# Nonlinear Functional Analysis and Applications Vol. 19, No. 3 (2014), pp. 341-357

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2014 Kyungnam University Press



## $L^P$ MEAN ESTIMATES FOR B-OPERATORS

## N. A. Rather<sup>1</sup> and S. H. Ahangar<sup>2</sup>

<sup>1</sup>Department of Mathematics, University of Kashmir Srinagar, India e-mail: dr.narather@gmail.com

<sup>2</sup>Department of Mathematics, University of Kashmir Srinagar, India e-mail: ahangarsajad@gmail.com

**Abstract.** If P(z) be a polynomial of degree at most n which does not vanish in |z| < 1, then for 0 and <math>R > 1, it is known that

$$\|B[P \circ \rho](z)\|_p \le \frac{\|R^n \phi_n(\lambda_0, \lambda_1, \lambda_2)z + \lambda_0\|_p}{\|1 + z\|_p} \|P(z)\|_p,$$

 $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13). The result is sharp as shown by  $P(z) = az^n + b$ , |a| = |b| = 1. In this paper, we present a compact generalization of above and other related results.

### 1. Introduction

Let  $\mathscr{P}_n$  denote the space of all complex polynomials  $P(z) = \sum_{j=0}^n a_j z^j$  of degree at most n. For  $P \in \mathscr{P}_n$ , define

$$\begin{split} \|P(z)\|_0 &:= \exp\left\{\frac{1}{2\pi}\int_0^{2\pi} \log\left|P(e^{i\theta})\right| d\theta\right\}, \\ \|P(z)\|_p &:= \left\{\frac{1}{2\pi}\int_0^{2\pi} \left|P(e^{i\theta})\right|^p\right\}^{1/p}, \quad 0$$

 $<sup>^0\</sup>mathrm{Received}$  December 4, 2013. Revised June 5, 2014.

<sup>&</sup>lt;sup>0</sup>2010 Mathematics Subject Classification: 26D10, 41A17.

<sup>&</sup>lt;sup>0</sup>Keywords:  $L^p$ -inequalities,  $\mathcal{B}_n$ -operators, polynomials.

and denote for any complex function  $\rho : \mathbb{C} \to \mathbb{C}$ , the composite function  $P \circ \rho$  of P and  $\rho$ , defined by  $(P \circ \rho)(z) := P(\rho(z)) \quad (z \in \mathbb{C})$ .

A famous known result as Bernstein's inequality (for reference, see [13, p.531], [18, p.508] or [20] states that if  $P \in \mathcal{P}_n$ , then

$$||P'(z)||_{\infty} \le n ||P(z)||_{\infty},$$
 (1.1)

whereas concerning the maximum modulus of P(z) on the circle  $|z| = R > r \ge 1$ , we have

$$||P(Rz)||_{\infty} \le R^n ||P(z)||_{\infty}, \quad R \ge 1,$$
 (1.2)

(for reference, see [12, p.442] or [13, vol. I, p.137] ).

Inequalities (1.1) and (1.2) can be obtained by letting  $p \to \infty$  in the inequalities

$$||P'(z)||_p \le n ||P(z)||_p, \quad p \ge 1$$
 (1.3)

and

$$||P(Rz)||_p \le R^n ||P(z)||_p, \quad R > r \ge 1, \quad p > 0,$$
 (1.4)

respectively. Inequality (1.3) was found by Zygmund [22] whereas inequality (1.4) is a simple consequence of a result of Hardy [9] (see also [16, Theorem 5.5]). Since inequality (1.3) was deduced from M. Riesz's interpolation formula [19] by means of Minkowski's inequality, it was not clear, whether the restriction on p was indeed essential. This question was open for a long time. Finally Arestov [2] proved that (1.3) remains true for 0 as well.

If we restrict ourselves to the class of polynomials  $P \in \mathscr{P}_n$  having no zero in |z| < 1, then inequalities (1.1) and (1.2) can be respectively replaced by

$$||P'(z)||_{\infty} \le \frac{n}{2} ||P(z)||_{\infty}$$
 (1.5)

and

$$||P(Rz)||_{\infty} \le \frac{R^n + 1}{2} ||P(z)||_{\infty}, \quad R > r \ge 1.$$
 (1.6)

Inequality (1.5) was conjectured by Erdös and later verified by Lax [10], whereas inequality (1.6) is due to Ankey and Ravilin [1].

Both the inequalities (1.5) and (1.6) can be obtain by letting  $p \to \infty$  in the inequalities

$$||P'(z)||_p \le n \frac{||P(z)||_p}{||1+z||_p}, \quad p \ge 0$$
 (1.7)

and

$$||P(Rz)||_p \le \frac{||R^n z + 1||_p}{||1 + z||_p} ||P(z)||_p, \quad R > r \ge 1, \quad p > 0.$$
 (1.8)

Inequality (1.7) is due to De-Bruijn [7] for  $p \ge 1$ . Rahman and Schmeisser [17] extended it for  $0 \le p < 1$  whereas the inequality (1.8) was proved by Boas

and Rahman [6] for  $p \ge 1$  and later it was extended for  $0 \le p < 1$  by Rahman and Schmeisser [17].

Q.I. Rahman [14] (see also Rahman and Schmeisser [18, p. 538]) introduced a class  $\mathcal{B}_n$  of operators B that carries a polynomial  $P \in \mathcal{P}_n$  into

$$B[P](z) := \lambda_0 P(z) + \lambda_1 \left(\frac{nz}{2}\right) \frac{P'(z)}{1!} + \lambda_2 \left(\frac{nz}{2}\right)^2 \frac{P''(z)}{2!},\tag{1.9}$$

where  $\lambda_0, \lambda_1$  and  $\lambda_2$  are such that all the zeros of

$$U(z) := \lambda_0 + \lambda_1 C(n, 1) z + \lambda_2 C(n, 2) z^2, \tag{1.10}$$

where 
$$C(n,r) = \frac{n!}{r!(n-r)!}$$
,  $0 \le r \le n$ , lie in half plane  $|z| \le |z-n/2|$ .

As a generalization of inequality (1.1) and (1.5), Q.I. Rahman [14, inequality 5.2 and 5.3] proved that if  $P \in \mathscr{P}_n$  and  $B \in \mathcal{B}_n$ , then

$$|B[P](z)| \le |\phi_n(\lambda_0, \lambda_1, \lambda_2)| ||P(z)||_{\infty} \quad \text{for} \quad |z| \ge 1$$
 (1.11)

and if  $P \in \mathcal{P}_n$ ,  $P(z) \neq 0$  in |z| < 1, then

$$|B[P](z)| \le \frac{1}{2} \{ |\phi_n(\lambda_0, \lambda_1, \lambda_2)| + |\lambda_0| \} \|P(z)\|_{\infty} \text{ for } |z| \ge 1,$$
 (1.12)

where

$$\phi_n(\lambda_0, \lambda_1, \lambda_2) = \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}.$$
 (1.13)

As a corresponding generalization of inequalities (1.2) and (1.4), Rahman and Schmeisser [18, p. 538] proved that if  $P \in \mathcal{P}_n$ , then

$$|B[P \circ \rho](z)| \le R^n |\phi_n(\lambda_0, \lambda_1, \lambda_2)| \|P(z)\|_{\infty} \text{ for } |z| = 1$$
 (1.14)

and if  $P \in \mathcal{P}_n$ ,  $P(z) \neq 0$  in |z| < 1, then as a special case of Corollary 14.5.6 in [18, p. 539], we have

$$|B[P \circ \rho](z)| \le \frac{1}{2} \{R^n |\phi_n(\lambda_0, \lambda_1, \lambda_2)| + |\lambda_0|\} \|P(z)\|_{\infty} \text{ for } |z| = 1, \quad (1.15)$$

where  $\rho(z) := Rz$ ,  $R \ge 1$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13).

Inequality (1.15) also follows by combining the inequalities (5.2) and (5.3) due to Rahman [14].

As an extension of inequality (1.14) to  $L_p$ -norm, recently Shah and Liman [21, Theorem 1] proved:

**Theorem 1.1.** If  $P \in \mathcal{P}_n$ , then for every  $R \geq 1$  and  $p \geq 1$ ,

$$||B[P \circ \rho](z)||_{p} \le R^{n} |\phi_{n}(\lambda_{1}, \lambda_{2}, \lambda_{3})| ||P(z)||_{p},$$
 (1.16)

where  $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13).

While seeking the analogue of (1.15) in  $L_p$  norm, they [21, Theorem 2] have made an incomplete attempt by claiming to have proved the following result:

**Theorem 1.2.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish for  $|z| \leq 1$ , then for each  $p \geq 1$ ,  $R \geq 1$ ,

$$||B[P \circ \rho](z)||_{p} \le \frac{R^{n}|\phi_{n}(\lambda_{1}, \lambda_{2}, \lambda_{3})| + |\lambda_{0}|}{||1 + z||_{n}} ||P(z)||_{p},$$
(1.17)

where  $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_1, \lambda_2, \lambda_3)$  is defined by (1.13).

Unfortunately the proof of inequality (1.17) and other related results including the key lemma [21, Lemma 4] given by Shah and Liman is not correct as is pointed out by Rather and Shah [18] who in the same paper have given a correct proof of the inequality (1.17) and also extended it for  $0 \le p < 1$  as well. More precisely they proved:

**Theorem 1.3.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish for |z| < 1, then for  $0 \le p < \infty$  and R > 1,

$$||B[P \circ \rho](z)||_{p} \le \frac{||R^{n}\phi_{n}(\lambda_{0}, \lambda_{1}, \lambda_{2})z + \lambda_{0}||_{p}}{||1 + z||_{p}} ||P(z)||_{p},$$
(1.18)

 $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13). The result is sharp as shown by  $P(z) = az^n + b$ , |a| = |b| = 1.

### 2. Preliminaries

For the proofs of this theorem, we need the following lemmas. The first lemma follows from Corollary 18.3 of [11, p. 86].

**Lemma 2.1.** If  $P \in \mathscr{P}_n$  and P(z) has all zeros in  $|z| \leq 1$ , then all the zeros of B[P](z) also lie in  $|z| \leq 1$ .

**Lemma 2.2.** If  $P \in \mathscr{P}_n$  and P(z) have all its zeros in  $|z| \leq 1$ , then for every  $R > r \geq 1$  and |z| = 1,

$$|P(Rz)| \ge \left(\frac{R+1}{r+1}\right)^n |P(z)|.$$

*Proof.* Since all the zeros of P(z) lie in  $|z| \leq 1$ , we write

$$P(z) = C \prod_{j=1}^{n} \left( z - r_j e^{i\theta_j} \right),\,$$

where  $r_i \leq 1$ . Now for  $0 \leq \theta < 2\pi$ , R > 1, we have

$$\left| \frac{Re^{i\theta} - r_j e^{i\theta_j}}{e^{i\theta} - r_j e^{i\theta_j}} \right| = \left\{ \frac{R^2 + r_j^2 - 2Rr_j \cos(\theta - \theta_j)}{1 + r_j^2 - 2r_j \cos(\theta - \theta_j)} \right\}^{1/2}$$

$$\geq \left\{ \frac{R + r_j}{1 + r_j} \right\}$$

$$\geq \left\{ \frac{R + 1}{r + 1} \right\}, \quad \text{for } j = 1, 2, \dots, n.$$

Hence

$$\begin{split} \left| \frac{P(Re^{i\theta})}{P(e^{i\theta})} \right| &= \prod_{j=1}^{n} \left| \frac{Re^{i\theta} - r_{j}e^{i\theta_{j}}}{e^{i\theta} - r_{j}e^{i\theta_{j}}} \right| \\ &\geq \prod_{j=1}^{n} \left( \frac{R+1}{r+1} \right) \\ &= \left( \frac{R+1}{r+1} \right)^{n}, \end{split}$$

for  $0 \le \theta < 2\pi$ . This implies for |z| = 1,

$$|P(Rz)| \ge \left(\frac{R+1}{r+1}\right)^n |P(z)|,$$

which completes the proof of Lemma 2.2.

**Lemma 2.3.** If  $P \in \mathscr{P}_n$  and P(z) has all its zeros in  $|z| \leq 1$ , then for every real or complex number  $\alpha$  with  $|\alpha| \leq 1$  and  $|z| \geq 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \ge |R^n - \beta| |\phi(\lambda_0, \lambda_1, \lambda_2)| |z|^n m,$$
where  $m = \underset{|z|=1}{Min} |P(z)|, \ \rho(z) = Rz \ and \ \phi(\lambda_0, \lambda_1, \lambda_2) \ is \ given \ by \ (1.13).$ 

*Proof.* By hypothesis, all the zeros of P(z) lie in  $|z| \leq 1$  and

$$m|z|^n < |P(z)|$$
 for  $|z| = 1$ .

We first show that the polynomial  $g(z) = P(z) - \beta m z^n$  has all its zeros in  $|z| \leq 1$  for every real or complex number  $\beta$  with  $|\beta| < 1$ . This is obvious if m = 0, that is if P(z) has a zero on |z| = 1. Henceforth, we assume P(z) has all its zeros in |z| < 1, then m > 0 and it follows by Rouche's theorem that the polynomial g(z) has all its zeros in |z| < 1 for every real or complex number  $\beta$  with  $|\beta| < 1$ . Applying Lemma 2.2 to the polynomial g(z), we deduce

$$|g(Rz)| \ge \left(\frac{R+1}{r+1}\right)^n |g(z)|$$
 for  $|z| = 1$ .

Since R > r, therefore  $\frac{R+1}{r+1} > 1$ , this gives

$$|g(Rz)| > |g(z)|$$
 for  $|z| = 1$ . (2.2)

Since all the zeros of G(Rz) lie in |z| < 1/R < 1, by Rouche's theorem again it follows from (2.2) that all the zeros of polynomial

$$H(z) = g(Rz) - \alpha g(z) = P(Rz) - \alpha P(z) - \beta (R^n - \alpha r^n) z^n m$$

lie in |z| < 1, for every  $\alpha, \beta$  with  $|\alpha| \le 1$ ,  $|\beta| < 1$ . Applying Lemma 2.1 to H(z) and noting that B is a linear operator, it follows that all the zeros of polynomial

$$B[H](z) = B[g \circ \rho](z) - \alpha B[g](z)$$

$$= \{B[P \circ \rho](z) - \alpha B[P \circ \rho](z)\} - \beta (R^n - \alpha r^n) m B[z^n]$$
 (2.3)

lie in |z| < 1. This gives for  $|z| \ge 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \ge |R^n - \alpha r^n||\phi(\lambda_0, \lambda_1, \lambda_2)||z|^n m. \tag{2.4}$$

If (2.4) is not true, then there is point w with  $|w| \ge 1$  such that

$$|B[P \circ \rho](w) - \alpha B[P \circ \varrho](w)| < |R^n - \alpha r^n| |\phi(\lambda_0, \lambda_1, \lambda_2)| |w|^n m. \tag{2.5}$$

We choose

$$\beta = \frac{B[P \circ \rho](w) - \alpha B[P \circ \varrho](w)}{(R^n - \alpha r^n)\phi(\lambda_0, \lambda_1, \lambda_2)w^n m},$$

then clearly  $|\beta| < 1$  and with this choice of  $\beta$ , from (2.3), we get B[H](w) = 0 with  $|w| \ge 1$ . This is clearly a contradiction to the fact that all the zeros of H(z) lie in |z| < 1. Thus for every real or complex  $\alpha$  with  $|\alpha| \le 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \ge |R^n - \alpha r^n| |\phi(\lambda_0, \lambda_1, \lambda_2)| |z|^n m$$
 for  $|z| \ge 1$  and  $R > r \ge 1$ .

**Lemma 2.4.** If  $P \in \mathscr{P}_n$  and P(z) has no zero in |z| < 1, then for every  $\alpha \in \mathbb{C}$  with  $|\alpha| \le 1$ ,  $R > r \ge 1$  and  $|z| \ge 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \le |B[P^* \circ \rho](z) - \alpha B[P^*](z)|, \qquad (2.6)$$

where  $P^{\star}(z) = z^n \overline{P(1/\overline{z})}$  and  $\rho(z) = Rz$ .

*Proof.* Since the polynomial P(z) has all its zeros in  $|z| \ge 1$ , therefore, for every real or complex number  $\lambda$  with  $|\lambda| > 1$ , the polynomial  $f(z) = P(z) - \lambda P^*(z)$ , where  $P^*(z) = z^n \overline{P(1/\overline{z})}$ , has all zeros in  $|z| \le 1$ . Applying Lemma 2.2 to the polynomial f(z), we obtain for every R > 1 and  $0 \le \theta < 2\pi$ ,

$$|f(Re^{i\theta})| \ge \left(\frac{R+1}{r+1}\right)^n |f(e^{i\theta})|. \tag{2.7}$$

Since  $f(Re^{i\theta}) \neq 0$  for every  $R > r \geq 1$ ,  $0 \leq \theta < 2\pi$  and R + 1 > 2, it follows from (2.7) that

$$|f(Re^{i\theta})| > \left(\frac{R+1}{r+1}\right)^n |f(Re^{i\theta})| \ge |f(e^{i\theta})|,$$

for every  $R > r \ge 1$  and  $0 \le \theta < 2\pi$ . This gives

$$|f(z)| < |f(Rz)|$$
 for  $|z| = 1$ ,  $R > 1$ .

Using Rouche's theorem and noting that all the zeros of f(Rz) lie in  $|z| \le 1/R < 1$ , we conclude that the polynomial

$$T(z) = f(Rz) - \alpha f(z) = \{P(Rz) - \alpha P(z)\} - \lambda \{P^{\star}(Rz) - \alpha P^{\star}(z)\}$$

has all its zeros in |z| < 1 for every real or complex  $\alpha$  with  $|\alpha| \ge 1$  and R > 1. Applying Lemma 2.1 to polynomial T(z) and noting that B is a linear operator, it follows that all the zeros of polynomial

$$B[T](z) = B[f \circ \rho](z) - \alpha B[f](z)$$
  
=  $\{B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)\} - \lambda \{B[P^* \circ \rho](z) - \alpha B[P^*](z)\}$ 

lie in |z| < 1 where  $\rho(z) = Rz$ . This implies

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \le |B[P^* \circ \rho](z) - \alpha B[P^*](z)| \tag{2.8}$$

for  $|z| \ge 1$  and  $R > r \ge 1$ . If inequality (2.8) is not true, then there exits a point  $z = z_0$  with  $|z_0| \ge 1$  such that

$$|B[P \circ \rho](z_0) - \alpha B[P \circ \varrho](z_0)| > |B[P^* \circ \rho](z_0) - \alpha B[P^*](z_0)|.$$
 (2.9)

But all the zeros of  $P^{\star}(Rz)$  lie in |z| < 1/R < 1, therefore, it follows (as in case of f(z)) that all the zeros of  $P^{\star}(Rz) - \alpha P^{\star}(z)$  lie in |z| < 1. Hence, by Lemma 2.1, we have

$$B[P^{\star} \circ \rho](z_0) - \alpha B[P^{\star}](z_0) \neq 0.$$

We take

$$\lambda = \frac{B[P \circ \rho](z_0) - \alpha B[P \circ \varrho](z_0)}{B[P^* \circ \rho](z_0) - \alpha B[P^*](z_0)},$$

then  $\lambda$  is well defined real or complex number with  $|\lambda| > 1$  and with this choice of  $\lambda$ , we obtain  $B[T](z_0) = 0$  where  $|z_0| \ge 1$ . This contradicts the fact that all the zeros of B[T](z) lie in |z| < 1. Thus (2.8) holds true for  $|\alpha| \le 1$  and  $R > r \ge 1$ .

**Lemma 2.5.** If  $P \in \mathscr{P}_n$  and P(z) has no zero in |z| < 1, then for every  $\alpha \in \mathbb{C}$  with  $|\alpha| \le 1$ ,  $R > r \ge 1$  and  $|z| \ge 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)|$$

$$\leq |B[P^* \circ \rho](z) - \alpha B[P^*](z)| - (|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m, \qquad (2.10)$$

where 
$$P^{\star}(z) = z^n \overline{P(1/\overline{z})}$$
,  $m = \underset{|z|=1}{Min} |P(z)|$  and  $\rho(z) = Rz$ .

*Proof.* By hypothesis P(z) has all its zeros in  $|z| \geq 1$  and

$$m \le |P(z)| \quad \text{for } |z| = 1.$$
 (2.11)

We show  $F(z) = P(z) + \lambda m$  does not vanish in |z| < 1 for every  $\lambda$  with  $|\lambda| < 1$ . This is obvious if m = 0 that is, if P(z) has a zero on |z| = 1. So we assume all the zeros of P(z) lie in |z| > 1, then m > 0 and by the maximum modulus principle, it follows from (2.11),

$$m < |P(z)| \quad \text{for } |z| < 1.$$
 (2.12)

Now if  $F(z) = P(z) + \lambda m = 0$  for some  $z_0$  with  $|z_0| < 1$ , then

$$P(z_0) + \lambda m = 0.$$

This implies

$$|P(z_0)| = |\lambda| m \le m \quad \text{for } |z_0| < 1,$$
 (2.13)

which is clearly contradiction to (2.12). Thus the polynomial F(z) does not vanish in |z| < 1 for every  $\lambda$  with  $|\lambda| < 1$ . Applying Lemma 2.4 to the polynomial F(z), we get

$$|B[F \circ \rho](z) - \alpha B[F](z)| \le |B[F^{\star} \circ \rho](z) - \alpha B[F^{\star}](z)$$

for |z|=1 and  $R>r\geq 1$ . Replacing F(z) by  $P(z)+\lambda m$ , we obtain

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z) + \lambda (1 - \alpha) \lambda_0 m|$$

$$\leq |B[P^* \circ \rho](z) - \alpha B[P^*](z) + \bar{\lambda} (R^n - \alpha r^n) \phi(\lambda_0, \lambda_1, \lambda_2) z^n m|. \tag{2.14}$$

Now choosing the argument of  $\lambda$  in the right hand side of (2.14) such that

$$|B[P^* \circ \rho](z) - \alpha B[P^*](z) + \bar{\lambda}(R^n - \alpha r^n)\phi(\lambda_0, \lambda_1, \lambda_2)z^n m|$$
  
=  $|B[P^* \circ \rho](z) - \alpha B[P^*](z)| - |\lambda||R^n - \alpha r^n||\phi(\lambda_0, \lambda_1, \lambda_2)|m$ 

for |z|=1, which is possible by Lemma 2.3, we get

$$|B[P^{\star} \circ \rho](z) - \alpha B[P^{\star}](z)| - |\lambda||1 - \alpha||\lambda_0|m$$
  
$$< |B[P^{\star} \circ \rho](z) - \alpha B[P^{\star}](z)| - |\lambda||R^n - \alpha r^n||\phi(\lambda_0, \lambda_1, \lambda_2)|m.$$

Equivalently,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)|$$
  
 
$$\leq |B[P^* \circ \rho](z) - \alpha B[P^*](z)| - (|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m.$$

This completes the proof of Lemma 2.5.

Next we describe a result of Arestov [2]. For  $\delta = (\delta_0, \delta_1, \dots, \delta_n) \in \mathbb{C}^{n+1}$  and  $P(z) = \sum_{j=0}^n a_j z^j \in \mathscr{P}_n$ , we define

$$\Lambda_{\delta}P(z) = \sum_{j=0}^{n} \delta_{j} a_{j} z^{j}.$$

The operator  $\Lambda_{\delta}$  is said to be admissible if it preserves one of the following properties:

- (i) P(z) has all its zeros in  $\{z \in \mathbb{C} : |z| \le 1\}$ ,
- (ii) P(z) has all its zeros in  $\{z \in \mathbb{C} : |z| \ge 1\}$ .

The result of Arestov [2] may now be stated as follows.

**Lemma 2.6.** ([2, Theorem 4]) Let  $\phi(x) = \psi(\log x)$  where  $\psi$  is a convex non decreasing function on  $\mathbb{R}$ . Then for all  $P \in \mathscr{P}_n$  and each admissible operator  $\Lambda_{\delta}$ ,

$$\int_0^{2\pi} \phi(|\Lambda_{\delta} P(e^{i\theta})|) d\theta \le \int_0^{2\pi} \phi(C(\delta, n)|P(e^{i\theta})|) d\theta,$$

where  $C(\delta, n) = max(|\delta_0|, |\delta_n|)$ .

In particular, Lemma 2.6 applies with  $\phi: x \to x^p$  for every  $p \in (0, \infty)$ . Therefore, we have

$$\left\{ \int_{0}^{2\pi} (|\Lambda_{\delta} P(e^{i\theta})|^{p}) d\theta \right\}^{1/p} \le C(\delta, n) \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta \right\}^{1/p}. \tag{2.15}$$

We use (2.15) to prove the following interesting result.

**Lemma 2.7.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish in |z| < 1, then for every p > 0, R > 1 and for  $\gamma$  real,  $0 \le \gamma < 2\pi$ ,

$$\int_{0}^{2\pi} \left| \left\{ B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right\} e^{i\gamma} \right. \\
+ \left\{ B[P^{\star} \circ \rho]^{\star}(e^{i\theta}) - \bar{\alpha} B[P^{\star}]^{\star}(e^{i\theta}) \right\} \left|^{p} d\theta \right. \\
\leq \left| (R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_{0}} \right|^{p} \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta, \tag{2.16}$$

where  $B \in \mathcal{B}_n$ ,  $\rho(z) := Rz$ ,  $B[P^* \circ \rho]^*(z) := (B[P^* \circ \rho](z))^*$  and  $\phi(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13).

*Proof.* Since  $P \in \mathscr{P}_n$  and  $P^*(z) = z^n \overline{P(1/\overline{z})}$ , by Lemma 2.4, we have for  $|z| \geq 1$ ,

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \le |B[P^* \circ \rho](z) - \alpha B[P^*](z)|. \tag{2.17}$$

Also, since 
$$P^{\star}(Rz) - \alpha P^{\star}(z) = R^n z^n \overline{P(1/R\overline{z})} - \alpha z^n \overline{P(1/\overline{z})}$$
,

$$\begin{split} &B[P^{\star}\circ\rho](z)-\alpha B[P^{\star}](z)\\ &=\lambda_0\Big\{R^nz^n\overline{P(1/R\bar{z})}-\alpha z^n\overline{P(1/\bar{z})}\Big\}\\ &+\lambda_1\left(\frac{nz}{2}\right)\Big\{\left(nR^nz^{n-1}\overline{P(1/R\bar{z})}-R^{n-1}z^{n-2}\overline{P'(1/R\bar{z})}\right)\\ &-\alpha\left(nz^{n-1}\overline{P(1/\bar{z})}-z^{n-2}\overline{P'(1/\bar{z})}\right)\Big\}\\ &+\frac{\lambda_2}{2!}\left(\frac{nz}{2}\right)^2\Big\{\left(n(n-1)R^nz^{n-2}\overline{P(1/R\bar{z})}\right)\\ &-2(n-1)R^{n-1}z^{n-3}\overline{P'(1/R\bar{z})}+R^{n-2}z^{n-4}\overline{P''(1/R\bar{z})}\right)\\ &-\alpha\Big(n(n-1)z^{n-2}\overline{P(1/\bar{z})}-2(n-1)z^{n-3}\overline{P'(1/\bar{z})}+r^{n-2}z^{n-4}\overline{P''(1/\bar{z})}\Big)\Big\} \end{split}$$

and

$$B[P^{*} \circ \rho]^{*}(z) - \bar{\alpha}B[P^{*}]^{*}(z) = \left(B[P^{*} \circ \rho](z) - \alpha B[P^{*}](z)\right)^{*}$$

$$= \left(\bar{\lambda_{0}} + \bar{\lambda_{1}}\frac{n^{2}}{2} + \bar{\lambda_{2}}\frac{n^{3}(n-1)}{8}\right)\left\{R^{n}P(z/R) - \bar{\alpha}P(z)\right\}$$

$$- \left(\bar{\lambda_{1}}\frac{n}{2} + \bar{\lambda_{2}}\frac{n^{2}(n-1)}{4}\right)\left\{R^{n-1}zP'(z/R) - \bar{\alpha}zP'(z)\right\}$$

$$+ \bar{\lambda_{2}}\frac{n^{2}}{8}\left\{R^{n-2}z^{2}P''(z/R) - \bar{\alpha}z^{2}P''(z)\right\}. \tag{2.18}$$

Also,

$$|B[P^{\star} \circ \rho](z) - \alpha B[P^{\star}](z)| = |B[P^{\star} \circ \rho]^{\star}(z) - \bar{\alpha} B[P^{\star}]^{\star}(z)| \quad \text{for } |z| = 1.$$

Using this in (2.17), we get

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| \le |B[P^* \circ \rho]^*(z) - \bar{\alpha} B[P^*]^*(z)| \quad \text{for } |z| = 1.$$

As in Lemma 2.4, the polynomial  $P^* \circ \rho(z) - \alpha P^*(z)$  has all its zeros in |z| < 1 and by Lemma 2.1,  $B[P^* \circ \rho](z) - \alpha B[P^*](z)$  also has all its zero in |z| < 1. Therefore,  $B[P^* \circ \rho]^*(z) - \bar{\alpha} B[P^*]^*(z)$  has all its zeros in  $|z| \ge 1$ . Hence by the maximum modulus principle,

$$|B[P \circ \rho](z) - \alpha B[P \circ \rho](z)| < |B[P^* \circ \rho]^*(z) - \bar{\alpha} B[P^*]^*(z)|$$
 for  $|z| < 1$ . (2.19)

A direct application of Rouche's theorem shows that with  $P(z) = a_n z^n + \cdots + a_0$ ,

$$\begin{split} \Lambda_{\delta}P(z) = & \Big\{ B[P \circ \rho](z) - \alpha B[P \circ \varrho](z) \Big\} e^{i\gamma} + B[P^{*} \circ \rho]^{*}(z) - \bar{\alpha}B[P^{*}]^{*}(z), \\ = & \Big\{ (R^{n} - \alpha) \left( \lambda_{0} + \lambda_{1} \frac{n^{2}}{2} + \lambda_{2} \frac{n^{3}(n-1)}{8} \right) e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_{0}} \Big\} a_{n}z^{n} \\ + \dots + & \Big\{ (R^{n} - \bar{\alpha}) \left( \bar{\lambda_{0}} + \bar{\lambda_{1}} \frac{n^{2}}{2} + \bar{\lambda_{2}} \frac{n^{3}(n-1)}{8} \right) + e^{i\gamma}(1 - \alpha)\lambda_{0} \Big\} a_{0}, \end{split}$$

has all its zeros in  $|z| \geq 1$ , for every real  $\gamma$ ,  $0 \leq \gamma \leq 2\pi$ . Therefore,  $\Lambda_{\delta}$  is an admissible operator. Applying (2.15) of Lemma 2.6, the desired result follows immediately for each p > 0.

We also need the following lemma [4].

**Lemma 2.8.** If A, B, C are non-negative real numbers such that  $B + C \le A$ , then for each real number  $\gamma$ ,

$$|(A-C)e^{i\gamma} + (B+C)| \le |Ae^{i\gamma} + B|.$$

#### 3. Main results

In this paper we establish  $L_p$ -mean extensions of the inequality (1.15) for  $0 \le p < \infty$  which in particular provides a generalization of inequality (1.18). In this direction, we present the following interesting compact generalization of Theorem 1.3 which yields  $L_p$  mean extension of the inequality (1.12) for  $0 \le p < \infty$ .

**Theorem 3.1.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish for |z| < 1, then for  $\alpha, \delta \in \mathbb{C}$  with  $|\alpha| \le 1, |\delta| \le 1, \ 0 \le p < \infty$  and  $R > r \ge 1$ ,

$$\left\| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) + \delta \left\{ \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} \right\|_{p} \\
\leq \frac{\|(R^n - \alpha r^n)\phi_n(\lambda_0, \lambda_1, \lambda_2)z + (1 - \alpha)\lambda_0\|_{p}}{\|1 + z\|_{p}} \|P(z)\|_{p}, \tag{3.1}$$

where  $m = Min_{|z|=1}|P(z)|$ ,  $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13). The result is best possible and equality in (3.1) holds for  $P(z) = az^n + b$ , |a| = |b| = 1.

*Proof.* By hypothesis P(z) does not vanish in |z| < 1, therefore by Lemma 2.5, we have

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)|$$

$$\leq |B[P^* \circ \rho](z) - \alpha B[P^*](z)| - (|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m, \qquad (3.2)$$

for |z|=1,  $|\alpha|\leq 1$  and  $R>r\geq 1$  where  $P^\star(z)=z^n\overline{P(1/\overline{z})}$ . Since  $B[P^\star\circ\rho]^\star(z)-\bar{\alpha}B[P^\star]^\star(z)$  is the conjugate of  $B[P^\star\circ\rho](z)-\alpha B[P^\star](z)$  and

$$|B[P^{\star} \circ \rho]^{\star}(z) - \bar{\alpha}B[P^{\star}]^{\star}(z)| = |B[P^{\star} \circ \rho](z) - \alpha B[P^{\star}](z)|.$$

Thus for |z| = 1, (3.2) can be written as

$$|B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}$$

$$\leq |B[P^* \circ \rho]^*(z) - \bar{\alpha} B[P^*]^*(z)| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}. \tag{3.3}$$

Taking

$$A = |B[P^{\star} \circ \rho]^{\star}(z) - \bar{\alpha}B[P^{\star}]^{\star}(z)|, \quad B = |B[P \circ \rho](z) - \alpha B[P \circ \varrho](z)|$$

and

$$C = \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}$$

in Lemma 2.8 and noting by (3.3) that

$$B+C \le A-C \le A$$
,

we get for every real  $\gamma$ ,

$$\left| \left\{ \left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{\left( \left| R^n - \alpha r^n \right| - \left| 1 - \alpha \right| \left| \lambda_0 \right| \right) m}{2} \right\} e^{i\gamma} \right. \\
+ \left\{ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{\left( \left| R^n - \alpha r^n \right| - \left| 1 - \alpha \right| \left| \lambda_0 \right| \right) m}{2} \right\} \right| \\
\leq \left| \left| B[P^* \circ]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| e^{i\gamma} + \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| \right|.$$

This implies for each p > 0,

$$\int_{0}^{2\pi} \left| \left\{ \left| B[P^{\star} \circ \rho]^{\star}(e^{i\theta}) - \bar{\alpha}B[P^{\star}]^{\star}(e^{i\theta}) \right| - \frac{\left( |R^{n} - \alpha r^{n}| - |1 - \alpha| |\lambda_{0}| \right) m}{2} \right\} e^{i\gamma} \right. \\
+ \left\{ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{\left( |R^{n} - \alpha r^{n}| - |1 - \alpha| |\lambda_{0}| \right) m}{2} \right\} \right|^{p} d\theta \\
\leq \int_{0}^{2\pi} \left| \left| B[P^{\star} \circ \rho]^{\star}(e^{i\theta}) - \bar{\alpha}B[P^{\star}]^{\star}(e^{i\theta}) \right| e^{i\gamma} \\
+ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| \right|^{p} d\theta. \tag{3.4}$$

Integrating both sides of (3.4) with respect to  $\gamma$  from 0 to  $2\pi$ , we get with the help of Lemma 2.7 for each p > 0,

$$\begin{split} &\int\limits_0^{2\pi} \int\limits_0^{2\pi} \left| \left\{ \left| B[P^\star \circ \rho]^\star(e^{i\theta}) - \bar{\alpha}B[P^\star]^\star(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} e^{i\gamma} \\ &+ \left\{ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} \right|^p d\theta d\gamma \\ &\leq \int\limits_0^{2\pi} \int\limits_0^{2\pi} \left| \left| B[P^\star \circ \rho]^\star(e^{i\theta}) - \bar{\alpha}B[P^\star]^\star(e^{i\theta}) \right| e^{i\gamma} + \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| \right|^p d\theta d\gamma. \\ &\leq \int\limits_0^{2\pi} \left\{ \int\limits_0^{2\pi} \left| \left| B[P^\star \circ \rho]^\star(e^{i\theta}) - \bar{\alpha}B[P^\star]^\star(e^{i\theta}) \right| e^{i\gamma} \right. \\ &+ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| \right|^p d\gamma \right\} d\theta \\ &\leq \int\limits_0^{2\pi} \left\{ \int\limits_0^{2\pi} \left| \left\{ B[P^\star \circ \rho]^\star(e^{i\theta}) - \bar{\alpha}B[P^\star]^\star(e^{i\theta}) \right\} e^{i\gamma} \right. \\ &+ \left\{ B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right\} \right|^p d\gamma \right\} d\theta \\ &\leq \int\limits_0^{2\pi} \left\{ \int\limits_0^{2\pi} \left| \left\{ B[P^\star \circ \rho]^\star(e^{i\theta}) - \bar{\alpha}B[P^\star]^\star(e^{i\theta}) \right\} e^{i\gamma} \right. \end{split}$$

$$+\left\{B[P\circ\rho](e^{i\theta}) - \alpha B[P\circ\varrho](e^{i\theta})\right\} \Big|^{p} d\theta d\theta$$

$$\leq \int_{0}^{2\pi} \left|(R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_{0}}\right|^{p} d\gamma \int_{0}^{2\pi} \left|P(e^{i\theta})\right|^{p} d\theta. \tag{3.5}$$

Now it can be easily verified that for every real number  $\gamma$  and  $s \geq 1$ ,

$$\left| s + e^{i\alpha} \right| \ge \left| 1 + e^{i\alpha} \right|.$$

This implies for each p > 0,

$$\int_0^{2\pi} \left| s + e^{i\gamma} \right|^p d\gamma \ge \int_0^{2\pi} \left| 1 + e^{i\gamma} \right|^p d\gamma. \tag{3.6}$$

If  $|B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta})| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \neq 0$ , we take

$$s = \frac{\left|B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta})\right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{\left|B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta})\right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}},$$

then by (3.3),  $s \ge 1$  and we get with the help of (3.6)

$$\begin{split} &\int\limits_0^{2\pi} \left| \left\{ \left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} e^{i\gamma} \right. \\ &\quad + \left\{ \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} \right|^p d\gamma \\ &= \left| \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right|^p \\ &\quad \times \int\limits_0^{2\pi} \left| e^{i\gamma} + \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{2} \right|^p d\gamma \\ &= \left| \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right|^p \\ &\quad \times \int\limits_0^{2\pi} \left| e^{i\gamma} + \left| \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{2} \right|^p d\gamma \\ &\quad \times \int\limits_0^{2\pi} \left| e^{i\gamma} + \left| \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{2} \right|^p d\gamma \\ &\quad \times \int\limits_0^{2\pi} \left| e^{i\gamma} + \left| \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{2} \right|^p d\gamma \\ &\quad \times \int\limits_0^{2\pi} \left| e^{i\gamma} + \left| \frac{\left| B[P^* \circ \rho]^*(e^{i\theta}) - \bar{\alpha}B[P^*]^*(e^{i\theta}) \right| - \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2}}{2} \right|^p d\gamma \right. \end{split}$$

$$\geq \left| \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right|^p$$

$$\times \int_{0}^{2\pi} |1 + e^{i\gamma}|^p d\gamma. \tag{3.7}$$

For  $|B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta})| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} = 0$ , then (3.7) is trivially true. Using this in (3.5), we conclude for every real or complex number  $\alpha$  with  $|\alpha| \leq 1$ ,  $R > r \geq 1$  and p > 0,

$$\int_{0}^{2\pi} \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) \right| + \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right|^{p} d\theta$$

$$\times \int_{0}^{2\pi} |1 + e^{i\gamma}|^{p} d\gamma$$

$$\leq \int_{0}^{2\pi} \left| (R^n - \alpha)\phi(\lambda_0, \lambda_1, \lambda_2)e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_0} \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta.$$

This gives for every real or complex number  $\delta, \alpha$  with  $|\delta| \leq 1, |\alpha| \leq 1, R > r \geq 1$  and  $\gamma$  real

$$\int_{0}^{2\pi} \left| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) + \delta \left\{ \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} \right|^{p} d\theta$$

$$\times \int_{0}^{2\pi} |1 + e^{i\gamma}|^{p} d\gamma$$

$$\leq \int_{0}^{2\pi} \left| (R^n - \alpha)\phi(\lambda_0, \lambda_1, \lambda_2)e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_0} \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta. \tag{3.8}$$

Since

$$\int_{0}^{2\pi} \left| (R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})e^{i\gamma} + (1 - \bar{\alpha})\bar{\lambda_{0}} \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta$$

$$= \int_{0}^{2\pi} \left| |(R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})|e^{i\gamma} + |(1 - \bar{\alpha})\bar{\lambda_{0}}| \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta$$

$$= \int_{0}^{2\pi} \left| |(R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})| e^{i\gamma} + |(1 - \alpha)\lambda_{0}| \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta$$

$$= \int_{0}^{2\pi} \left| (R^{n} - \alpha)\phi(\lambda_{0}, \lambda_{1}, \lambda_{2})e^{i\gamma} + (1 - \alpha)\lambda_{0} \right|^{p} d\gamma \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta, \quad (3.9)$$

the desired result follows immediately by combining (3.8) and (3.9). This completes the proof of Theorem 3.1 for p > 0. To establish this result for p = 0, we simply let  $p \to 0+$ .

Setting m = 0 in (3.1), we get the following result.

**Corollary 3.2.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish for |z| < 1, then for  $\alpha, \delta \in \mathbb{C}$  with  $|\alpha| \le 1, |\delta| \le 1, 0 \le p < \infty$  and  $R > r \ge 1$ ,

$$\begin{aligned}
& \|B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta})\|_{p} \\
& \leq \frac{\|(R^{n} - \alpha r^{n})\phi_{n}(\lambda_{0}, \lambda_{1}, \lambda_{2})z + (1 - \alpha)\lambda_{0}\|_{p}}{\|1 + z\|_{p}} \|P(z)\|_{p}, \\
\end{aligned} (3.10)$$

 $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13). The result is best possible and equality in (3.1) holds for  $P(z) = az^n + b$ , |a| = |b| = 1.

**Remark 3.3.** If we take  $\alpha = 0$  in (3.10), we obtain Theorem 1.3.

By using triangle inequality, the following result immediately follows from Theorem 3.1.

**Corollary 3.4.** If  $P \in \mathscr{P}_n$  and P(z) does not vanish for |z| < 1, then for  $\alpha, \delta \in \mathbb{C}$  with  $|\alpha| \le 1$ ,  $|\delta| \le 1$ ,  $0 \le p < \infty$  and  $R > r \ge 1$ ,

$$\left\| B[P \circ \rho](e^{i\theta}) - \alpha B[P \circ \varrho](e^{i\theta}) + \delta \left\{ \frac{(|R^n - \alpha r^n| - |1 - \alpha||\lambda_0|)m}{2} \right\} \right\|_{p} \\
\leq \frac{|(R^n - \alpha r^n)\phi_n(\lambda_0, \lambda_1, \lambda_2)| + |(1 - \alpha)\lambda_0|}{\|1 + z\|_{p}} \|P(z)\|_{p}, \tag{3.11}$$

where  $m = Min_{|z|=1}|P(z)|$ ,  $B \in \mathcal{B}_n$ ,  $\rho(z) = Rz$  and  $\phi_n(\lambda_0, \lambda_1, \lambda_2)$  is defined by (1.13).

#### References

- N.C. Ankeny and T.J. Rivilin, On a theorm of S. Bernstein, Pacific J. Math., 5 (1955), 849–852.
- V.V. Arestov, On integral inequalities for trigonometric polynimials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (19810,3-22[in Russian]. English translation; Math. USSR-Izv., 18 (1982), 1-17.
- [3] A. Aziz, A new proof of a theorem of De Bruijn, Proc. Amer. Math. Soc., 106 (1989), 345–350.
- [4] A. Aziz and N.A. Rather, L<sup>p</sup> inequalities for polynomials, Glasnik Mathematicki, 32 (1997), 39-43.
- [5] A. Aziz and N.A. Rather, Some compact generalizations of Zygmund-type inequalities for polynomials, Nonlinear Studies, 6 (1999), 241–255.
- [6] R.P. Boas, Jr. and Q.I. Rahman, L<sup>p</sup> inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11 (1962), 34–39.
- [7] N.G. Brijn, Inequalities concerning polynomials in the complex domain, Nederal. Akad. Wetensch. Proc., 50 (1947), 1265–1272.
- [8] K.K. Dewan and N.K. Govil, An inequality for self-inversive polynomials, J. Math. Anal. Appl., 95(2) (1983), 490.
- [9] G.H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 269–277.
- [10] P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509–513.
- [11] M. Marden, Geometry of Polynomials, Math. Surves No. 3, Amer. Math. Soc., Providence, R I (1966).
- [12] G.V. Milovanovic, D.S. Mitrinovic and TH.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, (1994).
- [13] G. Pólya and G. Szegö, Aufgaben und lehrsätze aus der Analysis, Springer-Verlag, Berlin (1925).
- [14] Q.I. Rahman, Functions of exponential type, Trans. Amer. Soc., 135 (1969), 295-309.
- [15] Q.I. Rahman and G. Schmessier, Analytic theory of polynomials, Claredon Press, Oxford, 2002.
- [16] Q.I. Rahman and G. Schmessier, Les Inequalitués de Markoff et de Bernstein, Presses Univ. Montréal, Montréal, Quebec (1983).
- [17] Q.I. Rahman and G. Schmessier, L<sup>p</sup> inequalities for polynomials, J. Approx. Theory, 53 (1988), 26–32.
- [18] N.A. Rather and M.A. Shah, On an operator preserving L<sub>p</sub> inequalities between polynomials, J. Math. Anal. Appl., 399 (2013), 422–432.
- [19] M. Riesz, Formula d'interpolation pour la dérivée d'un polynome trigonométrique, C. R. Acad. Sci., Paris, 158 (1914), 1152–1254.
- [20] A.C. Schaffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565–579.
- [21] W.M. Shah and A. Liman, *Integral estimates for the family of B-operators*, Operator and Matrices, **5** (2011), 79–87.
- [22] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 292–400.