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Abstract. In this paper, we present a local convergence analysis for the multi-point-

parameter Newton-like-methods for solving nonlinear equations in a Banach space setting

under weak conditions. Numerical examples validating our theoretical results are also pro-

vided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x? of an equation

F (x) = 0, (1.1)

where F is Fréchet differentiable operator defined on a non–empty, open and
convex subset D of a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and engineering are
solved by finding the solutions of certain equations. Except in special cases,
the most commonly used solution methods are iterative. In fact, starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. The study about convergence matter of iterative
procedures is usually based on two types: semi-local and local convergence
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analysis. The semi-local convergence matter is, based on the information
around an initial point, to give conditions ensuring the convergence of the
iterative procedure; while the local one is, based on the information around a
solution, to find estimates of the radii of convergence balls.

The famous Newton’s method defined by

xn+1 = xn − F ′(xn)−1F (xn), (n ≥ 0, x0 ∈ D)

converges quadratically to a solution of (1.1) [2, 4, 24, 25]. To attach a higher
order, many methods have been developed [2, 4, 8], [11]-[23], [26, 27]. Among
them, a classic iterative process with cubic convergence is Chebyshev’s method
(see [11]-[23]):

x0 ∈ D,
yn = xn − F ′(xn)−1F (xn),
xn+1 = yn − 1

2F
′(xn)−1F ′′(xn)(yn − xn)2, n ≥ 0.

This one-point iterative process depends explicitly on the first and second
derivatives of F (namely, xn+1 = ψ(xn, F (xn), F ′(xn), F ′′(xn))). Ezquerro and
Hernández introduced in [14]-[16] some modifications of Chebyshev’s method
that avoid the computation of the second derivative of F and reduce the
number of evaluations of the first derivative of F . Actually, these authors
have obtained a modification of the Chebyshev iterative process which only
need to evaluate the first derivative of F , (namely, xn+1 = ψ(xn, F

′(xn)), but
with third-order of convergence. In this paper we recall this method as the
Chebyshev–Newton–type method (CNTM) and it is written as follows:

x0 ∈ D,
yn = xn − F ′(xn)−1 F (xn),
zn = xn + a (yn − xn),

xn+1 = xn −
1

a2
F ′(xn)−1 ((a2 + a− 1) F (xn) + F (zn)), n ≥ 0.

There is an interest in constructing families of iterative processes free of
derivatives. To obtain a new family in [8] we considered an approximation
of the first derivative of F from a divided difference of first order, that is,
F ′(xn) ≈ [xn−1, xn, F ], where, [x, y;F ] is a divided difference of order one for
the operator F at the points x, y ∈ D. Then, we introduce the Chebyshev–
Secant–type method (CSTM)

x−1, x0 ∈ D,
yn = xn −B−1n F (xn), Bn = [xn−1, xn;F ],
zn = xn + a (yn − xn),
xn+1 = xn −B−1n (b F (xn) + c F (zn)), n ≥ 0,
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where a, b, c are non–negative parameters to be chosen so that sequence {xn}
converges to x?. Note that (CSTM) is reduced to the secant method (SM) if
a = 0, b = c = 1/2 and yn = xn+1.

We provided in [8] a semilocal convergence analysis for (CSTM) using re-
currence sequences, and also illustrated its effectiveness through numerical
examples. Bosarge and Falb [9], Dennis [13], Amat [1], Argyros [2]-[8] and
others [11]-[22], have provided sufficient convergence conditions for the (SM)
based on Lipschitz–type conditions on divided difference operator (see, also
relevant works in [10, 13, 25]).

The usual conditions for the semilocal convergence of these methods are
(C):

(C1) There exists Γ0 = F ′(x0)
−1 and ‖Γ0‖ ≤ β;

(C2) ‖Γ0F (x0)‖ ≤ η;
(C3) ‖F ′′(x)‖ ≤ β1 for each x ∈ D;
(C4) ‖F ′′′(x)‖ ≤ β2 for each x ∈ D;
(C5) ‖F ′′′(x)− F ′′′(y)‖ ≤ β3‖x− y‖ for each x, y ∈ D.

The local convergence conditions are similar but x0 is x∗ in (C1) and (C2).
In this paper, we continue the study of derivative free iterative processes.

We introduce the Multi-point-parameter Newton-like method (MPPNLM) de-
fined for each n = 0, 1, 2, · · · by

x0 ∈ D,
yn = xn −A−1n F (xn), An = A(xn),
zn = xn + a (yn − xn),
xn+1 = xn −A−1n (b F (xn) + c F (zn)), n ≥ 0,

where, a, b, c are real parameters and A−1n ∈ L(Y,X). We assume the condi-
tions (A) to study the local convergence of (MPPNLM):

(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that
F (x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X). Moreover, A(x) ∈ L(X,Y ) and
A(x∗)−1 ∈ L(Y,X);

(A2) ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ K0‖x− x∗‖ for each x ∈ D;
(A3) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ K‖x− y‖ for each x, y ∈ D;
(A4) ‖F ′(x∗)−1F ′(x)‖ ≤ N1 for each x ∈ D;
(A5) ‖A(x∗)−1(A(x) − A(x∗))‖ ≤ L‖x − x∗‖ + l for each x ∈ D and l ∈

[0, 1);
(A6) ‖A(x∗)−1(A(x)− F ′(x))‖ ≤M‖x− x∗‖+ µ for each x ∈ D and µ ∈

[0, 1);
(A7) ‖A(x∗)−1F ′(x)‖ ≤ N2 for each x ∈ D;

(A8) |1− a|+ |a|µN
1−l < 1; and

(A9)
µN
1−l +

(|1−b|+|c|(|1−a|+|a| µN
1−l ))N2

1−µ < 1.
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Notice that we do not require hypotheses involving second or third Fréchet-
derivatives. Hence, the applicability of (MPPNLM) is expanded this way.

The paper is organized as follows: Section 2 contains the local convergence
of (MPPNLM) where the convergence ball as well as error estimates on the
distances ‖xn−x∗‖, ‖yn−x∗‖ and ‖zn−x∗‖ are given. The numerical examples
are presented in the concluding Section 3.

2. Local convergence

We present the local convergence of (MPPNLM) under the condition (A).
It is convenient for our local convergence analysis of (MPPNLM) to introduce
some parameters and functions.

Define parameters R0, R1 and R2 by

R0 =
l

K0
, R1 =

1− l
L

and R = min{R1, R2}. (2.1)

Define functions g1 and G1 on [0, R) by

g1(t) =
Kt

2(1−K0t)
+

(Mt+ µ)N1

(1− (Lt+ l))(1−K0t)
(2.2)

and

G1(t) = g1(t)− 1. (2.3)

We have by (A9), (2.1)-(2.3) that

G1(0) =
µN

1− l
− 1 < 0

and

G1(t)→∞ as t→ R−.

It follows by the intermediate value theorem that function G1 has zeros in
the interval [0, R). Denote by r1 the smallest such zero of function G1. Define
functions g2 and G2 on the interval [0, R) by

g2(t) = |1− a|+ |a|g1(t) (2.4)

and

G2(t) = g2(t)− 1. (2.5)

We have by (A8), (2.1), (2.4) and (2.5) that

G2(0) = g2(0)− 1 = |1− a|+ |a|µN
1− l

− 1 < 0

and

G2(t)→∞ as t→ R.
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Then, function G2 has zeros in the interval (0, R). Denote by r2 the smallest
such zero of function G2. Define functions g3 and G3 on the interval [0, R) by

g3(t) = g1(t) +
(|1− b|+ |c|g2(t))N2

1− (Lt+ l)
(2.6)

and

G3(t) = g3(t)− 1. (2.7)

Then, we get by (A9), (2.1) and (2.7) that

G3(0) = g3(0)− 1 < 0

and

G3(t)→∞ as t→ R.

Hence G3 has zeros in the interval (0, R). Denote by r3 the smallest such zero
of function G3. Set

r∗ = min{r1, r2, r3} (2.8)

and choose

r ∈ [0, r∗). (2.9)

Then, we have that

g1(t) < 1, (2.10)

g2(t) < 1, (2.11)

and

g3(t) < 1, (2.12)

for each t ∈ [0, r]. Then, we can show the following local convergence result
for (MPPNLM) under the (A) conditions.

Theorem 2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, hold, where
r is given by (2.9). Then, sequence {xn} generated by (MPPNLM) for some
x0 ∈ U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · ·
and converges to x∗. Moreover, the following estimates hold for each n =
0, 1, 2, · · · ,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖, (2.13)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖, (2.14)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖‖xn − x∗‖, (2.15)

where, functions g1, g2, and g3 are given by (2.2), (2.4) and (2.6), respectively.
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Proof. We shall use induction to show that estimates (2.13)-(2.22) and that
yn, zn, xn+1 ∈ U(x∗, r) for each n = 0, 1, 2, · · · . Using (A1), (A2) and the
hypothesis x0 ∈ U(x∗, r) we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ K0‖x0 − x∗‖ < K0r < 1. (2.16)

It follows from (2.16) and the Banach Lemma on invertible operators [2, 4, 24,
25] that F ′(x0)

−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1−K0‖x0 − x∗‖
<

1

1−K0r
. (2.17)

Similarly, using (A5) we obtain that

‖A(x∗)−1(A(x0)−A(x∗))‖ ≤ L‖x0 − x∗‖+ l ≤ Lr + l < 1 (2.18)

so that A(x0)
−1 ∈ L(Y,X) and

‖A(x0)
−1A(x∗)‖ ≤ 1

1− (L‖x0 − x∗‖+ l)
≤ 1

1− (Lr + l)
. (2.19)

Hence, we also have that y0 is well defined. Then, using the first substep of
(MPPNLM) for n = 0, (2.17), (2.19), (A4), (A6), F (x∗) = 0, (2.2) and (2.10)
we get that

y0 − x∗

= x0 − x∗ − F ′(x0)−1F (x0) + (F ′(x0)
−1 −A(x0)

−1)F (x0)

= −[F ′(x0)
−1F ′(x∗)]

[
F ′(x∗)−1

∫ 1

0
(F ′(x∗+τ(x0−x∗))−F ′(x0))(x0−x∗)dτ

]
+[A(x0)

−1A(x∗)][A(x∗)−1(A(x0)− F ′(x0))][F ′(x0)−1F ′(x∗)]

×
[
F ′(x∗)−1

∫ 1

0
(F ′(x∗ + τ(x0 − x∗))− F ′(x0))(x0 − x∗)dτ

]
(2.20)

so

‖y0 − x∗‖

≤ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1
∫ 1

0
[F ′(x∗+θ(x0−x∗))−F ′(x0)]dθ‖‖x0−x∗‖

+‖A(x0)
−1A(x∗)‖‖A(x∗)−1(A(x0)− F ′(x0))‖‖F ′(x0)−1F ′(x∗)‖

×‖F ′(x∗)−1
∫ 1

0
(F ′(x∗ + τ(x0 − x∗))− F ′(x0))dτ‖‖x0 − x∗‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ g1(r)‖x0 − x∗‖
< ‖x0 − x∗‖, (2.21)
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which shows (2.13) for n = 0 and y0 ∈ U(x∗, r). Using the first substep of
(MPPNLM) for n = 0, (2.4), (2.9), (2.11) and (2.21) we have that

z0 − x∗ = x0 − x∗ + a((y0 − x∗) + (x∗ − x0))
= (1− a)(x0 − x∗) + a(y0 − x∗),

so,

‖z0 − x∗‖ ≤ |1− a|‖x0 − x∗‖+ a‖y0 − x∗‖
≤ |1− a|‖x0 − x∗‖+ |a|g1(‖x0 − x∗‖)‖x0 − x∗‖
= g2(‖x0 − x∗‖)‖x0 − x∗‖
≤ g2(r)‖x0 − x∗‖ < ‖x0 − x∗‖, (2.22)

which shows (2.14) for n = 0, z0 ∈ U(x∗, r) and that x1 is well defined.
Moreover, using (2.6), (2.12), (2.19), (2.21), (A7) and the third substep in
(MPPNLM), for n = 0, we obtain in turn that

x1 = y0 + (1− b)A−10 F (x0)− cA−10 F (z0)

implies

x1 − x∗

= y0 − x∗

+(1−b)[A(x0)
−1A(x∗)]

[
A(x∗)−1

∫ 1

0
F ′(x∗+τ(x0−x∗))(x0−x∗)dτ

]
+c[A(x0)

−1A(x∗)]

[
A(x∗)−1

∫ 1

0
F ′(x∗ + τ(z0 − x∗))(z0 − x∗)dτ

]
so,

‖x1 − x∗‖
= ‖y0 − x∗‖

+|1−b|‖A(x0)
−1A(x∗)‖‖A(x∗)−1

∫ 1

0
F ′(x∗+τ(x0−x∗))dτ‖‖x0−x∗‖

+|c|‖A(x0)
−1A(x∗)‖‖A(x∗)−1

∫ 1

0
F ′(x∗ + τ(z0 − x∗))dτ‖‖z0 − x∗‖

≤
[
g1(‖x0−x∗‖) +

|1−b|N2

1−(L‖x0−x∗‖+l)
+
|c|N2g2(‖x0−x∗‖)
1−(L‖x0−x∗‖+l)

]
‖x0−x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖, (2.23)

which shows (2.22) for n = 0, x1 ∈ U(x∗, r). To complete the induction simply
replace y0, z0, x1 by yk, zk, xk+1 in the preceding estimates to obtain that

‖yk − x∗‖ ≤ g1(‖xk − x∗‖)‖xk − x∗‖ ≤ g1(r)‖xk − x∗‖ ≤ ‖xk − x∗‖ < r,

‖zk − x∗‖ ≤ g2(‖xk − x∗‖)‖xk − x∗‖ ≤ g2(r)‖xk − x∗‖ < ‖xk − x∗‖ < r,
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and

‖xk+1 − x∗‖ ≤ g3(‖xk − x∗‖)‖xk − x∗‖ ≤ g3(r)‖xk − x∗‖ < ‖xk − x∗‖ < r,

which complete the induction for (2.13)-(2.22) and yk, zk, xk+1 ∈ U(x∗, r).
Finally, in particular from the estimate ‖xk+1 − x∗‖ < ‖xk − x∗‖, we deduce
that that limk→∞ xk = x∗. �

Remark 2.2. (a) Condition (A2) can be dropped, since this condition
follows from (A3). Notice, however that

K0 ≤ K (2.24)

holds in general and K
K0

can be arbitrarily large [2]–[7].

(b) In view of condition (A2) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)− F ′(x∗)] + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 +K0‖x− x∗‖,

condition (A4) can be dropped and N1 can be replaced by

N1(r) = 1 +K0r. (2.25)

(c) It is worth noticing that if A(x) = F ′(x), a = 0 and b = c = 1
2 , we

obtain Newton’s method. Then, we get by (2.9) that

r = rA =
2

2K0 +K
. (2.26)

The convergence ball of radius rA was given by us in [3] for Newton’s
method under conditions (A1)-(A3). Estimate shows that the con-
vergence ball of higher than two (MPPNLM) methods is smaller than
the convergence ball of the quadratically convergent Newton’s method.
The convergence ball given by Rheinboldt [25] for Newton’s method is

rR = 2
3K < rA if K0 < K and rR

rA
→ 1

3 as K0
K → 0. Hence, we do not

expect r to be larger than rA no matter how we choose the parameters.
(d) The results can also be used to solve equations where the operator F ′

satisfies the autonomous differential equation [2, 4, 25]:

F ′(x) = T (F (x)),

where T is a known continuous operator. Since F ′(x∗) = T (F (x∗)) =
T (0), we can apply the results without actually knowing the solution
x∗. Let as an example F (x) = ex−1. Then, we can choose T (x) = x+1
and x∗ = 0.
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(e) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method (GMREM), the
generalized conjugate method(GCM) for combined Newton/finite pro-
jection methods and in connection to the mesh independence principle
in order to develop the cheapest and most efficient mesh refinement
strategy [2, 4, 25].

(f) Condition (A8) and (A9) are sufficient conditions used to show the
existence of r1, r2 and r3. These conditions can be replaced by the
condition:
(A10) Functions G1, G2, G3 have zeros in (0, R).

3. Numerical examples

We present three numerical examples in this section for A(x) = F ′(x), a =
c = 1 and b = 0.

Example 3.1. Let X = Y = R3, D = U(0, 1) and x = (0, 0, 0). We define
function F on D as

F (x, y, z) =

(
ex − 1,

e− 1

2
y2 + y, z

)
. (3.1)

Then, the Fréchet derivative of F is given by

F ′(x, y, z) =

 ex 0 0
0 (e− 1) y + 1 0
0 0 1

 . (3.2)

Notice that we have:

F (x∗) = 0, F ′(x∗) = F ′(x∗)−1 = diag {1, 1, 1},
K0 = L = e− 1, N1 = N2 = K = e,

M = l = µ = 0.

To ascertain the convergence-order of the method (MPPNLM), we use the
concept of computational order of convergence (COC) [8]

ρ = sup
ln
(
‖xn+2−xn+1‖
‖xn+1−xn‖

)
ln
(
‖xn+1−xn‖
‖xn−xn−1‖

) for n ∈ N>0. (3.3)

We solve the nonlinear system (3.1) by the (MPPNLM) for x0 = (0.1, 0.1, 0.1)T .
Note that x0 ∈ U(x∗, r). Results of our computation are reported in the Table
1.

In the Table 1, we notice that ρ = 2.87415 ≈ 3 and r ≈ 0.1482876006. Thus
our results are applicable for analysing convergence of the method (MPPNLM).
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n ‖xn − xn−1‖2 ‖F (x)‖2
0 −−− 0.181254010020148
1 0.172349059098655 0.001036567529705
2 0.001129080546855 0.000000001633261
3 0.000000001633894 0.000000000000000

Table 1. Solving (3.1) by the (MPPNLM) for x0 = (0.1, 0.1, 0.1)T .

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions defined
on [0, 1] be equipped with the max norm and D = U(0, 1). Define function F
on D by

F (h)(x) = h(x)− 5

∫ 1

0
x θ h(θ)3 dθ. (3.4)

Then, the Fréchet derivative of F is given by

F ′(h[u])(x) = u(x)− 15

∫ 1

0
x θ h(θ)2 u(θ) dθ for all u ∈ D. (3.5)

Some algebraic manipulations yield

M = l = µ = 0, N1 = N2 = N1(r) = N2(r) = 1 + 7.5 r,

L = K0 = 7.5 and K = 15.

We obtain r∗ = 0.035726559. Thus we must choose r ∈ (0, r1).

Example 3.3. Let X = Y = Rm−1 for natural integer n ≥ 2. X and Y are
equipped with the max-norm ‖x‖ = max

1≤i≤n−1
‖xi‖. The corresponding matrix

norm is

‖A‖ = max
1≤i≤m−1

j=m−1∑
j=1

|aij |

for A = (aij)1≤i,j≤m−1. On the interval [0, 1], we consider the following two
point boundary value problem{

v′′ + v2 = 0,
v(0) = v(1) = 0,

(3.6)

see [2, 4]. To discretize the above equation, we divide the interval [0, 1] into m
equal parts with length of each part: h = 1/m and coordinate of each point:
xi = i h with i = 0, 1, 2, . . . ,m. A second-order finite difference discretization
of equation (3.6) results in the following set of nonlinear equations

F (v) :=

{
vi−1 + h2 v2i − 2vi + vi+1 = 0 for i = 1, 2, . . . , (m− 1),
and from (3.6), v0 = vm = 0,

(3.7)
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Figure 1. Solution of the boundary value problem (3.6).

where v = [v1, v2, . . . , v(m−1)]
T For the above system-of-nonlinear-equations,

we provide the Fréchet derivative

F ′(v) =


2v1
m2 − 2 1 0 0 · · · 0 0

1 2v2
m2 − 2 1 0 · · · 0 0

0 1 2v3
m2 − 2 1 · · · 0 0

...
...

...
... · · ·

...
...

0 0 0 0 · · · 1
2v(m−1)

m2 − 2

 . (3.8)

Let m = 101, x0 = [5, 5, . . . , 5]T. To solve the linear systems (step 1 and
step 2 in (MPPNLM), we employ MatLab routine “linsolve” which uses LU
factorization with partial pivoting. Figure 1 plots our numerical solution.
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