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Abstract. If P(z) be a polynomial of degree at most n which does not vanish in |z| < 1,
then for 0 < p < oo and R > 1, it is known that

[|R™ ¢n (Ao, A1, A2)z + Aol

B[P o p|(z < PIP(2)]. ,

1B A2, < Ty 1P,
B € By, p(2) = Rz and ¢n(Xo, A1, A2) is defined by (1.13). The result is sharp as shown by
P(z) = az™ + b, |a|] = |b| = 1. In this paper, we present a compact generalization of above

and other related results.

1. INTRODUCTION

Let &, denote the space of all complex polynomials P(z) = 377, a;jz) of
degree at most n. For P € &, define

PGy = e {5 [ os|Pe)] sl

ren,={ [

1P(2)

o VP
P(e’g)‘} , 0<p<oo,

loo

:= Max |P(2)],
|z]=1
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and denote for any complex function p : C — C, the composite function P o p
of P and p, defined by (P op)(2):= P (p(z)) (2 €C).

A famous known result as Bernstein’s inequality (for reference, see [13,
p.531], [18, p.508] or [20] states that if P € &7, then

1P'(2)]. < nlIP(2)]ls - (1.1)

whereas concerning the maximum modulus of P(z) on the circle |z| = R >
r > 1, we have

[1P(R2)|l,o < R"[|P(2)]o, R=1, (1.2)
(for reference, see [12, p.442] or [13, vol.I, p.137] ).
Inequalities (1.1) and (1.2) can be obtained by letting p — oo in the inequali-
ties

IP'), <nlPG),, p>1 (1.3)

p?
and
|P(R2)|, < R"||P(2)[l,, R>r>1, p>0, (1.4)

respectively. Inequality (1.3) was found by Zygmund [22] whereas inequality
(1.4) is a simple consequence of a result of Hardy [9] (see also [16, Theorem
5.5]). Since inequality (1.3) was deduced from M. Riesz’s interpolation for-
mula [19] by means of Minkowski’s inequality, it was not clear, whether the
restriction on p was indeed essential. This question was open for a long time.
Finally Arestov [2] proved that (1.3) remains true for 0 < p < 1 as well.

If we restrict ourselves to the class of polynomials P € &2, having no zero
in |z| < 1, then inequalities (1.1) and (1. 2) can be respectively replaced by
1P, < 5 1P (1.5
and

R" + 1

I1P(R2)|lo < 1P, R>r=1 (1.6)

Inequality (1.5) was conjectured by Erdos and later verified by Lax [10],
whereas inequality (1.6) is due to Ankey and Ravilin [1].

Both the inequalities (1.5) and (1.6) can be obtain by letting p — oo in the
inequalities

1P, <l s w7
"rz [
and
[R"z + 1],
||P(R2)Hp§ 7”]3(2)%, R>r>1, p>0. (1.8)
11+ =],

Inequality (1.7) is due to De-Bruijn [7] for p > 1. Rahman and Schmeisser
[17] extended it for 0 < p < 1 whereas the inequality (1.8) was proved by Boas
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and Rahman [6] for p > 1 and later it was extended for 0 < p < 1 by Rahman

and Schmeisser [17].
Q.I. Rahman [14] (see also Rahman and Schmeisser [18, p. 538]) introduced
a class B, of operators B that carries a polynomial P € &, into

nz\ P'(z) nz\2 P"(z)
BIP](2) := AoP(2) + M (7) TR (7) o (L)
where A\g, A1 and Ay are such that all the zeros of
U(z) == Xg+ MC(n,1)z 4+ \C(n,2)22, (1.10)
|
where C(n,r) = L, 0 <r < mn, lie in half plane |z| < |z —n/2|.
rl(n —r)!

As a generalization of inequality (1.1) and (1.5), Q.I. Rahman [14, inequality
5.2 and 5.3] proved that if P € &, and B € B, then

[BIP](2)] < [6n(Ao, A1, M) [|P(2)]oo for  [2] =1 (1.11)
and if P € &, P(z) # 0 in |z| < 1, then

|BIP](2)] < %{|¢n(A07A1aA2)\ + ol [[P(2)]lo for [z] =1, (1.12)

where 2 3
-1
Pn(A0s A1y A2) = Ao + )\1% + )\2n(nég>.

As a corresponding generalization of inequalities (1.2) and (1.4), Rahman
and Schmeisser [18, p. 538] proved that if P € &7, then

IBIP 0 p)(2)] < B'6n(ho, A, M)l [P(2)]le for || =1 (1.14)

and if P € &, P(z) # 0 in |z| < 1, then as a special case of Corollary 14.5.6
in [18, p. 539], we have

(1.13)

BIP o pl()] < 5 (A" 160000, M, 22) + Mol IPR)ll for o] =1, (1.15)

where p(z) := Rz, R>1 and ¢,(\o, A1, A2) is defined by (1.13).
Inequality (1.15) also follows by combining the inequalities (5.2) and (5.3)
due to Rahman [14].

As an extension of inequality (1.14) to L,-norm, recently Shah and Liman
[21, Theorem 1] proved:
Theorem 1.1. If P € &2, then for every R>1 andp > 1,
IBIP o pl(2)ll, < R"¢n(A1, A2, A3)[ | P(2)]],,
where B € By, p(z) = Rz and ¢n(Xo, A1, A2) is defined by (1.13).

(1.16)
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While seeking the analogue of (1.15) in L, norm, they [21, Theorem 2] have
made an incomplete attempt by claiming to have proved the following result:

Theorem 1.2. If P € &, and P(z) does not vanish for |z| < 1, then for each
p=1, R>1,

R pn (A1, A2, A3)| + [ Ao P

IBIP o pl(2)l, < e

A, (1.17)

where B € By, p(z) = Rz and ¢n (A1, A2, A3) is defined by (1.13).

Unfortunately the proof of inequality (1.17) and other related results in-
cluding the key lemma [21, Lemma 4] given by Shah and Liman is not correct
as is pointed out by Rather and Shah [18] who in the same paper have given
a correct proof of the inequality (1.17) and also extended it for 0 < p < 1 as
well. More precisely they proved:

Theorem 1.3. If P € %, and P(z) does not vanish for |z| < 1, then for
0<p<ooandR>1,

< | R™én (Ao, A1, A2)z + Xol|
b= 11+ 2]p

B € By, p(2) = Rz and ¢n (Ao, A1, A2) is defined by (1.13). The result is sharp
as shown by P(z) = az" +b, |a| = |b] = 1.

IBIP o pl(2)]l =P, (1.18)

2. PRELIMINARIES

For the proofs of this theorem, we need the following lemmas. The first
lemma follows from Corollary 18.3 of [11, p. 86].

Lemma 2.1. If P € &, and P(z) has all zeros in |z| < 1, then all the zeros
of B[P](z) also lie in |z] < 1.

Lemma 2.2. If P € &, and P(z) have all its zeros in |z| < 1, then for every
R>r>1and|z| =1,

I LG

Proof. Since all the zeros of P(z) lie in |z| < 1, we write

P(z) = C’ﬁ (z — rjei9j> ,
j=1
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where 7; < 1. Now for 0 < 6 < 2w, R > 1, we have

Re® —rjeti| {R2 + sz — 2Rrjcos(0 — 0;) }1/2

e — r;eifs 1+ 7% —2r;jcos(d — 0;)
S R+r;
T L1+
R+1
- {ril}’ or =z
Hence
'P(Reie) _ ﬁ Re® — r;eifi
Pe?) | ] e —rets
n
R+1
>
- ]1;[1 (r +1 )

for 0 < 6 < 2x. This implies for |z| =1,
R+1\"
P = (H51) 1P,

r+1
which completes the proof of Lemma 2.2. O

Lemma 2.3. If P € &, and P(z) has all its zeros in |z| < 1, then for every
real or complex number o with |a| <1 and |z| > 1,

|BIP o p](2) — aB[P o ¢](2)| = [R" = B[[¢(Xo, A1, A2)||2]"m, (2.1)
where m = ]|\4‘£7lz\P(z)|, p(z) = Rz and ¢(Xo, M1, A2) is given by (1.13).

Proof. By hypothesis, all the zeros of P(z) lie in |z| <1 and
m|z|" < |P(z)| for |z|=1.

We first show that the polynomial g(z) = P(z) — fmz" has all its zeros in
|z| <1 for every real or complex number 8 with || < 1. This is obvious if
m = 0, that is if P(z) has a zero on |z| = 1. Henceforth, we assume P(z) has
all its zeros in |z| < 1, then m > 0 and it follows by Rouche’s theorem that the
polynomial g(z) has all its zeros in |z| < 1 for every real or complex number
g with |B] < 1. Applying Lemma 2.2 to the polynomial g(z), we deduce

R+1

l9(Rz)| > <r+1> lg(z)| for |z| =1.
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Since R > r, therefore % > 1, this gives
l9(R2)| > [g(2)]  for [z|=1. (2.2)

Since all the zeros of G(Rz) lie in |z| < 1/R < 1, by Rouche’s theorem again
it follows from (2.2) that all the zeros of polynomial

H(z) = g(Rz) —ag(z) = P(Rz) —aP(z) — B(R" —ar™)z"m

lie in |z| < 1, for every a, 8 with |a| < 1, |8] < 1. Applying Lemma 2.1 to
H(z) and noting that B is a linear operator, it follows that all the zeros of
polynomial

B[H|(z) = Blg o pl(z) — aBg](z)
— {B[Popl(2) — aBIP o ol(2)} — B(R" — ar™ymBz"]  (2.3)
lie in |z] < 1. This gives for |z| > 1,
IBIP o pl(2) — aBIP o gl(2)] = [R" — ar™[l6(h, M, o) |a"m. (2.4)
If (2.4) is not true, then there is point w with |w| > 1 such that
[BIP o pl(w) — aB[P o ol(w)| < |R" — ar"||é(ho, A, A)l[uwl™m.  (2.5)

We choose
g5 = BlPopl(w) — aB[P o of(w)

~(R™ — ar™)é (Mo, A1, Ao)wm
then clearly || < 1 and with this choice of 3, from (2.3), we get B[H](w) =0
with |w| > 1. This is clearly a contradiction to the fact that all the zeros of
H(z) lie in |z| < 1. Thus for every real or complex a with || < 1,

[BIP o pl(2) — aB[P o 0](2)] = [R" — ar™{|¢(Ao, A1, A2)[[2]"m
for |z| >1and R >r > 1. O

Lemma 2.4. If P € &, and P(z) has no zero in |z| < 1, then for every
acCuwith o <1, R>r>1and|z| > 1,

|B[P o pl(z) — aB[P o ¢|(z)| < |B[P" o p|(z) — aB[P*](2)], (2.6)
where P*(z) = 2"P(1/Z) and p(z) = Rz.
Proof. Since the polynomial P(z) has all its zeros in |z| > 1, therefore, for every
real or complex number A with |A\| > 1, the polynomial f(z) = P(z) — AP*(z),
where P*(z) = 2" P(1/Z), has all zeros in |z| < 1. Applying Lemma 2.2 to the
polynomial f(z), we obtain for every R > 1 and 0 < 6 < 27,

e = (25 e 27)




L? mean estimates for B-operators 347

Since f(Re™) # 0 for every R >r > 1,0 <0 < 27 and R+ 1 > 2, it follows
from (2.7) that

. R n . .
e > () 1R = 15

for every R > r > 1 and 0 < 6 < 2. This gives
lf(z)] <|f(Rz)| for |z|]=1, R>1.
Using Rouche’s theorem and noting that all the zeros of f(Rz) lie in |z| <
1/R < 1, we conclude that the polynomial
T(2) = [(R) — af(2) = {[P(R2) — aP(2)} — M{P*(Rz) — aP*(2)}

has all its zeros in |z| < 1 for every real or complex o with |a| > 1 and R > 1.
Applying Lemma 2.1 to polynomial 7'(z) and noting that B is a linear operator,
it follows that all the zeros of polynomial

B[T](z) = B[f o pl(z) — aB[f](2)
= {B[P o pl(z) —aB[P o o|(z)} = M{B[P" o pl(z) — aB[P"](z)}
lie in |z| < 1 where p(z) = Rz. This implies
B[P o (=) — aBIP o ol()| < |BIP* o pl(z) — aB[P*](z)]  (2.8)
for |z| > 1 and R > r > 1. If inequality (2.8) is not true, then there exits a
point z = zp with |zp9| > 1 such that
IBIP o p)(20) — aBIP o gl(z0)| > [BIP* 0 pl(z0) — aB[P*(0)].  (2.9)

But all the zeros of P*(Rz) lie in |z| < 1/R < 1, therefore, it follows (as in
case of f(z)) that all the zeros of P*(Rz) — aP*(z) lie in |z| < 1. Hence, by
Lemma 2.1, we have

B[P* o pl(20) — aB[P*](z0) # 0.

We take
B B[P o p|(z0) — aB[P o 9](z0)
B[P o p](z0) — aB[P*](20)
then X is well defined real or complex number with |A| > 1 and with this choice
of A\, we obtain B[T](z9) = 0 where |zp| > 1. This contradicts the fact that
all the zeros of B[T|(z) lie in |z| < 1. Thus (2.8) holds true for |a] < 1 and
R>r>1. O

Lemma 2.5. If P € &, and P(z) has no zero in |z| < 1, then for every
acCuwith o <1, R>r>1and |z| > 1,

| B[P o p](2) — aB[P o 0](2)|
< [B[P" o pl(2) — aB[P"](2)| = (|R" — ar”| = |1 = al[Ao])m, (2.10)
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where P*(z) = z"P(1/Zz), m = Mzrlz]P(z)\ and p(z) = Rz.

Proof. By hypothesis P(z) has all its zeros in |z| > 1 and
m < |P(z)| for |z|=1. (2.11)

We show F(z) = P(z)+ Am does not vanish in |z| < 1 for every A with || < 1.
This is obvious if m = 0 that is, if P(z) has a zero on |z| = 1. So we assume
all the zeros of P(z) lie in |2z| > 1, then m > 0 and by the maximum modulus
principle, it follows from (2.11),

m < |P(z)| for |z] < 1. (2.12)
Now if F(z) = P(z) + Am = 0 for some zy with |zp| < 1, then
P(zp) + Am = 0.
This implies
|P(z0)| = |A\jlm <m for |z] <1, (2.13)

which is clearly contradiction to (2.12). Thus the polynomial F'(z) does not
vanish in |z| < 1 for every A with |A| < 1. Applying Lemma 2.4 to the poly-
nomial F'(z), we get

|B[F o p(z) — aB[F](z)| < |B[F" o p](z) — aB[F"](2)
for |z| =1 and R > r > 1. Replacing F'(z) by P(z) + Am, we obtain
|B[P o p](z) — aB[P o g](z) + AM(1 — a)\gm|
< |B[P* o p|(2) — aB[P*](2) + A(R™ — ar™)¢(Xo, A1, A2)2"m). (2.14)
Now choosing the argument of X in the right hand side of (2.14) such that
|B[P* o p](2) — aB[P*](2) + M(R" — ar™)¢(Xo, A1, A2)2""m|
= |B[P" 0 p](2) — aB[P*](2)| = [A[R" — ar”[|¢(Xo, A1, A2)[m
for |z| = 1, which is possible by Lemma 2.3, we get
|B[P" o p](2) — aB[P*](2)| = [Al[1 — [ Ao|m
< [B[P" 0 p|(2) — aB[P*|(z)| — |A||R" — ar”[[¢(Ao, A1, Az)|m.
Equivalently,
|B[P o p](z) — aB[P o o](2)]
< [B[P" 0 p|(2) — aB[P*|(z)| = (IR" — ar”| = [1 — [ Ao|)m.

This completes the proof of Lemma 2.5. O
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Next we describe a result of Arestov [2]. For 6 = (do,d1, -+ ,0n) € cr+l
and P(2) = > a;2) € Py, we define

AsP(z) = Z 5ja;2.
j=0

The operator Ay is said to be admissible if it preserves one of the following
properties:

(i) P(z) has all its zeros in {z € C: |z| < 1},

(ii) P(z) has all its zeros in {z € C: |z| > 1}.

The result of Arestov [2] may now be stated as follows.

Lemma 2.6. ([2, Theorem 4]) Let ¢(x) = ¥ (logx) where 1) is a convex non
decreasing function on R. Then for all P € &, and each admissible operator

As,
2T

2w
; $(|AsP(e”)])db < ; ¢(C(8,n)|P(e")])de),
where C(9,n) = max(|dol, |dn]).

In particular, Lemma 2.6 applies with ¢ : x — 2P for every p € (0,00).
Therefore, we have

{ /0 2W(|A5P(ei0)lp)d9}1/p < C(6,n) { /0 v | P(ei9)|Pd,9}1/p. (2.15)

We use (2.15) to prove the following interesting result.

Lemma 2.7. If P € &, and P(z) does not vanish in |z| < 1, then for every
p>0, R>1 and for v real, 0 < v < 27,

/2#
0

+ {B[p* o p*(e™) — aB[P*]*(ew)} ‘pde

{B[Pop](eie) —aB[Po Q](eie)} ot

21
< |B" — @600, A Ay + (1 - a)hg| / P a,  (216)
0

where B € By, p(z) := Rz, B[P* o p|*(z) := (B[P* o p|(2))* and ¢(Xo, A1, \2)
is defined by (1.13).

Proof. Since P € &, and P*(z) = 2"P(1/z), by Lemma 2.4, we have for
|2 = 1,

BIP o pl(2) — aBIP o ol(2)] < [BIP* o pl(2) —aBIP)(z)|.  (2.17)
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Also, since P*(Rz) — aP*(z) = R"2"P(1/Rz) — az"P(1/%),

B[P* 0 p)(2) — aB[P*]()
— ,\O{annp(l/Rz) — az”P(l/i)}

0 () (o POTRR) — B P17 RE))
-« (nzn_lm — Zn_gm) }
(5" (oo - -7

—9(n — 1)R" 1" 3PI(1/RZ) + R™ 2" 4P (1 /Rz))

- a(n(n —1)2"2P(1/7) — 2(n — 1)2" 3 PI(1)7) + r”_an_4P/’(1/2))}

and
B[P* o pJ*() = aB[P*]"(2) = (B[P" o pl(2) — aB[P*](2))
_ (Xo + Af‘; + X ”3<”8_ 1)){R"P(z/R) - ap(z)}
- (Xlg + X2”2(”4_ 1)){R”_1ZP’(Z/R) - azpf(z)}
+ A27§{R"2z2P”(z/R) - o?zZP"(z)}. (2.18)
Also,

IBIP* o pl(2) — aB[P*](2)| = |BIP* 0 g (2) — aBIPT"()]  for |2] = 1.
Using this in (2.17), we get
B[P o pl(2) — aB[Po ol(2)] < |B[P* o pl"() — aB[P(s)|  for |o] = 1.

As in Lemma 2.4, the polynomial P*op(z) —aP*(z) has all its zeros in |z| < 1
and by Lemma 2.1, B[P* o p|(z) — aB[P*](z) also has all its zero in |z| < 1.
Therefore, B[P* o p|*(z) — @B[P*]*(z) has all its zeros in |z| > 1. Hence by
the maximum modulus principle,

|B[Popl|(z)—aB[Poy|(z)| < |B[P*op|*(z)—aB[P*|*(z)| for |z| <1. (2.19)
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A direct application of Rouche’s theorem shows that with P(z) = apz"+---+
aqp,

AsP(2) ={ BIP 0 p]() = aBIP 0 d](2) }e" + BIP* 0 p](2) — aB[P*]*(2),

2 3(n

1 . _
= {(R" —a) <)\0 + )\1% + )\gn)) e+ (1— d))\o} an?"

8
B 2 3 -1 .
+ -4 {(Rn — @) <)\0 + Al% +)\2TZ(TL8)) +e(1 - Oé))\()}a(),

has all its zeros in |z| > 1, for every real 7, 0 < v < 27. Therefore, A is an
admissible operator. Applying (2.15) of Lemma 2.6, the desired result follows
immediately for each p > 0. 0

We also need the following lemma [4].

Lemma 2.8. If A, B,C are non-negative real numbers such that B+ C < A,
then for each real number -y,

(A= C)e + (B +C)| < |Ae™ + BJ.

3. MAIN RESULTS

In this paper we establish L,-mean extensions of the inequality (1.15) for
0 < p < oo which in particular provides a generalization of inequality (1.18).
In this direction, we present the following interesting compact generalization
of Theorem 1.3 which yields L, mean extension of the inequality (1.12) for
0<p<o0.

Theorem 3.1. If P € &, and P(z) does not vanish for |z| < 1, then for
a,d € Cwith |a| <1, <1,0<p<oocand R>r>1,

|B1P o pl(e) - aBlP o gl(e?) + 8{¢

_ IR" = ar™)én(ho, A Xa)z + (1= )l
. [+,

|R™ — ar™ — |1 — aHx\()])m}H
2 P

(3.1)

where m = Min ;1| P(2)|, B € Bn, p(z) = Rz and ¢n(Ao, M1, A2) is defined by
(1.13). The result is best possible and equality in (3.1) holds for P(z) = az"+b,
jal = bl = 1.
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Proof. By hypothesis P(z) does not vanish in |z| < 1, therefore by Lemma
2.5, we have

|B[P o p](2) — aB[P o ¢](z)]

< |B[P" o p](2) — aB[P*](2)| = (IR" — ar™| = [1 = a||Ao|)m, (3.2)
for |z =1, |a| <1and R >r > 1 where P*(z) = z"P(1/z).
Sirzlce B[P* o p]*(z) — aB[P*]*(z) is the conjugate of B[P* o p|(z) — aB[P*](2)

|B[P" o p]"(2) = aB[P*]"(2)| = |B[P" 0 pl(2) — aB[P"](2)|
Thus for |z| =1, (3.2) can be written as

(IR" — ar™| = [1 = af[Ao|)m
2
(IR" = ar”[ = [1 = af|Xo[)m
5 :

B[P o p]() — aB[P o g](2)| +

< [B[P* o g]*() — GBIP**()] — (3.3)

Taking
A = |B[P" o p]"(z) —aB[P*]"(2)|, B = |B[Pop|(z) —aB[P o o|(z)]

and

(IB" — ar™| = [1 = af[Ao|)m

C= 5

in Lemma 2.8 and noting by (3.3) that
B+C<A-C<A,

we get for every real ~,

IR — arn| — |1 - aHx\oDm}ew
2
|R™ — ar™| — |1 — al|Xo|)m
s
< |[BIP7o]*(¢) = GBIP*T*(e™)[e" + [BIP o p)(e") ~ aBIP o g](¢?) |

{181 o () — aBIP ()] - ¢

+{1BIP o pl(e?) — aBIP o gl(e?)] + ¢
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This implies for each p > 0,

|R™ —ar™ — |1 — OfH/\ODm}eiw

27
/H'B[P*O,O]*(ew) _ dB[P*]*(eie)‘ _ ( :
0

(|IR" —ar™ — |1 — a\]/\()])m}’pde

+{|BIP o pl(e”) — aB[P o o](e)] + .

2
< / [[BIP* 0 pl* () — aB[P**(e)[¢"
0
+ B[P o pl(¢"®) — aB[P o g)(e)| ‘pde. (3.4)

Integrating both sides of (3.4) with respect to «y from 0 to 27, we get with the
help of Lemma 2.7 for each p > 0,

27 2w

// H|B[P*Op]*(ew) _ dB[P*]*(ew)’ _ (|R" —ar™[ —[1 = 04||)\0|)m}em
00

2

(IR" = ar™[ = [1 = af|o[)m
2

+{IBIP o pl(e"”) = aB[P o g](e)] +
2m 2w

< / / [ BIPop]* (¢~ aBIP*)* ()| + | BlPop)(e”) —aB[Poo)(e”)] | dody.
00

deﬂdy

27 21

</ { 118177 o 1) = aBlP () e
0 0
+ B[P o p)(e"?) — aB[P o g] (eif’)\)pdry}de
27 21
<[ { JEBIP 0 () - aBlP ) e
0 0

+ {B[Popl(e”) — aB[P o g(e)} ‘pdy}dé

= / { / {BIP" 0 " () — GBI (")}

0 0
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+{B[Popl(¢?) — aB[P o o] (ew)}‘pde}dv

2T
go/](Rn—am(Ao,Al,AQ)eiu (1 —a)XO‘pdy/jw P o, (35)

Now it can be easily verified that for every real number ~ and s > 1,
‘s + eia‘ > ‘1 + eio‘} .

This implies for each p > 0,

/02W|s+e”‘pdfy > /02” 1+ . (3.6)

If | B[P o p|(¢) — aB[P o o](¢?)] + ([F" — ar”] —2|1 — af[A)m £ 0, we take
‘B[P* o p]*(eie) _ dB[P*]*(ew)] o (|R" —ar"| _2|1 — af[Ao])m
T |BIP o () — aB[Po gl(e)| + 0T = alPolim

then by (3.3), s > 1 and we get with the help of (3.6),

2
{15t () - appppreny| - Sl S = alllmy
0
+{|BIP o pl(e”) - aBlPo ()] + oIz allobmy
— [BIP o p)(¢) — aB[P o gl(c)| + W =" 2\1 — al|Ao))m
| |BlPopl () B (e - e maddohm
X/ e+ (|Rn— n|_|21_ ||)\ ’) d7
2| 1B —aBlPog) (e + (e I Lmaldobm
= ||B[P o p](”) — aB[P o o](")| + (17" = ar”] _2‘1 — af[Xo))m
2 BIP*op*(e?)—aB[P (e — L —arI=l1=alldl)m
x/e"u'[ pl*(e") [P*]*(e")] . n21 i "
‘B[Pop](ew)—aB[Pog}(ei@)}+(‘ —ar”|—[1—al|Ao[)m

0 2
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p
> ||BIP o pl(e”) — aB[P o gl(e)] + =0T L= ol
2w
x/\l—i—e”]pd’y. (3.7)
0
For [BIP o (") —aBIP o g(e")] + (L= — o, then

(3.7) is trivially true. Using this in (3.5), we conclude for every real or complex
number « with |o| <1, R>r>1and p >0,

27

/

0

p

IBIP o l(¢%) — aBIP o g)(e")| + L= 01 L = alldelm ' 4

2

2

X /]1 + e |Pdry
0
2T

< / (R = a)6(20, A1, Aa)e™ + (1= a)No dy /

0

P(e?) )p db.

This gives for every real or complex number ¢, with 0] < 1, |o| < 1, R >
r > 1 and ~ real

27 n n p
/B[Pop](em)—aB[Pog](ew)—i-(S{ﬂR o= el gy
0
2T
x/1+ei7|pd'y
0
27
n i v |P o ioy|P
§/‘(R —a)¢(AO,A1,A2)e7+(1—a)Ao‘ dv/ Pe )‘ df. (3.8)
0 0
Since
21
n i v |P o ion|P
] = 600300067 + (1= aysaf'ay [ |Pee)[as
0 0
21
n i Ny P o Nk
= [ it = apotn e+ 1= @ 'a [ [P ao
0

0
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P do

2m
) 0/ (R™ = )60, At M)l + (1= a)ol| /o% i

= 7!(1%” — )60, M1, A2)e™ + (1= a)dol dy / " P @, (39
0 0

the desired result follows immediately by combining (3.8) and (3.9). This
completes the proof of Theorem 3.1 for p > 0. To establish this result for
p =0, we simply let p — 0+. O

Setting m = 0 in (3.1), we get the following result.
Corollary 3.2. If P € &, and P(z) does not vanish for |z| < 1, then for
a,d € Cwith |a| < 1,0 <1,0<p<oocand R>r>1,
|BIP o () — aBP o g](c™)|
p

|(R"™ — ar™)én(Ao, A1, A2)z + (1 — a) Aol|
< ENIP()],, (3.10)
11+ 2|l

B € By, p(z) = Rz and ¢n(Xo, A1, \2) is defined by (1.13). The result is best
possible and equality in (3.1) holds for P(z) = az"™ + b, |a| = |b] = 1.
Remark 3.3. If we take o = 0 in (3.10), we obtain Theorem 1.3.

By using triangle inequality, the following result immediately follows from
Theorem 3.1.

Corollary 3.4. If P € &, and P(z) does not vanish for |z| < 1, then for
a,d e Cwith |a| <1, 18| <1,0<p<ocand R>r >1,

HB[P o pl(¢) — aB[P o g]() + 5{(

[(R" — ar™)¢n(Xo, A1, A2)| + (1 — )
114 2lp

|R" —ar™ — |1 — a||/\0])m}H
2 p

< 2l by, (3.11)

where m = Min,—1|P(z)], B € By, p(2) = Rz and ¢n(Ao, M1, A2) is defined
by (1.13).
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