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Abstract. The purpose of this article is to present some coincidence and fixed point theo-
rems for generalized contraction in partially ordered complete G-metric spaces. As an ap-
plication, we give an existence and uniqueness for the solution of an initial-boundary-value

problem. These results generalize and extend several well known results in the literature.

1. INTRODUCTION

The study of fixed points of mappings satisfying certain contractive condi-
tions has been at the center of rigorous research activity, see [15]-[19], [22, 23],
[25]-[28]. The notion of D-metric space is a generalization of usual metric
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spaces and it is introduced by Dhage [2, 3]. Recently, Mustafa and Sims [31]-
[33] have shown that most of the results concerning Dhage’s D-metric spaces
are invalid. In [31], [34]-[36], they introduced a improved version of the gen-
eralized metric space structure which they called G-metric spaces. For more
results on G-metric spaces and fixed point results, one can refer to the papers
[1], [4]-[13], [20, 24, 29], [37]-[43] some of them have given some applications
to matrix equations, ordinary differential equations, and integral equations.

Let S denotes the class of the functions 5: [0,+00) — [0,1) which satisfies
the condition f (t,) — 1 implies t,, — 0. For example, functions

In(+2) ¢ 50 1 ep@)=l 55
aw={ " Fr20 e aw-{ T

are in S.
2. MATHEMATICAL PRELIMINARIES

Definition 2.1. ([30]) Let X be a non-empty set, G: X x X x X — Ry be a
function satisfying the following properties:
(G1) G(z,y,2) =0ifx =y = z.
(G2) 0 < G(z,x,y) for all x, y € X with z # y.
(G3) G(z,x,y) < G(z,y,2) for all z,y,z € X with y # 2.
(G4) G(z,y,2) = G(z, z,y) = G(y, z,x) (symmetry in all three variables).
(G5) G(z,y,2) < G(x,a,a) + G(a,y,z) for all z,y,z,a € X (rectangle in-
equality).

Then the function G is called a generalized metric, or, more specially, a
G-metric on X, and the pair (X, G) is called a G—metric space.

Definition 2.2. ([30]) Let (X,G) be a G-metric space, and let (z,) be a
sequence of points of X. We say that (z,) is G—convergent to z € X if
lim G(x;zy,z,) =0, that is, for any € > 0, there exists N € N such that

n,Mm—00
G(x;zpn,xm) < €, for all n,m > N. We call = the limit of the sequence z,, and

write x,, — x or lim x, = x.
n—oo

Proposition 2.3. ([30]) Let (X,G) be a G-metric space. The following are
equivalent:

(1) (xn) is G-convergent to x;

(2) G(zp,Tn,x) = 0 as n — oc;

(3) G(zp,x,z) = 0 as n — oo;

(4) G(zp, xm,x) = 0 as n,m — oo.
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Definition 2.4. ([30]) Let (X,G) be a G-metric space. A sequence (x,)
is called a G— Cauchy sequence if, for any £ > 0, there is N € N such that
G(xp, Tm,x;) < € for all m,n,l > N, that is G(zp, m,x;) — 0 as n,m,l — oo.

Proposition 2.5. ([30]) Let (X, G) be a G-metric space. Then the following
are equivalent:
(1) The sequence (zy,) is G-Cauchy.
(2) For any e > 0, there exists N € N such that G(zy, Tpm,Tm) < €, for
alln,m > N.

Proposition 2.6. ([30]) Let (X, G) be a G-metric space. A mapping f : X —
X is G—continuous at x € X if and only if it is G-sequentially continuous at
x, that is, whenever () is G-convergent to x, f(x,) is G-convergent to f(x).

Proposition 2.7. ([30]) Let (X, G) be a G-metric space. Then the function
G(x,y, z) is jointly continuous all three of its variables.

Definition 2.8. ([30]) A G-metric space (X, G) is called G—complete if every
G —Cauchy sequence is G—convergent in (X, G).

Definition 2.9. (weakly compatible mappings ([30])) Two mappings f,g :
X — X are weakly compatible if they commute at their coincidence points,
that is ft = gt for some ¢t € X implies that fgt = gft.

Definition 2.10. ([30]) Let X be a non-empty set and S, T be self-mappings
of X. A point x € X is called a coincidence point of S and T if Sz = Tz.
A point w € X is said to be a point of coincidence of S and T if there exists
x € X so that w = Sx = Tx.

Definition 2.11. (9—Nondecreasing Mapping ([30])) Suppose (X, <) is a par-
tially ordered set and f,g : X — X are mappings. f is said to be g—Non
decreasing if for x,y € X, gr < gy implies fx <X fy.

Now, we are ready to state and prove our main results.

Let ¥ denotes the class of the functions ¢ : [0, +00[— [0, +00] which satisfies
the following conditions:

(1) % is nondecreasing,
(2) 1) is sub-additive, that is, ¥(s+t) < (s)+ (),
(3) 4 is continuous,
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(4) Y(t) =0 < t=0.

For example, functions ¢; (t) = kt, where k > 0, 2 (t) = l%rt, w3 (t) =
In(14¢t) and ¢4 (t) = min{1,¢} are in V.

The following generalization of Banach’s contraction principle is due to
Geraghty [21].

Theorem 2.12. Let (M,d) be a complete metric space and let f : M — M
be a map. Suppose there exists 5 € S such that for each v,y € M

d(f(z), f(y)) < B (d(z,y)) d(x,y).

Then f has a unique fized point z € M and {f™(z)} converges to z, for each
x € M.

3. MAIN RESULTS

Now, we state our main results.

Lemma 3.1. Let (X,G) be a G-metric space and () be a sequence in X
such that G(Xpi1, Tni1, Tn) is decreasing and

lim G(zp+1, Tnt1, Tn) = 0. (3.1)

n—oo
If (z9y) is not a Cauchy sequence, then there exists € > 0 and two sequences
(my) and (ng) of positive integers such that the following four sequences tends
to e as k — oo,
G($2mk y L2my, » $2nk)a G([L’ka, T2my, x2nk+1)a (32)
G(~T2mk,1 Y mek71 Y xan)) G(:L‘Z??’Lk,l ) 'szk71 Y x2nk+1)-

Proof. If (x2,) is not a Cauchy sequence, then there exists € > 0 and two
sequences (my) and (ng) of positive integers such that

ng > my > k; G(Q?ka,(l?ka, xan—Q) <g, G(mek7x2mkax2nk) > €
for all integer k. Then

€ G($2mkax2mka$2nk)

G(T2my,s T2amy s Tong—2) + G(T2n,_oy T2ng_os T2np—1)
+G(2ny, 1> Tamy 1> Tany,)

< e+ G(@2n_y, T2ny_os Tang—1) + G( @20,y T2,y s Tany)-

From (3.1), we conclude that

INIA

kli_{r;oG(q:gmk,xgmk,xgnk) =e. (3.3)
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Further,

G(T2my s T2my» T2ny) < G(T2my Tamy» Tang ) + G(T2ny 1 Tang 1 T2ny )

and

G(Z'ka y L2my, $2nk+1) < G(QTka s L2my, I'an) + G(xan y L2ngy L2npyq ) .

Passing to the limit when & — oo and using (3.1) and (3.3), we obtain
lim G(.ﬁlfgmk, T2my, $2nk+l) =£.
k—o0

The remaining two sequences in (3.2) tend to £ can be proved in a similar
way. Il

Theorem 3.2. Let (X, <) be a partially ordered set and suppose that (X, G)
be a G- complete metric space. Let f,g: X — X be such that f(X) C g(X), f
is g—nondecreasing, g(X) is closed. Suppose that there exist f € S and ) € ¥
such that

V(G (fx, fy, f2)) < B (Y(G(gz, 9y, 92))) ¥(G(gz, 9y, 92)) (3.4)

for all x,y,z € X with gr < gy = gz. Assume that X is such that if an
mcreasing sequence T converges to x, then x, = x for each n > 0. If there
exists g € X such that grg = fxg, then f and g have a coincidence point.

Proof. By the condition of the theorem there exists g € X such that gzy =<
fxo . Since f(X) C g(X), we can define 1 € X such that gx; = fxg, then
gro = fxro = gx1. Since f is g—nondecreasing, we have frg < fz,. In this
way we construct the sequence (x,,) recursively as

Jon =grpni1, Yn>1 (35)
for which
fro =gr1 =2 fry =gre X frp X - (3.6)
frpna=gr, X fr,=grp41 =---

grg =
=<

First, we suppose that there exists ng € N such that ¥(G(fxn,, fTng, fTno+1))
= 0, then it follows from the properties of ¥, G(fZny, fTngs fTne+1) = 0. So,
fxn, = fono+1, we have grpo41 = frpo4+1. Therefore x,,41 is a considance
point of f and g. From now on we suppose ¥(G(fxp, fXn, frnt1)) # 0 for all
n > 0. The elements gz, and gz,+1 are comparable, substituting x = y = x,,
and z = 41 in (3.4), using (3.5) and (3.6), we have

V(G (frn, fon, frni)) < B(G(9Tn, 9Tn, 9Tn+1))) V(G (920, 9Tn, gTn+1))
iﬁ(G(gﬂfmgwn,gﬂEnH))
w(G(fxn—lv fxn—ly fxn))

IN
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Thus it follows that (Y(G(fzy, fon, fTn+1))) is a non increasing sequence and
bounded below, so li_>m V(G(fxn, frn, frns1)) = r > 0 exits. Assume that

r > 0, then from (3.4), we have
V(G (frn, frn, fTni1))
¢(G(f$n,1, fl‘nfla f‘/L‘n))
which yields that

< B (Y (G(9xn, gTn, gTns1))) <1 for each n > 1,

Jim B ((G(g2n, 9T, gTnt1))) = 1.

On the other hand, since 8 € S, we have li_)m V(G(fxp, fTn, frns1)) =0 and
n [o.¢]

so r = 0. Now we show that (fz,) is a Cauchy sequence. Suppose that (fz;)
is not a Cauchy sequence. Using Lemma 3.1, we know that there exist € > 0
and two sequences (my) and (ny) of positive integers such that the following
four sequences tend to € as k goes to infinity,

G(fomka f$2mk7 f‘Tan)v G(fomkv fomka f$2nk+1)7
G(fromy_1> from,_1s fTon )y G(fZomy_ s fT2mu_ s f2on, 1)

Putting in the contractive condition x = y = x2,, and z = 2y, ,, using (3.5)
and (3.6), it follows that

V(G(framy, fTomy,, fTon,, )
< B (W(G(frame_1» [Tomy 1> f22n,))) V(G (fTamy 1y fT2my 1, [Tomy,))
< Y(G(framy_y» fTamu_y» [T20,.))-
So
V(G (framy, [Tom,, fron,.,))
V(G (framy_yy [P2my_ys [T20,))
and kli_}r{)loﬂ (w(G(fxgmk_l,fwgmk_l, f.%'gnk))) = 1. Since 8 € S, it follows that

khm w(G(fx2mk717 f$2mk,1a fx2nk)) = 0
— 00

Since ) is a continuous mapping, ¥ (¢) = 0 and so € = 0, which contradicts € >
0. Therefore, (fx,) is a Cauchy sequence in (X, G). Since (X, G) is a complete

metric space, there exists a € X such that lim fz, = a = lim gz,41. Since
n—oo n—oo

g(X) is closed, then a = gz, and by (3.5) fx, = gx,41 for all n > 1. We have

< /8 (Q;Z)(G(fomk,la fx2mk,17fx2nk))) < 1

lim gz, = lim fx, = gz = a. (3.7)
n—o0 n—oo

Now we prove that z is a coincidence point of f and g. By (3.6), we have (gz,,)
is a non-decreasing sequence in X. By (3.7) and condition of our theorem

9Tn = g2. (3.8)
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Putting x = y = z,, in (3.4), by the virtue of (3.8), we get
¢(G(fxna fl‘nv fZ)
< B(HC(fTnor, fTn-1,92))) $(C(gTns gn, 92))
< Y(G(gzxy, gxn, gz), for each n > 1.

Taking n — oo in the above inequality, using (3.7) and the continuity of ,
we get

G(gz,92, fz) =0,
that is
fz=gz. (3.9)
This complete the proof. O

Theorem 3.3. If in Theorem 3.2, it is additionally assumed that
92 = 99z, (3.10)

where z is as in the condition of theorem and f and g are weakly compatible,
then f and g have a common fized point in X.

Proof. Following the proof of the Theorem 3.2, we have (3.7), that is, a non-
decreasing sequence (gz,) converging to gz. Then by (3.10) we have gz < ggz.
Since f and g are weakly compatible, by (3.9), we have fgz = gfz. We set

w=gz= fz. (3.11)
Therefore, we have
9z 2 g9z = gw. (3.12)
Also
fw= fgz=gfz= gw. (3.13)

If z = w, then z is a common fixed point. If z # w, then necessarily gz = gw.
We argue by contradiction, if gz # gw. By (3.4) and (3.8), we have

Q;Z)(G(gzvmgfmgw))
Q;Z)(G(g$nvgxnagw))
By going to the limit as n — oo, by using the fact that 5 € S and the conti-
nuity of ¢, we get ¥(G(gz,9z,g9w)) = 0, so gz = gw. This is a contradiction.
Therefore, by (3.11) and (3.13), we have w = gw = fw. Hence w is a common
fixed point. This completes the proof. O

Remark 3.4. Continuity of f is not required in Theorem 3.3. If we assumed
f to be continuous, then (3.8) is not longer required for the theorem and can
be omitted.
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Theorem 3.5. Let (X, <) be a partially ordered set and suppose that (X, G) be
a G- complete metric space. Let f: X — X be such that f is a nondecreasing.
Suppose that there exist f € S and ¢ € ¥ such that

WG(fr, fy, [2)) < B(P(G(2,y,2) Y(G(2,y,2)),

forallx, y, z€ X with x <y = z. Assume that either [ is continuous or X
1s such that if an increasing sequence x,, converges to x, then x, < x for each
n > 0. If there exists g € X such that xg < fxg, then f has a fized point.

Proof. Following the proof of the Theorem 3.2, we have (3.7), that is, a non-
decreasing sequence (x,) converging to z. Now we show, that z is a fixed of
point of f. If f is continuous, then

2= lim f"(x0) = lim [+ (z0) = f( lim /(o)) = f()

and hence f(z) = z. If the second condition of the theorem holds, then we
have

G(f(2), f(2),2) < G(f(2), f(2), f((xn)) + G(f (2n), f(2n), 2)-

On the other hand, since ¢ is nondecreasing and sub-additive, we have

¥ (G (f(2), f(2),2))

Y (G(f(2), f(2), f((zn)) + ¢ (G(f(zn), f2n), 2))

B(W(G(z,2,20))) P(G(2, 2, 20))+ 0 (G(Tnt1, Tnt1, 2))

V(G(z 2,2n)) + U (G(Zni1, Ty, 2)) -
Since G(z,z,xn) — 0, G(Tpt1,Tn+1,2) = 0, ¥ (G(Tpt1,Tnt1,2)) — 0 and
V(G(z, z,x,)) — 0 when n goes to infinity. Then

P(G(f(2),f(2),2) =0 & G(f(2),f(2),2) =0.
Therefore, we get f(z) = z. This completes the proof. O
In the following, we give a sufficient condition for the uniqueness of the fixed

point in Theorem 3.5. This condition is as follows.

(i) Every pair of elements in X has a lower bound or an upper bound.

In [12], it is proved that the condition (i) is equivalent to the following.

(ii) For every x,y € X, there exists z € X which is comparable to = and
Y.

Theorem 3.6. Adding the condition (ii) to the hypothesis of Theorem 3.5,
The fized point z is unique.
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Proof. Let y be another fixed point of f, from (ii), there exists x € X which
is comparable to y and z. The monotonicity of f implies that f™ (z) is com-
parable to f (y) =y and f" (z) = z for n > 0. Moreover, we have

P(G(z, 2, [ (2))
= WG (2), " (2), " (@)
= G (1 R) R @)
B(GU T 2), 7 (2 )7f" H@)) w(G (=), T (R) T ()
VG (=) T (R), T ()
(G (2,2, [P (2)). (3.14)

Consequently, the sequence (7,) defined by 7, = ¥(G(z, z, f*~! (z)) is non-
negative and non increasing and so

Jim (G2, 2, f" 7 (2)) =7 = 0.

Now, we show that v = 0. Assume that v > 0. By passing to the subsequences,
if necessary, we may assume that lim 3 (v,) = § exists. From (3.14), it follows
n—oo

that v =~ and so § = 1. Since § € S,
RT R T n—1 A —
v = lim 5, = lim (G(z, 2, /"7 (z)) =7 =0.
This is a contradiction and so v = 0. Similarly, we can prove that

lim (G(y,y, [ (2)) = 0.

IA A

Finally, from
G(z,2,y) < G(z 2, " () + G(f" (x), [" (2) ),
and G(z,z,y) < 2G(z,y,y) for any x,y € X, we obtain
G(z,2,y) < G(z, 2, [" (2)) +2G(f" (%) ,y, y).

Since v is nondecreasing and sub-additive, it follows that

V(G2 2,y) < (G202 " (2) + (G (2),y,y))
T (G (2),9,9))
< Y (Gz 2 " () + 20 (G (2),9,9)) -

Therefore, taking n — oo, we have

¥ (G(z,2,y)) = 0.
It follows that G(z,z,y) = 0 and so z = y. This completes the proof. O

Letting 1) = idx, in Theorems 3.2 and 3.5, we can get the following results.
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Corollary 3.7. Let (X, =) be a partially ordered set and suppose that (X, Q)
be a G-complete metric space. Let f,g: X — X be such that f(X) C g(X), f
is g—nondecreasing, g(X) is closed. Suppose that there exist B € S such that

G(fx, fy, fz) < B(G(gx, gy, 92)) G(gz, gy, 92), (3.15)

for all x,y,z € X with gr =< gy = gz. Assume that X is such that if an
increasing sequence Ty converges to x, then x, < x for each n > 0. If there
exists xg € X such that grg = fxo , then f and g have a coincidence point.

Corollary 3.8. Let (X, =) be a partially ordered set and suppose that (X, G)
be a G-complete metric space. Let f: X — X be such that [ is a nondecreas-
ing. Suppose that there exist B € S such that

G(fz, [y, f2) < B(G(x,y,2)) G(z,y,2),

forallx,y, z € X with x <y = z. Assume that either f is continuous or X
1s such that if an increasing sequence x, converges to x, then x, = x for each
n > 0. If there exists xg € X such that xg < fxg, then f has a fized point.

Example 3.9. Let X = [0,1]. We define a partial ordered < on X as x <y
if and only if x < y for all z,y € X. Define G : X x X x X — R" by

G, y,2) =[x —yl+ |y — 2[ + [z — z]

for all z,y,z € X. Then (X,G) is a complete G—metric space. Let f,g :

X — X be two functions defined as, f(z) = § and g(x) = 3 for all z € X.
So, f(X) C g(X) = [0,3]. g(X) is closed in X and f is g—nondecreasing.
Let ¢ : [0,00) — [0,00) be defined as ¢ (z) = In(1+z). 1 is continuous,
sub-additive, nondecreasing and satisfies ¢ (z) =0 <=z =0 and ¢ (z) < z

+2) 4 450
for any x > 0. Let 3 : [0,00) — [0, 1) defined as [ (z) = { z §owo O,

Without loss of generality, we assume that z < y < z and satisfy the
inequality (3.4) for all z,y,z € X with z <y < z. So

G(fq:vfyafz) :%(2’—1‘) and G(gm,gy,gz):(z—x)

Hence it is easy to see that %w < ¢ (x) for all x € X. Therefore the inequality
(3.4) is satisfied. Then we choose xy = 0 in [0,1], f(0) < g(0). All conditions
of Theorem 3.2 are satisfied. Here g = 0 is a coincidence point of f and g.
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Later, from the previous obtained results, we deduce some coincidence point
results for mappings satisfying a contraction of an integral type as an appli-
cation of Theorem 3.2 above. For this purpose, let

x : RT — RT satisfies that y is Lebesgue integrable,
Y = { x: summable on each compact of subset of R™, sub-additive
and [ x (t) dt > 0 for each € > 0.

Definition 3.10. The function y : R™ — RTis called sub-additive integrable
function if for any a, b € RT,

/Oa+bx(t)dt§/Oax(t)dtJr/Obx(t)dt.

Theorem 3.11. Let (X, =) be a partially ordered set and suppose that (X, G)
be a G-complete metric space. Let f,g: X — X be such that f(X) C g(X), f
is g—nondecreasing, g(X) is closed. Suppose that there exist f € S and ) € ¥
such that for x €Y,
V(G (fx,fy.f2))
/ X (1)t
0
Y(G(gz,9Y,9%)) V(G(gz,99,92)) (3.16)
<s( ) [ X (t)dt,
0 0

Jor all z,y,z € X with gr =X gy = gz. Assume that X is such that if an
increasing sequence T, converges to x, then x, = x for each n > 0. If there
exists xg € X such that grg = fzg, then f and g have a coincidence point.

Proof. For x € Y, consider the function A : Rt — RT defined by A (z) =
Jo x (t) dt. We note that A € ¥. Thus the inequality (3.16) becomes

A(WD(G(fz, fy, f2)) < B(AW(G(92,9y,92)))) A (¥(G(92, 9y, 97))) . (3.17)
Setting Ao =11, 11 € WU, so we obtain

Vi(G(fz, fy, f2) < BW1(G(gz, 9y, 92))) ¥1(G(gz, gy, 2)).

Therefore by Theorem 3.2 above, f and g have a coincidence point. O

Corollary 3.12. Let (X, <) be a partially ordered set and suppose that (X, G)
be a G-complete metric space. Let f : X — X be a nondecreasing function.
Suppose that there exist B € S and ¢ € V such that
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(G ([, fy.f2))
/ X (t) dt
0

W(G(w.y.2)) $(G(2.y.2))
<p / X () dt / x(t)dt, xeyY
0 0

forall z,y,z € X with x <y =X z. Assume that either f is continuous or X
s such that if an increasing sequence x,, converges to x, then x, < x for each
n > 0. If there exists g € X such that xg =< fxo, then f has a fized point.

(3.18)

Corollary 3.13. Let (X, <) be a partially ordered set and suppose that (X, Q)
be a G-complete metric space. Let f,g: X — X be such that f(X) C g(X), f
is g—nondecreasing, g(X) is closed. Suppose that there exist B € S such that
forx ey,

G(fx,fy,fz) G(gz,99,9%) G(gz,99,9%)
/ xwar<s( [ ) [ x(t)dt, (3.19)
0 0 0

for all z,y,z € X with gr < gy =X gz. Assume that X is such that if an
increasing sequence T converges to x, then x, = x for each n > 0. If there
exists g € X such that grg = fxg, then f and g have a coincidence point.

4. APPLICATION

In this section, We show the existence of solution for the following initial-
value problem by using Theorems 3.5 and 3.6.

g (T, 1) =tgy (2,t) + F (2, t,u,uz) ,—00 < x <00, 0 <t <T,
(4.1)
u(z,t)=p(x),—00 <z < o0.

Where we assumed that ¢ is continuously differentiable and that ¢ and ¢’ are
bounded and F' (z,t,u,uy) is a continuous function.

Definition 4.1. We mean a solution of an initial-boundary-value problem for
any uy (x,t) = ugy (x,t) + F (x,t,u,uy) in R x I, where I = [0, T]. A function
u = u(z, t) defined in R x I such that

a) ue C(RxI),

b) ut, Uy, Ugy € C (R x I),

¢) ug and u, are bounded in R x I,

(d) ug (z, t) = gy (, t) + F (2, t, u(x,t), ugp (z, ), V (x,t) ERxI.
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Now we consider the space Q@ = {v(z, t) : v,v, € C(R x I) and |jv]| < oo},
where

[l = sup |o(z,t)[+ sup |vs(,t)].
z€R, tel z€R, tel

The set 2 with the norm ||-|| is a Banach space. Obviously, the space with the
G —metric given by

G(U,U,U)) - Sup ’U(.’L’,t) _U(xat)’—i_ sup ’U’LB (.’E,t) — Vg (xat)’
z€R, tel z€R, tel
+osup Jo(a,t) —w(a, O]+ sup fog (1) - w, (2,0)
z€R, tel z€R, tel
+osup Ju(et) —wle )]+ sup |ug (@,1) - w, (2,0)
z€R, tel z€R, tel

is a complete G—metric space. The set € can also equipped with the a partial
order given by

u,v€Q, u=v <= u(x,t) <v(z,t), ugy(x,t)<uvy(z,t)

for any x € R and t € I. Obviously, (2, <) satisfies the condition (ii), since
for any uw,v € Q, max{u,v} and min{u,v} are the least and greatest lower
bounds of u and v, respectively. Taking a monotone nondecreasing sequence
{vn} € Q converging to v in Q, for any x € R and t € I,

U1 (.I',t) §U2($,t) <. SUn(x,t) <.
and
V1 (x,t) < Vo (.%‘,t) D (.1‘,t) <---

Further, since the sequences {v, (z,t)} and {vn, (z,t)} of real numbers con-
verge to v (z,t) and v, (x,t), respectively, it follows that, for allz e R, t €
and n > 1, v, (x,t) < wv(x,t) and vy, (x,t) < vy (z,t). Therefore, v, < v for
all n > 1 and so (€2, <) with the above mentioned metric satisfies the condition

().

Definition 4.2. A lower solution of the initial-value problem (4.1) is a func-
tion u € €,

ug (x,t) = gy (x,t) + F (z,t,u,uy), —00<z<00,0<t<T,

u(z,t) =¢(x),—00 < x < 00,

where we assume that ¢ is continuously differentiable and that ¢ and ¢’ are
bounded, the set 2 is defined in above and F (x,t, u, u;) is a continuous func-
tion. This section is inspired in [14, 20, 21].

Theorem 4.3. Consider the problem (4.1) with F : Rx I xR xR — R
continuous and assume the following:
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(1) for any ¢ > 0 with |s| < ¢ and |p| < ¢, the function F(x,t,s,p) is
uniformly Holder continuous in x and t for each compact subset of
R x I;

(2) there exists a constant c,, < (T + QW%IT%)_l such that

0 S F(x7t7527p2) - F(x7t7517p1) S Cp IH(SQ — 851 +p2 —P1 + 1)

for all (s1,p1) and (s2,p2) in R X R with s1 < sy and p1 < po;
(3) F is bounded for bounded s and p.

Then the ezistence of a lower solution for the initial-value problem (4.1) pro-
vides the existence of the unique solution of the problem (4.1).

Proof. The problem (4.1) is equivalent to the integral equation
+oo
uet) = [ k-6 0p(e)de
t +oo +o0
[ e gt P e € ) dedr
0 J—oo —00
forallz € R and 0 < t < T, where

1 —z?
k(z,t) = \/mexp py

for all z € R and ¢ > 0. The initial-value (4.1) possesses a unique solution if
and only if the above integral differential equation possesses a unique solution
u such that v and u, are continuous and bounded forallz €e Rand 0 <t < T.
Define a mapping f : Q@ — Q by

“+oo
(Fo)at) = [ ke gte©d
t +oo
+ / k(x =&t —1)F (§,1,u (&, 7),uy (&,7)) dédT
0 J—o0

for all x € R and ¢ € I. Note that, if u € Q is a fixed point of f, then u is a
solution of the problem (4.1). Now, we show that the hypothesis in Theorems
3.5 and 3.6 are satisfied. The mapping f is nondecreasing since, by hypothesis,
for u > v,

F (z,t,u(x,t),uy (z,t)) > F (x,t,v (x,t), 0, (2,1)).

By using that k(z,t) > 0 for all (z,t) € R x (0,T], we conclude that
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+o00
(Fi@t) = [ ka-ene©d
t ptoo
+/0 /_oo k(x —&t—71)F (&, 1,u(&,T),us (§,7)) dédr
+o0
= /_ Kz — & t)p (€) dé

+/Ot /‘:0 k(x —&t—1)F (&, 1,0 (& T), vy (€, 7)) dEdT
= (fv)(z,1)
for all z € R and ¢t € I. Besides, we have
u) (z,t) = (fv) (z,1)]
+oo
/ / Ko — &t = TIF (670 (6,7) us (€7)
—F(f,T ’U(é,T) Vg (57 ) ‘dng
+o0
/O/OO k(z—&,t—7) - cp
xIn(u (&, 7)—v (&, 7)+ug (§7) vz (§7)+1) dédr
< cpln (G(u,v w)+1)/t/+ook(x—£ t — 7)dédr
>~ CF s Uy 0 - )
< cpln(G(u,v,w) +1)T. (4.2)
With the same way, we obtain
|(fv) (z,t) = (fw) (z, )| < cpIn(G(u,v,w) + 1) T (4.3)
and
|(fu) (z,t) — (fw) (z,8)] < cpln(G(u,v,w) +1) T (4.4)
for all u > v > w. Similarly, we have

0
ij;"‘(:c,w—g(x,t)\

+o0
< cpIn (G(u,v,w) // *l'—ft 7)

<cpln(G(u,v,w)+1)2r2 = T3, (4.5)

dédr
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)~ )
< epIn (G uvw+1//+oo o) dedr (46)
< cpln (Gu, v,w) + 1) 207 T3,
and
’eaajzl(x,t)—(aaj;u(m,t)'
< epln (G( uvw+1//+oo %(x—ét Hldear @)

< cpln (G(u,v,w) +1)2172 T3
Combining (4.2), (4.3), (4.4) with (4.5), (4.6), (4.7), we obtain
G(fu, fv, fw) < 3cp(T + 27r_71T%) In (G(u,v,w)+1) <In(G(u,v,w)+1)
which implies
In(G(fu, fv, fw)+1) < In(n(G(u,v,w)+1)+1)
(u,v,w) +1) +1)

_ In(n(@ n (G(u,v,w
N In (G(u,v,w) + 1) I (G(u, v,w) +1).

Put ¢ (z) = In(z + 1) and B (x) = % Obviously, ¢ : [0,00) — [0,00)
is continuous, sub-additive, nondecreasing and 1 is positive in (0,00) with
¥ (0) = 0 and also ¢ () < « for any > 0 and 3 € S. Finally, let a (z,t) be a
lower solution for (4.1) . Then we show that o < fa integrating the following:

(a(ﬁ,T)k(l‘—g,t—T))T—(ag(f,T)k(SL‘—f?t—T))g
+(Oé (677) kf (x*é-vt*T))g
SF(E,T,OZ(&,T),O%‘ (f,T))kI(SL’—f,t—T)

for —oo < £ < 00 and 0 < 7 < t. Then we obtain the following.

+oo
o (2, 1) s/_ k(o — 6.0 () de

t p4oo
+/0 /—oo k(x_é’t_T)F(f’T’a(éaT))a§ (5,7’))615(17‘

= (fo)(z,1)

for all x € R and t € (0,7]. Therefore, by Theorems 3.5 and 3.6, f has a
unique fixed point. This completes the proof. O
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