Nonlinear Functional Analysis and Applications Vol. 19, No. 3 (2014), pp. 391-399

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2014 Kyungnam University Press

ON THE RATE OF CONVERGENCE OF PICARD AND PICARD-MANN HYBRID ITERATIONS FOR CONTINUOUS FUNCTIONS ON AN ARBITRARY INTERVAL

Qiao-Li Dong¹, Han-Bo Yuan² and Yan-Yan Lu³

¹College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: dongql@lsec.cc.ac.cn

²College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: yhbcool09@163.com

³College of Science, Civil Aviation University of China Tianjin 300300, China e-mail: luyanyanjs003@163.com

Abstract. In this paper, we compare the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computational cost. A numerical example is provided which supports the theoretical result. Finally, we use the example provided by Chidume and Mutangadura [2] to show that the Picard-Mann hybrid iteration fails to converge for a Lipschitz pseudocontractive map with a unique fixed point.

1. INTRODUCTION

Let E be a closed interval on the real line and $f: E \to E$ be a continuous mapping. A point $p \in E$ is a fixed point of f if f(p) = p. We denote the set of fixed points of f by F(f). It is known that if E is also bounded, then F(f)is nonempty.

⁰Received January 15, 2014. Revised June 5, 2014.

⁰2010 Mathematics Subject Classification: 47H05, 47H07, 47H10.

⁰Keywords: Picard iteration, Picard-Mann hybrid iteration, Lipschitz pseudocontractive mapping, convergence rate.

⁰Supported by National Natural Science Foundation of China (No. 11201476) and Fundamental Research Funds for the Central Universities (No. 3122013k004).

⁰Correspondence Author: Qiao-Li Dong.

Iterative methods are popular tools to approximate fixed points of nonlinear mappings. The Picard iteration [8] is defined by the sequence $\{u_n\}$:

$$u_{n+1} = f(u_n),$$

for all $n \ge 1$, where u_1 is an arbitrary initial value. Recently, Khan [5] and Sahu [9], individually, introduced the following iterative process which Khan referred it as Picard-Mann hybrid iteration (PMH):

$$\begin{cases} x_{n+1} = f(y_n), \\ y_n = (1 - \alpha_n)x_n + \alpha_n f(x_n), \end{cases}$$
(1.1)

for all $n \ge 1$, where x_1 is an arbitrary initial value and $\{\alpha_n\}$ be a sequence in [0, 1). Khan [5] proved that the Picard-Mann hybrid iteration converges faster than all of Picard, Mann and Ishikawa iterative processes in the sense of Berinde [1] for contractions.

Phuengrattana and Suantai [7] compared the convergence speed of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval. Recently, Dong *et al.*, [3] compared the rate of convergence of Mann, Ishikawa and Noor iterations from another point of view and come to a different conclusion.

The purpose of this paper is to compare the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computational cost. We draw a different conclusion with Khan [5]. We also use an example to verify that the Picard-Mann hybrid iteration fails to converge for a Lipschitz pseudocontractive map with a unique fixed point.

2. Stability of the Wigner Equation

In [3], the authors compared the Mann, Ishikawa and Noor iterations under the same computational cost and obtained different conclusions from [7].

Now, we give a definition and results about the rate of convergence of two iterations and compare Picard iteration with Picard-Mann hybrid iteration under the same computational cost. Also, we support the result with a numeric example.

Definition 2.1. Let *E* be a closed interval on the real line and $f:E \to E$ be a continuous function. Suppose that $\{x_n\}$ and $\{y_n\}$ are two iterations which converge to a fixed point *p* of *f*. Then $\{x_n\}$ is said to converge better than $\{y_n\}_{n=1}^{\infty}$ if

$$|x_n - p| \le |y_n - p|, \qquad (2.1)$$

for all $n \ge 1$.

392

For any sequence $\{x_n\}$ that converges to a point p, it is said that $\{x_n\}$ converges linearly to p, if there exists a constant $\mu \in (0, 1)$ such that

$$\left|\frac{x_{n+1}-p}{x_n-p}\right| \le \mu,\tag{2.2}$$

for all $n \geq 1$, the number μ is called the rate of convergence.

To compare the rate of convergence of Picard and Picard-Mann hybrid iterations, we define a two-step Picard iteration (TSP):

$$\begin{cases} u_{n+1} = f(v_n), \\ v_n = f(u_n). \end{cases}$$
(2.3)

Remark 2.1. It should be noted that two-step Picard iteration isn't a new iteration and we introduce it just for comparing the rate of convergence of Picard and Picard-Mann hybrid iterations under the same computation cost.

Lemma 2.1. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function. Let the Picard-Mann hybrid iteration $\{x_n\}$ and two-step Picard iteration $\{u_n\}$ be sequences defined by (1.1) and (2.3), respectively, where $\{\alpha_n\}$ is a sequence in [0, 1). Then the following hold:

- (i) if f(x₁) < x₁, then f(x_n) ≤ x_n for all n ≥ 1 and {x_n} is nonincreasing;
 (ii) if f(x₁) > x₁, then f(x_n) ≥ x_n for all n ≥ 1 and {x_n} is nondecreasing;
- (iii) if $f(u_1) < u_1$, then $f(u_n) \le u_n$ for all $n \ge 1$ and $\{u_n\}$ is nonincreasing;
- (iv) if $f(u_1) > u_1$, then $f(u_n) \ge u_n$ for all $n \ge 1$ and $\{x_n\}$ is nondecreasing.

Proof. (i) Let $f(x_1) < x_1$. Then from the definition of $\{x_n\}$ we get that $f(x_1) < y_1 \le x_1$. Since f is nondecreasing, we have $f(y_1) = x_2 \le f(x_1) < y_1 \le x_1$. This implies $f(x_2) \le f(y_1)$. Thus

$$f(x_2) \le x_2.$$

Assume that $f(x_k) \leq x_k$. So, we write $f(x_k) \leq y_k \leq x_k$. Since f is nondecreasing, we have $f(y_k) = x_{k+1} \leq f(x_k) \leq y_k \leq x_k$. This implies that $f(x_{k+1}) \leq f(y_k)$. Thus $f(x_{k+1}) \leq x_{k+1}$. By mathematical induction, we obtain that $f(x_n) \leq x_n$, for all $n \geq 1$. It follows that $x_{n+1} \leq x_n$, for all $n \geq 1$. So, we get $\{x_n\}$ is a nonincreasing sequence.

(ii) In a similar way as in the proof (i), we get the desired conclusion.

(iii) Let $f(u_1) < u_1$. Then from the definition of $\{u_n\}$ we get that $f(u_1) = v_1 \le u_1$. Since f is nondecreasing, we have $f(v_1) = u_2 \le f(u_1) = v_1 \le u_1$. This implies $f(u_2) \le f(v_1)$. Thus

$$f(u_2) \le u_2.$$

Assume that $f(u_k) \leq u_k$. So, we write $f(u_k) = v_k \leq u_k$. Since f is nondecreasing, we have $f(v_k) = u_{k+1} \leq f(u_k) = v_k \leq u_k$. This implies that $f(u_{k+1}) \leq f(v_k)$. Thus $f(u_{k+1}) \leq u_{k+1}$. By mathematical induction, we obtain that $f(u_n) \leq u_n$, for all $n \geq 1$. It follows that $u_{n+1} \leq u_n$, for all $n \geq 1$. So, we get $\{u_n\}$ is a nonincreasing sequence.

(iv) In a similar way as in the proof (iii), we get the desired conclusion. \Box

Lemma 2.2. Let *E* be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function. Let the Picard-Mann hybrid iteration $\{x_n\}$ and two-step Picard iteration $\{u_n\}$ be sequences defined by (1.1) and (2.3), respectively, where $\{\alpha_n\}$ are sequence in [0,1). Then the following are satisfied:

(i) if $p \in F(f)$ with $x_1 > p$, then $x_n \ge p$ for all $n \ge 1$; (ii) if $p \in F(f)$ with $x_1 < p$, then $x_n \le p$ for all $n \ge 1$; (iii) if $p \in F(f)$ with $u_1 > p$, then $u_n \ge p$ for all $n \ge 1$; (iv) if $p \in F(f)$ with $u_1 < p$, then $u_n \le p$ for all $n \ge 1$.

Proof. (i) Since $p \in f(f)$ with $x_1 > p$, and f is nondecreasing function we have $f(x_1) \ge f(p) = p$. Thus, from the definition of $\{x_n\}$, we get $y_1 > p$. It implies that $f(y_1) = x_2 \ge p$. Assume that $x_k \ge p$. So, we have $f(x_k) \ge p$. From the definition of $\{x_n\}$, we have $y_k \ge p$. Since f is nondecreasing, we get $f(y_k) = x_{k+1} \ge p$. By mathematical induction, we obtain that $x_n \ge p$, for all $n \ge 1$.

(ii) By using the same argument as in (i), we get the desired conclusion.

(iii) Since $p \in F(f)$ with $u_1 > p$, and f is nondecreasing function we have $f(u_1) \ge f(p) = p$. Thus, from the definition of $\{u_n\}$, we get $v_1 \ge p$. It implies that $f(v_1) = u_2 \ge p$. Assume that $u_k \ge p$. So, we have $f(u_k) \ge p$. From the definition of $\{u_n\}$, we have $v_k \ge p$. Since f is nondecreasing, we get $f(v_k) = u_{k+1} \ge p$. By mathematical induction, we obtain that $u_n \ge p$, for all $n \ge 1$.

(iv) By using the same argument as in (iii), we get the desired conclusion. \Box

Proposition 2.1. Let E be a closed interval on the real line and $f: E \to E$ be a continuous and nondecreasing function such that F(f) is nonempty and bounded with $x_1 > \sup \{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$ be sequences in [0, 1). If $f(x_1) > x_1$, then the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3) don't converge to a fixed point of f.

Proof. By Lemma 2.1 (ii) and (iv), $\{x_n\}$, $\{u_n\}$ are nondecreasing sequences. From hypothesis, since $x_1 > \sup \{p \in E : p = f(p)\}$, we have

$$f(x_n) \ge x_n \ge x_1 > \sup \{ p \in E : p = f(p) \}$$

Picard-Mann hybrid iterations for continuous functions

$$(f(u_n) \ge u_n \ge u_1 > \sup \{ p \in E : p = f(p) \}).$$

It is clear that $\{x_n\}$ and $\{u_n\}$ don't converge to a fixed point of f.

Proposition 2.2. Let *E* be a closed interval on the real line and $f: E \to E$ be a continuous and nondecreasing function Such that F(f) is nonempty and bounded with $x_1 < \inf \{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$ be sequences in [0, 1). If $f(x_1) < x_1$, then the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3) don't converge to a fixed point of f.

Proof. By Lemma 2.1 (i) and (iii), $\{x_n\}$, $\{u_n\}$ are nonincreasing sequences. From hypothesis, since $x_1 < \inf \{p \in E : p = f(p)\}$, we have

> $f(x_n) \le x_n \le x_1 < \inf \{ p \in E : p = f(p) \}$ $(f(u_n) \le u_n \le u_1 < \inf \{ p \in E : p = f(p) \}).$

It is clear that $\{x_n\}$ and $\{u_n\}$ don't converge to a fixed point of f.

Theorem 2.1. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and nondecreasing function such that F(f) is nonempty and bounded. Let the sequence $\{x_n\}$ and $\{u_n\}$ defined by (1.1) and (2.3), respectively and $x_1 = u_1$. Let $\{\alpha_n\}$ be sequences in [0, 1). If $\{x_n\}$ converges to $p \in F(f)$, then $\{u_n\}$ converges to $p \in F(f)$. Moreover, $\{u_n\}$ converges better than $\{x_n\}$.

Proof. Let $U = \sup \{p \in E : p = f(p)\}$ and $L = \inf \{p \in E : p = f(p)\}$. Suppose that $\{x_n\}, \{u_n\}$ converges to $p \in F(f)$. We shall divide our proof into three cases:

Case 1. Let $U < x_1 = u_1$. By Proposition 2.1, we have $f(x_1) < x_1$ ($f(u_1) < u_1$). From Lemma 2.1 (i) and (iii), it follows $f(x_n) \le x_n$ ($f(u_n) \le u_n$) for all $n \ge 1$. Using (1) and (2), we obtain that $f(y_n) \le y_n$ ($f(v_n) \le v_n$) for all $n \ge 1$. It follows

$$v_1 - y_1 = f(u_1) - (1 - \alpha_1)x_1 - \alpha_1 f(x_1)$$

= $f(x_1) - (1 - \alpha_1)x_1 - \alpha_1 f(x_1)$
= $(1 - \alpha_1)f(x_1) - (1 - \alpha_1)x_1$
= $(1 - \alpha_1)(f(x_1) - x_1)$
< 0.

Since f is nondecreasing function, we get $f(v_1) \leq f(y_1)$, thus $u_2 \leq x_2$. Now, assume that $u_k \leq x_k$. Since $f(u_k) \leq f(x_k)$, we have

395

$$v_{k} - y_{k} = f(u_{k}) - (1 - \alpha_{k})x_{k} - \alpha_{k}f(x_{k})$$

= $(1 - \alpha_{k})f(u_{k}) + \alpha_{k}f(u_{k}) - (1 - \alpha_{k})x_{k} - \alpha_{k}f(x_{k})$
= $(1 - \alpha_{k})(f(u_{k}) - x_{k}) + \alpha_{k}(f(u_{k}) - f(x_{k}))$
 $\leq (1 - \alpha_{k})(f(u_{k}) - f(x_{k})) + \alpha_{k}(f(u_{k}) - f(x_{k}))$
= $f(u_{k}) - f(x_{k})$
 $< 0.$

Therefore, $v_k \leq y_k$, and so $f(v_k) \leq f(y_k)$. Thus, we get $u_{k+1} \leq x_{k+1}$. By mathematical induction, we have $u_n \leq x_n$ for all $n \geq 1$. From Lemma 2.2 (i) and (iii), and using $U < u_1$ and definition of $\{u_n\}$, from mathematical induction we can show that $U < u_k$. Since $p \leq u_n \leq x_n$, we get

$$|u_n - p| \le |x_n - p|, \quad \forall \ n \ge 1,$$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Case 2. Let $x_1 = u_1 < L$. By Proposition 2.2, we get $f(x_1) > x_1$. As in Case 1, we can show that $u_n \ge x_n$ for all $n \ge 1$. Since $u_1 < L$, by using Lemma 2.2 (ii) and (iv) and definition of $\{u_n\}$, by mathematical induction. It is easy to see that $u_n < L$. This implies that

$$|u_n - p| \le |x_n - p|, \quad \forall \ n \ge 1,$$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Case 3. Let $L \leq x_1 = u_1 < U$, Assume that $f(x_1) \neq x_1$. If $f(x_1) < x_1$, then by Lemma 2.1 (i) and (iii), $\{x_n\}$, $\{u_n\}$ are nonincreasing sequences with limit p. So, it follow from Lemma 2.2 (i) and (iii) that $p \leq u_n$ for all $n \geq 1$. As in Case 1, we have show that $u_n \leq x_n$ for all $n \geq 1$. So, we have $p \leq u_n \leq x_n$. This implies that

$$|u_n - p| \le |x_n - p|, \quad \forall \ n \ge 1,$$

that is $\{u_n\}$ converges better than $\{x_n\}$. If $f(x_1) > x_1$, then by Lemma 2.1 (ii) and (iv), $\{x_n\}$, $\{u_n\}$ are nondecreasing sequences with limit p. So, it follow from Lemma 2.2 (ii) and (iv) that $p \ge u_n$ for all $n \ge 1$. As in Case 2, we have show that $u_n \ge x_n$ for all $n \ge 1$. So, we have $p \ge u_n \ge x_n$. This implies that

$$|u_n - p| \le |x_n - p|, \quad \forall \ n \ge 1,$$

that is $\{u_n\}$ converges better than $\{x_n\}$.

Remark 2.2. From Theorem 2.1, we come to a conclusion that, under the same computational cost, Picard iteration is better than Picard-Mann hybrid iteration.

Next, we present a numerical example to compare the rate of convergence of Picard and Picard-Mann hybrid iterations.

	TSP			PMH		
n	u_n	x_n	$ f(u_n) - u_n $	$\frac{u_{n+1}-p}{u_n-p}$	$ f(x_n) - x_n $	$\frac{x_{n+1}-p}{x_n-p}$
2	1.823457	2.154780	4.452439E-01	1.567365	5.824162E-01	1.773202
3	1.155927	1.501254	9.512107 E-02	1.072000	2.882195E-01	1.201427
4	1.023152	1.199367	1.441974 E-02	1.010052	1.207676E-01	1.068700
5	1.003282	1.075663	2.050156E-03	1.001412	4.674634E-02	1.024656
6	1.000462	1.028217	2.887510 E-04	1.000199	1.756064 E-02	1.008998
÷	:	:	÷	:	:	:
11	1.00000	1.000003	1.588351E-08	1.000000	1.253928E-04	1.000063
12	1.00000	1.000001	2.233619 E-09	1.000000	4.678466E-05	1.000023
13	1.00000	1.000000	3.141025E-010	1.000000	1.746907 E-05	1.000009
14	1.00000	1.000000	4.417089E-011	1.000000	6.526881E-06	1.000003

TABLE 1. Comparison of rate of convergence of two-step Picard and Picard-Mann hybrid iterations

Example 2.1. Let $f: [0,4] \to [0,4]$ be defined by $f(x) = \frac{x^2 + 2\sqrt{x+5}}{8}$. Then it is clear that f is continuous and nondecreasing function with the fixed point p = 1. In the following table, the comparison of the convergence for Picard and Picard-Mann hybrid iterations is given with the initial point $u_1 = x_1 = 3.4$ and the sequences $\alpha_n = \frac{1}{n^2+1}$. From the table 1, we see that the under the same computational cost, Picard iteration converges better than the Picard-Mann hybrid iteration.

3. A result on the Picard-Mann hybrid iteration

Ishikawa [4] proved that, under some conditions, the Ishikawa sequence converges strongly to a fixed point of Lipschitz pseudocontractive mappings with nonempty fixed point sets. Chidume and Mutangadura [2] constructed an example of a Lipschitz pseudocontraction with a unique fixed point for which every nontrivial Mann sequence fails to converge. We now show Picard-Mann hybrid sequence also fails to converge.

Example 3.1. Let X be the real Hilbert space \mathbb{R}^2 under the usual Euclidean inner product. If $x = (a, b) \in X$ we define $x^{\perp} \in X$ to be (b, -a). Trivially,

we have $\langle x, x^{\perp} \rangle = 0$, $||x^{\perp}|| = ||x||$, $\langle x^{\perp}, y^{\perp} \rangle = \langle x, y \rangle$, $||x^{\perp} - y^{\perp}|| = ||x - y||$ and $\langle x^{\perp}, y \rangle + \langle x, y^{\perp} \rangle = 0$ for all $x, y \in X$. Take closed and bounded convex set K to be the closed unit ball in X and put $K_1 = \{x \in X : ||x|| \le \frac{1}{2}\}$, $K_1 = \{x \in X : \frac{1}{2} \le ||x|| \le 1\}$. Define the map $T : K \longrightarrow K$ by

$$Tx = \begin{cases} x + x^{\perp}, & \text{if } x \in K_1, \\ \frac{x}{\|x\|} - x + x^{\perp}, & \text{if } x \in K_2. \end{cases}$$

The origin is the only fixed point of T.

Next, we prove that no Picard-Mann hybrid sequence for T is convergent for any nonzero starting point.

First, we show that no such Picard-Mann hybrid sequence converges to the fixed point. Let $x \in K$ be such that $x \neq 0$ and let $y = \lambda x + (1-\lambda)Tx$, $\lambda \in (0, 1)$. Then, in case $x \in K_1$, we have $\|y\|^2 = \|\lambda x + (1-\lambda)Tx\|^2 = (1+\lambda^2)\|x\|^2$, so $\|x\|^2 < \|y\|^2 < 2\|x\|^2$. If $x \in K_2$, then

$$\begin{split} \|y\|^2 &= \|\lambda x + (1-\lambda)Tx\|^2 \\ &= \|\left(\frac{\lambda}{\|x\|} + 1 - 2\lambda\right)x + \lambda x \bot\|^2 \\ &= \left[\left(\frac{\lambda}{\|x\|} + 1 - 2\lambda\right)^2 + \lambda^2\right] \|x\|^2 \\ &\geq \frac{1}{2}\|x\|^2. \end{split}$$

Furthermore if $y_n \in K_1$, we have $||x_{n+1}|| = ||Ty_n||^2 = 2||y_n||^2 \ge ||y_n||^2$. If $y_n \in K_2$, we have $||x_{n+1}|| = ||Ty_n||^2 \ge ||y_n||^2$. We therefore conclude that, in addition, any Picard-Mann hybrid iterate of any nonzero vector in K is itself nonzero. Thus any Picard-Mann hybrid sequence $\{x_n\}$, starting from a nonzero vector, must be infinite. For such a sequence to converge to the origin, x_n would have to lie in the neighborhood $K_0 = \{x \in X : ||x|| \le \frac{\sqrt{2}}{4}\} \subset K_1$ of the origin and y_n lies in K_1 for all $n > N_0$, for some real N_0 . This is not possible because, as already established for $K_1, ||x_n|| < ||y_n|| < ||x_{n+1}||$ for all $n > N_0$.

Acknowledgments: The authors would like to express their thanks to Cuijie Zhang for helpful discussion.

References

[2] C.E. Chidume and S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129(8) (2001), 2359–2363.

^[1] V. Berinde, Iterative Approximation of Fixed Points, Efemeride, Baia Mare (2002).

- [3] Q.L. Dong, S. He and X. Liu, *Rate of convergence of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval*, J. Ineq. Appl., **2013** (2013), 269.
- [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.
- [5] S.H. Khan, A Piccard-Mann hybrid iterative process, Fixed Point Theory and Appl., 2013 (2013), 69.
- [6] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506– 510.
- [7] W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014.
- [8] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
- D.R. Sahu, Applications of S iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12(1) (2011), 187–204.