreasing function on R. Then for all P ∈Pn and each admissible operator
Λδ, ∫ 2π

0
φ(|ΛδP (eiθ)|)dθ ≤

∫ 2π

0
φ(C(δ, n)|P (eiθ)|)dθ,

where C(δ, n) = max(|δ0|, |δn|).

In particular, Lemma 2.6 applies with φ : x → xp for every p ∈ (0,∞).
Therefore, we have{∫ 2π

0
(|ΛδP (eiθ)|p)dθ

}1/p

≤ C(δ, n)

{∫ 2π

0
|P (eiθ)|pdθ

}1/p

. (2.15)

We use (2.15) to prove the following interesting result.

Lemma 2.7. If P ∈Pn and P (z) does not vanish in |z| < 1, then for every
p > 0, R > 1 and for γ real, 0 ≤ γ < 2π,∫ 2π

0

∣∣∣{B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
}
eiγ

+
{
B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)

} ∣∣∣pdθ
≤
∣∣∣(Rn − α)φ(λ0, λ1, λ2)e

iγ + (1− ᾱ)λ̄0

∣∣∣p ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ, (2.16)

where B ∈ Bn, ρ(z) := Rz, B[P ? ◦ ρ]?(z) := (B[P ? ◦ ρ](z))? and φ(λ0, λ1, λ2)
is defined by (1.13).

Proof. Since P ∈ Pn and P ?(z) = znP (1/z̄), by Lemma 2.4, we have for
|z| ≥ 1,

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| . (2.17)
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Also, since P ?(Rz)− αP ?(z) = RnznP (1/Rz̄)− αznP (1/z̄),

B[P ? ◦ ρ](z)− αB[P ?](z)

= λ0

{
RnznP (1/Rz̄)− αznP (1/z̄)

}
+ λ1

(nz
2

){(
nRnzn−1P (1/Rz̄)−Rn−1zn−2P ′(1/Rz̄)

)
− α

(
nzn−1P (1/z̄)− zn−2P ′(1/z̄)

)}
+
λ2
2!

(nz
2

)2 {(
n(n− 1)Rnzn−2P (1/Rz̄)

− 2(n− 1)Rn−1zn−3P ′(1/Rz̄) +Rn−2zn−4P ′′(1/Rz̄)
)

− α
(
n(n− 1)zn−2P (1/z̄)− 2(n− 1)zn−3P ′(1/z̄) + rn−2zn−4P ′′(1/z̄)

)}
and

B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z) =
(
B[P ? ◦ ρ](z)− αB[P ?](z)

)?
=
(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

){
RnP (z/R)− ᾱP (z)

}
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

){
Rn−1zP ′(z/R)− ᾱzP ′(z)

}
+ λ̄2

n2

8

{
Rn−2z2P ′′(z/R)− ᾱz2P ′′(z)

}
. (2.18)

Also,

|B[P ? ◦ ρ](z)− αB[P ?](z)| = |B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z)| for |z| = 1.

Using this in (2.17), we get

|B[P ◦ ρ](z)− αB[P ◦ %](z)| ≤ |B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z)| for |z| = 1.

As in Lemma 2.4, the polynomial P ? ◦ρ(z)−αP ?(z) has all its zeros in |z| < 1
and by Lemma 2.1, B[P ? ◦ ρ](z) − αB[P ?](z) also has all its zero in |z| < 1.
Therefore, B[P ? ◦ ρ]?(z) − ᾱB[P ?]?(z) has all its zeros in |z| ≥ 1. Hence by
the maximum modulus principle,

|B[P ◦ρ](z)−αB[P ◦%](z)| < |B[P ?◦ρ]?(z)−ᾱB[P ?]?(z)| for |z| < 1. (2.19)
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A direct application of Rouche’s theorem shows that with P (z) = anz
n+ · · ·+

a0,

ΛδP (z) =
{
B[P ◦ ρ](z)− αB[P ◦ %](z)

}
eiγ +B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z),

=

{
(Rn − α)

(
λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

)
eiγ + (1− ᾱ)λ̄0

}
anz

n

+ · · ·+
{

(Rn − ᾱ)

(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)
+ eiγ(1− α)λ0

}
a0,

has all its zeros in |z| ≥ 1, for every real γ, 0 ≤ γ ≤ 2π. Therefore, Λδ is an
admissible operator. Applying (2.15) of Lemma 2.6, the desired result follows
immediately for each p > 0. �

We also need the following lemma [4].

Lemma 2.8. If A,B,C are non-negative real numbers such that B +C ≤ A,
then for each real number γ,

|(A− C)eiγ + (B + C)| ≤ |Aeiγ +B|.

3. Main results

In this paper we establish Lp-mean extensions of the inequality (1.15) for
0 ≤ p <∞ which in particular provides a generalization of inequality (1.18).
In this direction, we present the following interesting compact generalization
of Theorem 1.3 which yields Lp mean extension of the inequality (1.12) for
0 ≤ p <∞.

Theorem 3.1. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for
α, δ ∈ C with |α| ≤ 1, |δ| ≤ 1, 0 ≤ p <∞ and R > r ≥ 1,

∥∥∥B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ) + δ
{(|Rn − αrn| − |1− α||λ0|)m

2

}∥∥∥
p

≤
‖(Rn − αrn)φn(λ0, λ1, λ2)z + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p , (3.1)

where m = Min|z|=1|P (z)|, B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined by
(1.13). The result is best possible and equality in (3.1) holds for P (z) = azn+b,
|a| = |b| = 1.
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Proof. By hypothesis P (z) does not vanish in |z| < 1, therefore by Lemma
2.5, we have

|B[P ◦ ρ](z)− αB[P ◦ %](z)|
≤ |B[P ? ◦ ρ](z)− αB[P ?](z)| − (|Rn − αrn| − |1− α||λ0|)m, (3.2)

for |z| = 1, |α| ≤ 1 and R > r ≥ 1 where P ?(z) = znP (1/z).
Since B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z) is the conjugate of B[P ? ◦ ρ](z)−αB[P ?](z)
and

|B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z)| = |B[P ? ◦ ρ](z)− αB[P ?](z)|.

Thus for |z| = 1, (3.2) can be written as

|B[P ◦ ρ](z)− αB[P ◦ %](z)|+ (|Rn − αrn| − |1− α||λ0|)m
2

≤ |B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z)| − (|Rn − αrn| − |1− α||λ0|)m
2

. (3.3)

Taking

A = |B[P ? ◦ ρ]?(z)− ᾱB[P ?]?(z)| , B = |B[P ◦ ρ](z)− αB[P ◦ %](z)|

and

C =
(|Rn − αrn| − |1− α||λ0|)m

2

in Lemma 2.8 and noting by (3.3) that

B + C ≤ A− C ≤ A,

we get for every real γ,

∣∣∣{∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣− (|Rn − αrn| − |1− α||λ0|)m

2

}
eiγ

+
{∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣+
(|Rn − αrn| − |1− α||λ0|)m

2

}∣∣∣
≤
∣∣∣∣∣B[P ?◦]?(eiθ)− ᾱB[P ?]?(eiθ)

∣∣eiγ +
∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣∣∣∣.
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This implies for each p > 0,

2π∫
0

∣∣∣{∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣− (|Rn − αrn| − |1− α||λ0|)m

2

}
eiγ

+
{∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣+
(|Rn − αrn| − |1− α||λ0|)m

2

}∣∣∣pdθ
≤

2π∫
0

∣∣∣∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣eiγ

+
∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣∣∣∣pdθ. (3.4)

Integrating both sides of (3.4) with respect to γ from 0 to 2π, we get with the
help of Lemma 2.7 for each p > 0,

2π∫
0

2π∫
0

∣∣∣{∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣− (|Rn − αrn| − |1− α||λ0|)m

2

}
eiγ

+
{∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣+
(|Rn − αrn| − |1− α||λ0|)m

2

}∣∣∣pdθdγ
≤

2π∫
0

2π∫
0

∣∣∣∣∣B[P ?◦ρ]?(eiθ)−ᾱB[P ?]?(eiθ)
∣∣eiγ+

∣∣B[P◦ρ](eiθ)−αB[P◦%](eiθ)
∣∣∣∣∣pdθdγ.

≤
2π∫
0

{ 2π∫
0

∣∣∣∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣eiγ

+
∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣∣∣∣pdγ}dθ
≤

2π∫
0

{ 2π∫
0

∣∣∣{B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
}
eiγ

+
{
B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

}∣∣∣pdγ}dθ
≤

2π∫
0

{ 2π∫
0

∣∣∣{B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
}
eiγ



354 N. A. Rather and S. H. Ahangar

+
{
B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

}∣∣∣pdθ}dγ
≤

2π∫
0

∣∣∣(Rn − α)φ(λ0, λ1, λ2)e
iγ + (1− ᾱ)λ̄0

∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ. (3.5)

Now it can be easily verified that for every real number γ and s ≥ 1,∣∣s+ eiα
∣∣ ≥ ∣∣1 + eiα

∣∣ .
This implies for each p > 0,∫ 2π

0

∣∣s+ eiγ
∣∣p dγ ≥ ∫ 2π

0

∣∣1 + eiγ
∣∣p dγ. (3.6)

If
∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣+ (|Rn − αrn| − |1− α||λ0|)m
2

6= 0, we take

s =

∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣− (|Rn − αrn| − |1− α||λ0|)m

2∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
∣∣+

(|Rn − αrn| − |1− α||λ0|)m
2

,

then by (3.3), s ≥ 1 and we get with the help of (3.6),

2π∫
0

∣∣∣{∣∣B[P ? ◦ ρ]?(eiθ)− ᾱB[P ?]?(eiθ)
∣∣− (|Rn − αrn| − |1− α||λ0|)m

2

}
eiγ

+
{∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∣∣+
(|Rn − αrn| − |1− α||λ0|)m

2

}∣∣∣pdγ
=

∣∣∣∣∣∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
∣∣+

(|Rn − αrn| − |1− α||λ0|)m
2

∣∣∣∣∣
p

×
2π∫
0

∣∣∣∣∣∣∣eiγ+

∣∣B[P ?◦ρ]?(eiθ)−ᾱB[P ?]?(eiθ)
∣∣− (|Rn−αrn|−|1−α||λ0|)m

2∣∣B[P◦ρ](eiθ−αB[P ◦%](eiθ)
∣∣+ (|Rn−αrn|−|1−α||λ0|)m

2

∣∣∣∣∣∣∣
p

dγ

=

∣∣∣∣∣∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
∣∣+

(|Rn − αrn| − |1− α||λ0|)m
2

∣∣∣∣∣
p

×
2π∫
0

∣∣∣∣∣∣∣eiγ+

∣∣∣∣∣
∣∣B[P ?◦ρ]?(eiθ)−ᾱB[P ?]?(eiθ)

∣∣− (|Rn−αrn|−|1−α||λ0|)m
2∣∣B[P◦ρ](eiθ)−αB[P◦%](eiθ)

∣∣+ (|Rn−αrn|−|1−α||λ0|)m
2

∣∣∣∣∣
p
∣∣∣∣∣∣∣ dγ
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≥

∣∣∣∣∣∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
∣∣+

(|Rn − αrn| − |1− α||λ0|)m
2

∣∣∣∣∣
p

×
2π∫
0

|1 + eiγ |pdγ. (3.7)

For
∣∣B[P ◦ ρ](eiθ) − αB[P ◦ %](eiθ)

∣∣ +
(|Rn − αrn| − |1− α||λ0|)m

2
= 0, then

(3.7) is trivially true. Using this in (3.5), we conclude for every real or complex
number α with |α| ≤ 1, R > r ≥ 1 and p > 0,

2π∫
0

∣∣∣∣∣∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)
∣∣+

(|Rn − αrn| − |1− α||λ0|)m
2

∣∣∣∣∣
p

dθ

×
2π∫
0

|1 + eiγ |pdγ

≤
2π∫
0

∣∣∣(Rn − α)φ(λ0, λ1, λ2)e
iγ + (1− ᾱ)λ̄0

∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

This gives for every real or complex number δ, α with |δ| ≤ 1, |α| ≤ 1, R >
r ≥ 1 and γ real

2π∫
0

∣∣∣∣∣B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ) + δ
{(|Rn − αrn| − |1− α||λ0|)m

2

}∣∣∣∣∣
p

dθ

×
2π∫
0

|1 + eiγ |pdγ

≤
2π∫
0

∣∣∣(Rn − α)φ(λ0, λ1, λ2)e
iγ + (1− ᾱ)λ̄0

∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ. (3.8)

Since
2π∫
0

∣∣∣(Rn − α)φ(λ0, λ1, λ2)e
iγ + (1− ᾱ)λ̄0

∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ

=

2π∫
0

∣∣∣|(Rn − α)φ(λ0, λ1, λ2)|eiγ + |(1− ᾱ)λ̄0|
∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ
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=

2π∫
0

∣∣∣|(Rn − α)φ(λ0, λ1, λ2)|eiγ + |(1− α)λ0|
∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ

=

2π∫
0

∣∣∣(Rn − α)φ(λ0, λ1, λ2)e
iγ + (1− α)λ0

∣∣∣pdγ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ, (3.9)

the desired result follows immediately by combining (3.8) and (3.9). This
completes the proof of Theorem 3.1 for p > 0. To establish this result for
p = 0, we simply let p→ 0+. �

Setting m = 0 in (3.1), we get the following result.

Corollary 3.2. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for
α, δ ∈ C with |α| ≤ 1, |δ| ≤ 1, 0 ≤ p <∞ and R > r ≥ 1,∥∥∥B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ)

∥∥∥
p

≤
‖(Rn − αrn)φn(λ0, λ1, λ2)z + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p , (3.10)

B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined by (1.13). The result is best
possible and equality in (3.1) holds for P (z) = azn + b, |a| = |b| = 1.

Remark 3.3. If we take α = 0 in (3.10), we obtain Theorem 1.3.

By using triangle inequality, the following result immediately follows from
Theorem 3.1.

Corollary 3.4. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for
α, δ ∈ C with |α| ≤ 1, |δ| ≤ 1, 0 ≤ p <∞ and R > r ≥ 1,∥∥∥B[P ◦ ρ](eiθ)− αB[P ◦ %](eiθ) + δ

{(|Rn − αrn| − |1− α||λ0|)m
2

}∥∥∥
p

≤ |(R
n − αrn)φn(λ0, λ1, λ2)|+ |(1− α)λ0|

‖1 + z‖p
‖P (z)‖p , (3.11)

where m = Min|z|=1|P (z)|, B ∈ Bn, ρ(z) = Rz and φn(λ0, λ1, λ2) is defined
by (1.13).
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