Nonlinear Functional Analysis and Applications Vol. 19, No. 3 (2014), pp. 391-399

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2014 Kyungnam University Press

ON THE RATE OF CONVERGENCE OF PICARD AND PICARD-MANN HYBRID ITERATIONS FOR CONTINUOUS FUNCTIONS ON AN ARBITRARY INTERVAL

Qiao-Li $\operatorname{Dong}^1,$ Han-Bo Yuan 2 and Yan-Yan Lu 3

¹College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: dongql@lsec.cc.ac.cn

²College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: yhbcool09@163.com

³College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: luyanyanjs003@163.com

Abstract. In this paper, we compare the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computational cost. A numerical example is provided which supports the theoretical result. Finally, we use the example provided by Chidume and Mutangadura [2] to show that the Picard-Mann hybrid iteration fails to converge for a Lipschitz pseudocontractive map with a unique fixed point.

1. INTRODUCTION

Let E be a closed interval on the real line and $f : E \to E$ be a continuous mapping. A point $p \in E$ is a fixed point of f if $f(p) = p$. We denote the set of fixed points of f by $F(f)$. It is known that if E is also bounded, then $F(f)$ is nonempty.

 0 Received January 15, 2014. Revised June 5, 2014.

⁰2010 Mathematics Subject Classification: 47H05, 47H07, 47H10.

 0 Keywords: Picard iteration, Picard-Mann hybrid iteration, Lipschitz pseudocontractive mapping, convergence rate.

⁰Supported by National Natural Science Foundation of China (No. 11201476) and Fundamental Research Funds for the Central Universities (No. 3122013k004).

⁰Correspondence Author: Qiao-Li Dong.

Iterative methods are popular tools to approximate fixed points of nonlinear mappings. The Picard iteration [8] is defined by the sequence $\{u_n\}$:

$$
u_{n+1} = f(u_n),
$$

for all $n \geq 1$, where u_1 is an arbitrary initial value. Recently, Khan [5] and Sahu [9], individually, introduced the following iterative process which Khan referred it as Picard-Mann hybrid iteration (PMH):

$$
\begin{cases}\n x_{n+1} = f(y_n), \\
 y_n = (1 - \alpha_n)x_n + \alpha_n f(x_n),\n\end{cases} (1.1)
$$

for all $n \geq 1$, where x_1 is an arbitrary initial value and $\{\alpha_n\}$ be a sequence in $[0, 1)$. Khan $[5]$ proved that the Picard-Mann hybrid iteration converges faster than all of Picard, Mann and Ishikawa iterative processes in the sense of Berinde [1] for contractions.

Phuengrattana and Suantai [7] compared the convergence speed of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval. Recently, Dong et al., [3] compared the rate of convergence of Mann, Ishikawa and Noor iterations from another point of view and come to a different conclusion.

The purpose of this paper is to compare the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computational cost. We draw a different conclusion with Khan [5]. We also use an example to verify that the Picard-Mann hybrid iteration fails to converge for a Lipschitz pseudocontractive map with a unique fixed point.

2. Stability of the Wigner equation

In [3], the authors compared the Mann, Ishikawa and Noor iterations under the same computational cost and obtained different conclusions from [7].

Now, we give a definition and results about the rate of convergence of two iterations and compare Picard iteration with Picard-Mann hybrid iteration under the same computational cost. Also, we support the result with a numeric example.

Definition 2.1. Let E be a closed interval on the real line and $f: E \to E$ be a continuous function. Suppose that $\{x_n\}$ and $\{y_n\}$ are two iterations which converge to a fixed point p of f. Then $\{x_n\}$ is said to converge better than ${y_n}_{n=1}^{\infty}$ if

$$
|x_n - p| \le |y_n - p|,\tag{2.1}
$$

for all $n \geq 1$.

For any sequence $\{x_n\}$ that converges to a point p, it is said that $\{x_n\}$ converges linearly to p, if there exists a constant $\mu \in (0,1)$ such that

$$
\left|\frac{x_{n+1}-p}{x_n-p}\right| \le \mu,\tag{2.2}
$$

for all $n \geq 1$, the number μ is called the rate of convergence.

To compare the rate of convergence of Picard and Picard-Mann hybrid iterations, we define a two-step Picard iteration (TSP):

$$
\begin{cases}\nu_{n+1} = f(\nu_n), \\
\nu_n = f(u_n).\n\end{cases} \tag{2.3}
$$

Remark 2.1. It should be noted that two-step Picard iteration isn't a new iteration and we introduce it just for comparing the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computation cost.

Lemma 2.1. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function. Let the Picard-Mann hybrid iteration ${x_n}$ and two-step Picard iteration ${u_n}$ be sequences defined by (1.1) and (2.3), respectively, where $\{\alpha_n\}$ is a sequence in [0, 1]. Then the following hold:

- (i) if $f(x_1) < x_1$, then $f(x_n) \le x_n$ for all $n \ge 1$ and $\{x_n\}$ is nonincreasing; (ii) if $f(x_1) > x_1$, then $f(x_n) \ge x_n$ for all $n \ge 1$ and $\{x_n\}$ is nondecreasing;
- (iii) if $f(u_1) < u_1$, then $f(u_n) \leq u_n$ for all $n \geq 1$ and $\{u_n\}$ is nonincreasing;
- (iv) if $f(u_1) > u_1$, then $f(u_n) \geq u_n$ for all $n \geq 1$ and $\{x_n\}$ is nondecreasing.

Proof. (i) Let $f(x_1) < x_1$. Then from the definition of $\{x_n\}$ we get that $f(x_1) < y_1 \leq x_1$. Since f is nondecreasing, we have $f(y_1) = x_2 \leq f(x_1)$ $y_1 \leq x_1$. This implies $f(x_2) \leq f(y_1)$. Thus

$$
f(x_2) \le x_2.
$$

Assume that $f(x_k) \leq x_k$. So, we write $f(x_k) \leq y_k \leq x_k$. Since f is nondecreasing, we have $f(y_k) = x_{k+1} \leq f(x_k) \leq y_k \leq x_k$. This implies that $f(x_{k+1}) \leq f(y_k)$. Thus $f(x_{k+1}) \leq x_{k+1}$. By mathematical induction, we obtain that $f(x_n) \leq x_n$, for all $n \geq 1$. It follows that $x_{n+1} \leq x_n$, for all $n \geq 1$. So, we get $\{x_n\}$ is a nonincreasing sequence.

(ii) In a similar way as in the proof (i), we get the desired conclusion.

(iii) Let $f(u_1) < u_1$. Then from the definition of $\{u_n\}$ we get that $f(u_1)$ $v_1 \leq u_1$. Since f is nondecreasing, we have $f(v_1) = u_2 \leq f(u_1) = v_1 \leq u_1$. This implies $f(u_2) \leq f(v_1)$. Thus

$$
f(u_2) \leq u_2.
$$

Assume that $f(u_k) \leq u_k$. So, we write $f(u_k) = v_k \leq u_k$. Since f is nondecreasing, we have $f(v_k) = u_{k+1} \leq f(u_k) = v_k \leq u_k$. This implies that $f(u_{k+1}) \leq f(v_k)$. Thus $f(u_{k+1}) \leq u_{k+1}$. By mathematical induction, we obtain that $f(u_n) \leq u_n$, for all $n \geq 1$. It follows that $u_{n+1} \leq u_n$, for all $n \geq 1$. So, we get $\{u_n\}$ is a nonincreasing sequence.

(iv) In a similar way as in the proof (iii), we get the desired conclusion. \square

Lemma 2.2. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function. Let the Picard-Mann hybrid iteration ${x_n}$ and two-step Picard iteration ${u_n}$ be sequences defined by (1.1) and (2.3), respectively, where $\{\alpha_n\}$ are sequence in [0, 1]. Then the following are satisfied:

(i) if $p \in F(f)$ with $x_1 > p$, then $x_n \geq p$ for all $n \geq 1$; (ii) if $p \in F(f)$ with $x_1 < p$, then $x_n \leq p$ for all $n \geq 1$; (iii) if $p \in F(f)$ with $u_1 > p$, then $u_n \geq p$ for all $n \geq 1$; (iv) if $p \in F(f)$ with $u_1 < p$, then $u_n \leq p$ for all $n \geq 1$.

Proof. (i) Since $p \in f(f)$ with $x_1 > p$, and f is nondecreasing function we have $f(x_1) \ge f(p) = p$. Thus, from the definition of $\{x_n\}$, we get $y_1 > p$. It implies that $f(y_1) = x_2 \geq p$. Assume that $x_k \geq p$. So, we have $f(x_k) \geq p$. From the definition of $\{x_n\}$, we have $y_k \geq p$. Since f is nondecreasing, we get $f(y_k) = x_{k+1} \geq p$. By mathematical induction, we obtain that $x_n \geq p$, for all $n \geq 1$.

(ii) By using the same argument as in (i), we get the desired conclusion.

(iii) Since $p \in F(f)$ with $u_1 > p$, and f is nondecreasing function we have $f(u_1) \geq f(p) = p$. Thus, from the definition of $\{u_n\}$, we get $v_1 \geq p$. It implies that $f(v_1) = u_2 \geq p$. Assume that $u_k \geq p$. So, we have $f(u_k) \geq p$. From the definition of $\{u_n\}$, we have $v_k \geq p$. Since f is nondecreasing, we get $f(v_k) = u_{k+1} \geq p$. By mathematical induction, we obtain that $u_n \geq p$, for all $n \geq 1$.

 (iv) By using the same argument as in (iii), we get the desired conclusion. \Box

Proposition 2.1. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function such that $F(f)$ is nonempty and bounded with $x_1 > \sup \{p \in E : p = f(p)\}\)$. Let $\{\alpha_n\}$ be sequences in [0, 1]. If $f(x_1) > x_1$, then the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3) don't converge to a fixed point of f.

Proof. By Lemma 2.1 (ii) and (iv), $\{x_n\}$, $\{u_n\}$ are nondecreasing sequences. From hypothesis, since $x_1 > \sup \{p \in E : p = f(p)\}\$, we have

$$
f(x_n) \ge x_n \ge x_1 > \sup \{ p \in E : p = f(p) \}
$$

Picard-Mann hybrid iterations for continuous functions 395

$$
(f(u_n) \ge u_n \ge u_1 > \sup \{ p \in E : p = f(p) \}).
$$

It is clear that $\{x_n\}$ and $\{u_n\}$ don't converge to a fixed point of f.

Proposition 2.2. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function Such that $F(f)$ is nonempty and bounded with $x_1 < \inf \{p \in E : p = f(p)\}\)$. Let $\{\alpha_n\}$ be sequences in [0,1]. If $f(x_1) < x_1$, then the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3) don't converge to a fixed point of f.

Proof. By Lemma 2.1 (i) and (iii), $\{x_n\}$, $\{u_n\}$ are nonincreasing sequences. From hypothesis, since $x_1 < \inf \{p \in E : p = f(p)\}\)$, we have

> $f(x_n) \leq x_n \leq x_1 \leq \inf \{p \in E : p = f(p)\}\$ $(f(u_n) \le u_n \le u_1 < \inf \{ p \in E : p = f(p) \}).$

It is clear that $\{x_n\}$ and $\{u_n\}$ don't converge to a fixed point of f.

Theorem 2.1. Let E be a closed interval on the real line and $f : E \rightarrow$ E be a continuous and nondecreasing function such that $F(f)$ is nonempty and bounded. Let the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3), respectively and $x_1 = u_1$. Let $\{\alpha_n\}$ be sequences in [0, 1). If $\{x_n\}$ converges to $p \in F(f)$, then $\{u_n\}$ converges to $p \in F(f)$. Moreover, $\{u_n\}$ converges better than $\{x_n\}$.

Proof. Let $U = \sup \{p \in E : p = f(p)\}\$ and $L = \inf \{p \in E : p = f(p)\}\$. Suppose that $\{x_n\}$, $\{u_n\}$ converges to $p \in F(f)$. We shall divide our proof into three cases:

Case 1. Let $U < x_1 = u_1$. By Proposition 2.1, we have $f(x_1) < x_1$ ($f(u_1) <$ u₁). From Lemma 2.1 (i) and (iii), it follows $f(x_n) \leq x_n$ ($f(u_n) \leq u_n$) for all $n \geq 1$. Using (1) and (2), we obtain that $f(y_n) \leq y_n$ $(f(v_n) \leq v_n)$ for all $n \geq 1$. It follows

$$
v_1 - y_1 = f(u_1) - (1 - \alpha_1)x_1 - \alpha_1 f(x_1)
$$

= $f(x_1) - (1 - \alpha_1)x_1 - \alpha_1 f(x_1)$
= $(1 - \alpha_1)f(x_1) - (1 - \alpha_1)x_1$
= $(1 - \alpha_1)(f(x_1) - x_1)$
< 0.

Since f is nondecreasing function, we get $f(v_1) \leq f(y_1)$, thus $u_2 \leq x_2$. Now, assume that $u_k \leq x_k$. Since $f(u_k) \leq f(x_k)$, we have

$$
v_k - y_k = f(u_k) - (1 - \alpha_k)x_k - \alpha_k f(x_k)
$$

= $(1 - \alpha_k)f(u_k) + \alpha_k f(u_k) - (1 - \alpha_k)x_k - \alpha_k f(x_k)$
= $(1 - \alpha_k)(f(u_k) - x_k) + \alpha_k (f(u_k) - f(x_k))$
 $\leq (1 - \alpha_k)(f(u_k) - f(x_k)) + \alpha_k (f(u_k) - f(x_k))$
= $f(u_k) - f(x_k)$
 $\leq 0.$

Therefore, $v_k \leq y_k$, and so $f(v_k) \leq f(y_k)$. Thus, we get $u_{k+1} \leq x_{k+1}$. By mathematical induction, we have $u_n \leq x_n$ for all $n \geq 1$. From Lemma 2.2 (i) and (iii), and using $U < u_1$ and definition of $\{u_n\}$, from mathematical induction we can show that $U < u_k$. Since $p \leq u_n \leq x_n$, we get

 $|u_n - p| < |x_n - p|, \quad \forall n \geq 1,$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Case 2. Let $x_1 = u_1 < L$. By Proposition 2.2, we get $f(x_1) > x_1$. As in Case 1, we can show that $u_n \geq x_n$ for all $n \geq 1$. Since $u_1 < L$, by using Lemma 2.2 (ii) and (iv) and definition of $\{u_n\}$, by mathematical induction. It is easy to see that $u_n < L$. This implies that

$$
|u_n - p| \le |x_n - p|, \quad \forall n \ge 1,
$$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Case 3. Let $L \leq x_1 = u_1 < U$, Assume that $f(x_1) \neq x_1$. If $f(x_1) < x_1$, then by Lemma 2.1 (i) and (iii), $\{x_n\}$, $\{u_n\}$ are nonincreasing sequences with limit p. So, it follow from Lemma 2.2 (i) and (iii) that $p \le u_n$ for all $n \ge 1$. As in Case 1, we have show that $u_n \leq x_n$ for all $n \geq 1$. So, we have $p \leq u_n \leq x_n$. This implies that

$$
|u_n - p| \le |x_n - p|, \quad \forall n \ge 1,
$$

that is $\{u_n\}$ converges better than $\{x_n\}$. If $f(x_1) > x_1$, then by Lemma 2.1 (ii) and (iv), $\{x_n\}$, $\{u_n\}$ are nondecreasing sequences with limit p. So, it follow from Lemma 2.2 (ii) and (iv) that $p \geq u_n$ for all $n \geq 1$. As in Case 2, we have show that $u_n \geq x_n$ for all $n \geq 1$. So, we have $p \geq u_n \geq x_n$. This implies that

$$
|u_n - p| \le |x_n - p|, \quad \forall n \ge 1,
$$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Remark 2.2. From Theorem 2.1, we come to a conclusion that, under the same computational cost, Picard iteration is better than Picard-Mann hybrid iteration.

Next, we present a numerical example to compare the rate of convergence of Picard and Picard-Mann hybrid iterations.

	TSP			PMH		
\boldsymbol{n}	u_n	x_n	$ f(u_n)-u_n $	$\frac{u_{n+1}-p}{u_n-p}$	$ f(x_n)-x_n $	$\frac{x_{n+1}-p}{x_n-p}$
$\overline{2}$	1.823457	2.154780	4.452439E-01	1.567365	5.824162E-01	1.773202
3	1.155927	1.501254	9.512107E-02	1.072000	2.882195E-01	1.201427
4	1.023152	1.199367	1.441974E-02	1.010052	1.207676E-01	1.068700
5	1.003282	1.075663	2.050156E-03	1.001412	4.674634E-02	1.024656
6	1.000462	1.028217	2.887510E-04	1.000199	1.756064E-02	1.008998
11	1.00000	1.000003	1.588351E-08	1.000000	1.253928E-04	1.000063
12	1.00000	1.000001	2.233619E-09	1.000000	4.678466E-05	1.000023
13	1.00000	1.000000	3.141025E-010	1.000000	1.746907E-05	1.000009
14	1.00000	1.000000	4.417089E-011	1.000000	6.526881E-06	1.000003

Table 1. Comparison of rate of convergence of two-step Picard and Picard-Mann hybrid iterations

Example 2.1. Let $f : [0, 4] \to [0, 4]$ be defined by $f(x) = \frac{x^2 + 2\sqrt{x+5}}{8}$ $\frac{8}{8}$. Then it is clear that f is continuous and nondecreasing function with the fixed point $p = 1$. In the following table, the comparison of the convergence for Picard and Picard-Mann hybrid iterations is given with the initial point $u_1 = x_1 = 3.4$ and the sequences $\alpha_n = \frac{1}{n^2+1}$. From the table 1, we see that the under the same computational cost, Picard iteration converges better than the Picard-Mann hybrid iteration.

3. A result on the Picard-Mann hybrid iteration

Ishikawa [4] proved that, under some conditions, the Ishikawa sequence converges strongly to a fixed point of Lipschitz pseudocontractive mappings with nonempty fixed point sets. Chidume and Mutangadura [2] constructed an example of a Lipschitz pseudocontraction with a unique fixed point for which every nontrivial Mann sequence fails to converge. We now show Picard-Mann hybrid sequence also fails to converge.

Example 3.1. Let X be the real Hilbert space \mathbb{R}^2 under the usual Euclidean inner product. If $x = (a, b) \in X$ we define $x^{\perp} \in X$ to be $(b, -a)$. Trivially, we have $\langle x, x^{\perp} \rangle = 0$, $||x^{\perp}|| = ||x||$, $\langle x^{\perp}, y^{\perp} \rangle = \langle x, y \rangle$, $||x^{\perp} - y^{\perp}|| = ||x - y||$ and $\langle x^{\perp}, y \rangle + \langle x, y^{\perp} \rangle = 0$ for all $x, y \in X$. Take closed and bounded convex set K to be the closed unit ball in X and put $K_1 = \{x \in X : ||x|| \leq \frac{1}{2}\},\$ $K_1 = \{x \in X : \frac{1}{2} \le ||x|| \le 1\}$. Define the map $T : K \longrightarrow K$ by

$$
Tx = \begin{cases} x + x^{\perp}, & \text{if } x \in K_1, \\ \frac{x}{\|x\|} - x + x^{\perp}, & \text{if } x \in K_2. \end{cases}
$$

The origin is the only fixed point of T.

Next, we prove that no Picard-Mann hybrid sequence for T is convergent for any nonzero starting point.

First, we show that no such Picard-Mann hybrid sequence converges to the fixed point. Let $x \in K$ be such that $x \neq 0$ and let $y = \lambda x + (1-\lambda)Tx, \lambda \in (0,1)$. Then, in case $x \in K_1$, we have $||y||^2 = ||\lambda x + (1 - \lambda)Tx||^2 = (1 + \lambda^2) ||x||^2$, so $||x||^2 < ||y||^2 < 2||x||^2$. If $x \in K_2$, then

$$
||y||2 = ||\lambda x + (1 - \lambda)Tx||2
$$

=
$$
||\left(\frac{\lambda}{||x||} + 1 - 2\lambda\right)x + \lambda x \perp||2
$$

=
$$
\left[\left(\frac{\lambda}{||x||} + 1 - 2\lambda\right)^{2} + \lambda^{2}\right] ||x||^{2}
$$

$$
\geq \frac{1}{2} ||x||^{2}.
$$

Furthermore if $y_n \in K_1$, we have $||x_{n+1}|| = ||Ty_n||^2 = 2||y_n||^2 \ge ||y_n||^2$. If $y_n \in K_2$, we have $||x_{n+1}|| = ||Ty_n||^2 \ge ||y_n||^2$. We therefore conclude that, in addition, any Picard-Mann hybrid iterate of any nonzero vector in K is itself nonzero. Thus any Picard-Mann hybrid sequence $\{x_n\}$, starting from a nonzero vector, must be infinite. For such a sequence to converge to the origin, x_n would have to lie in the neighborhood $K_0 = \{x \in X : ||x|| \leq \frac{\sqrt{2}}{4}\}$ $\{\frac{\prime 2}{4}\}\subset K_1$ of the origin and y_n lies in K_1 for all $n > N_0$, for some real N_0 . This is not possible because, as already established for K_1 , $||x_n|| < ||y_n|| < ||x_{n+1}||$ for all $n > N_0$.

Acknowledgments: The authors would like to express their thanks to Cuijie Zhang for helpful discussion.

REFERENCES

^[1] V. Berinde, Iterative Approximation of Fixed Points, Efemeride, Baia Mare (2002).

^[2] C.E. Chidume and S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129(8) (2001), 2359–2363.

- [3] Q.L. Dong, S. He and X. Liu, Rate of convergence of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval, J. Ineq. Appl., 2013 (2013), 269.
- [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.
- [5] S.H. Khan, A Piccard-Mann hybrid iterative process, Fixed Point Theory and Appl., 2013 (2013), 69.
- [6] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506– 510. .
- [7] W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014.
- [8] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
- [9] D.R. Sahu, Applications of S iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, $12(1)$ (2011), 187-204.