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Abstract. In this paper, we compare the rate of convergence of Picard and Picard-Mann

hybrid iterations under the same computational cost. A numerical example is provided

which supports the theoretical result. Finally, we use the example provided by Chidume

and Mutangadura [2] to show that the Picard-Mann hybrid iteration fails to converge for a

Lipschitz pseudocontractive map with a unique fixed point.

1. Introduction

Let E be a closed interval on the real line and f : E → E be a continuous
mapping. A point p ∈ E is a fixed point of f if f(p) = p. We denote the set
of fixed points of f by F (f). It is known that if E is also bounded, then F (f)
is nonempty.
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Iterative methods are popular tools to approximate fixed points of nonlinear
mappings. The Picard iteration [8] is defined by the sequence {un}:

un+1 = f(un),

for all n ≥ 1, where u1 is an arbitrary initial value. Recently, Khan [5] and
Sahu [9], individually, introduced the following iterative process which Khan
referred it as Picard-Mann hybrid iteration (PMH):{

xn+1 = f(yn),
yn = (1− αn)xn + αnf(xn),

(1.1)

for all n ≥ 1, where x1 is an arbitrary initial value and {αn} be a sequence
in [0, 1). Khan [5] proved that the Picard-Mann hybrid iteration converges
faster than all of Picard, Mann and Ishikawa iterative processes in the sense
of Berinde [1] for contractions.

Phuengrattana and Suantai [7] compared the convergence speed of Mann,
Ishikawa and Noor iterations for continuous functions on an arbitrary interval.
Recently, Dong et al., [3] compared the rate of convergence of Mann, Ishikawa
and Noor iterations from another point of view and come to a different con-
clusion.

The purpose of this paper is to compare the rate of convergence of Picard
and Picard-Mann hybrid iterations under the same computational cost. We
draw a different conclusion with Khan [5]. We also use an example to ver-
ify that the Picard-Mann hybrid iteration fails to converge for a Lipschitz
pseudocontractive map with a unique fixed point.

2. Stability of the Wigner equation

In [3], the authors compared the Mann, Ishikawa and Noor iterations under
the same computational cost and obtained different conclusions from [7].

Now, we give a definition and results about the rate of convergence of two
iterations and compare Picard iteration with Picard-Mann hybrid iteration
under the same computational cost. Also, we support the result with a numeric
example.

Definition 2.1. Let E be a closed interval on the real line and f :E → E be
a continuous function. Suppose that {xn} and {yn} are two iterations which
converge to a fixed point p of f . Then {xn} is said to converge better than
{yn}∞n=1 if

|xn − p| ≤ |yn − p| , (2.1)

for all n ≥ 1.
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For any sequence {xn} that converges to a point p, it is said that {xn}
converges linearly to p, if there exists a constant µ ∈ (0, 1) such that∣∣∣∣xn+1 − p

xn − p

∣∣∣∣ ≤ µ, (2.2)

for all n ≥ 1, the number µ is called the rate of convergence.
To compare the rate of convergence of Picard and Picard-Mann hybrid

iterations, we define a two-step Picard iteration (TSP):{
un+1 = f(vn),
vn = f(un).

(2.3)

Remark 2.1. It should be noted that two-step Picard iteration isn’t a new
iteration and we introduce it just for comparing the rate of convergence of
Picard and Picard-Mann hybrid iterations under the same computation cost.

Lemma 2.1. Let E be a closed interval on the real line and f : E → E be a
continuous and nondecreasing function. Let the Picard-Mann hybrid iteration
{xn} and two-step Picard iteration {un} be sequences defined by (1.1) and
(2.3), respectively, where {αn} is a sequence in [0, 1). Then the following hold:

(i) if f(x1) < x1, then f(xn) ≤ xn for all n ≥ 1 and {xn} is nonincreasing;
(ii) if f(x1) > x1, then f(xn) ≥ xn for all n ≥ 1 and {xn} is nondecreas-

ing;
(iii) if f(u1) < u1, then f(un) ≤ un for all n ≥ 1 and {un} is nonincreasing;
(iv) if f(u1) > u1, then f(un) ≥ un for all n ≥ 1 and {xn} is nondecreas-

ing.

Proof. (i) Let f(x1) < x1. Then from the definition of {xn} we get that
f(x1) < y1 ≤ x1. Since f is nondecreasing, we have f(y1) = x2 ≤ f(x1) <
y1 ≤ x1. This implies f(x2) ≤ f(y1). Thus

f(x2) ≤ x2.

Assume that f(xk) ≤ xk. So, we write f(xk) ≤ yk ≤ xk. Since f is non-
decreasing, we have f(yk) = xk+1 ≤ f(xk) ≤ yk ≤ xk. This implies that
f(xk+1) ≤ f(yk). Thus f(xk+1) ≤ xk+1. By mathematical induction, we ob-
tain that f(xn) ≤ xn, for all n ≥ 1. It follows that xn+1 ≤ xn, for all n ≥ 1.
So, we get {xn} is a nonincreasing sequence.
(ii) In a similar way as in the proof (i), we get the desired conclusion.
(iii) Let f(u1) < u1. Then from the definition of {un} we get that f(u1) =
v1 ≤ u1. Since f is nondecreasing, we have f(v1) = u2 ≤ f(u1) = v1 ≤ u1.
This implies f(u2) ≤ f(v1). Thus

f(u2) ≤ u2.
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Assume that f(uk) ≤ uk. So, we write f(uk) = vk ≤ uk. Since f is non-
decreasing, we have f(vk) = uk+1 ≤ f(uk) = vk ≤ uk. This implies that
f(uk+1) ≤ f(vk). Thus f(uk+1) ≤ uk+1. By mathematical induction, we ob-
tain that f(un) ≤ un, for all n ≥ 1. It follows that un+1 ≤ un, for all n ≥ 1.
So, we get {un} is a nonincreasing sequence.
(iv) In a similar way as in the proof (iii), we get the desired conclusion. �

Lemma 2.2. Let E be a closed interval on the real line and f : E → E be a
continuous and nondecreasing function. Let the Picard-Mann hybrid iteration
{xn} and two-step Picard iteration {un} be sequences defined by (1.1) and
(2.3), respectively, where {αn} are sequence in [0, 1). Then the following are
satisfied:

(i) if p ∈ F (f) with x1 > p, then xn ≥ p for all n ≥ 1;
(ii) if p ∈ F (f) with x1 < p, then xn ≤ p for all n ≥ 1;

(iii) if p ∈ F (f) with u1 > p, then un ≥ p for all n ≥ 1;
(iv) if p ∈ F (f) with u1 < p, then un ≤ p for all n ≥ 1.

Proof. (i) Since p ∈ f(f) with x1 > p, and f is nondecreasing function we
have f(x1) ≥ f(p) = p. Thus, from the definition of {xn}, we get y1 > p. It
implies that f(y1) = x2 ≥ p. Assume that xk ≥ p. So, we have f(xk) ≥ p.
From the definition of {xn}, we have yk ≥ p. Since f is nondecreasing, we get
f(yk) = xk+1 ≥ p. By mathematical induction, we obtain that xn ≥ p, for all
n ≥ 1.
(ii) By using the same argument as in (i), we get the desired conclusion.
(iii) Since p ∈ F (f) with u1 > p, and f is nondecreasing function we have
f(u1) ≥ f(p) = p. Thus, from the definition of {un}, we get v1 ≥ p. It
implies that f(v1) = u2 ≥ p. Assume that uk ≥ p. So, we have f(uk) ≥ p.
From the definition of {un}, we have vk ≥ p. Since f is nondecreasing, we get
f(vk) = uk+1 ≥ p. By mathematical induction, we obtain that un ≥ p, for all
n ≥ 1.
(iv) By using the same argument as in (iii), we get the desired conclusion. �

Proposition 2.1. Let E be a closed interval on the real line and f : E → E
be a continuous and nondecreasing function such that F (f) is nonempty and
bounded with x1 > sup {p ∈ E : p = f(p)}. Let {αn} be sequences in [0, 1). If
f(x1) > x1, then the sequence {xn} and {un} defined by (1.1) and (2.3) don’t
converge to a fixed point of f .

Proof. By Lemma 2.1 (ii) and (iv), {xn}, {un} are nondecreasing sequences.
From hypothesis, since x1 > sup {p ∈ E : p = f(p)}, we have

f(xn) ≥ xn ≥ x1 > sup {p ∈ E : p = f(p)}
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(f(un) ≥ un ≥ u1 > sup {p ∈ E : p = f(p)}).

It is clear that {xn} and {un} don’t converge to a fixed point of f . �

Proposition 2.2. Let E be a closed interval on the real line and f : E → E
be a continuous and nondecreasing function Such that F (f) is nonempty and
bounded with x1 < inf {p ∈ E : p = f(p)}. Let {αn} be sequences in [0, 1). If
f(x1) < x1, then the sequence {xn} and {un} defined by (1.1) and (2.3) don’t
converge to a fixed point of f .

Proof. By Lemma 2.1 (i) and (iii), {xn}, {un} are nonincreasing sequences.
From hypothesis, since x1 < inf {p ∈ E : p = f(p)}, we have

f(xn) ≤ xn ≤ x1 < inf {p ∈ E : p = f(p)}

(f(un) ≤ un ≤ u1 < inf {p ∈ E : p = f(p)}).

It is clear that {xn} and {un} don’t converge to a fixed point of f . �

Theorem 2.1. Let E be a closed interval on the real line and f : E →
E be a continuous and nondecreasing function such that F (f) is nonempty
and bounded. Let the sequence {xn} and {un} defined by (1.1) and (2.3),
respectively and x1 = u1. Let {αn} be sequences in [0, 1). If {xn} converges to
p ∈ F (f), then {un} converges to p ∈ F (f). Moreover, {un} converges better
than {xn}.

Proof. Let U = sup {p ∈ E : p = f(p)} and L = inf {p ∈ E : p = f(p)}. Sup-
pose that {xn}, {un} converges to p ∈ F (f). We shall divide our proof into
three cases:

Case 1. Let U < x1 = u1. By Proposition 2.1, we have f(x1) < x1 (f(u1) <
u1). From Lemma 2.1 (i) and (iii), it follows f(xn) ≤ xn (f(un) ≤ un) for
all n ≥ 1. Using (1) and (2), we obtain that f(yn) ≤ yn (f(vn) ≤ vn) for all
n ≥ 1. It follows

v1 − y1 = f(u1)− (1− α1)x1 − α1f(x1)

= f(x1)− (1− α1)x1 − α1f(x1)

= (1− α1)f(x1)− (1− α1)x1

= (1− α1)(f(x1)− x1)
< 0.

Since f is nondecreasing function, we get f(v1) ≤ f(y1), thus u2 ≤ x2. Now,
assume that uk ≤ xk. Since f(uk) ≤ f(xk), we have
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vk − yk = f(uk)− (1− αk)xk − αkf(xk)

= (1− αk)f(uk) + αkf(uk)− (1− αk)xk − αkf(xk)

= (1− αk)(f(uk)− xk) + αk(f(uk)− f(xk))

≤ (1− αk)(f(uk)− f(xk)) + αk(f(uk)− f(xk))

= f(uk)− f(xk)

≤ 0.

Therefore, vk ≤ yk, and so f(vk) ≤ f(yk). Thus, we get uk+1 ≤ xk+1. By
mathematical induction, we have un ≤ xn for all n ≥ 1. From Lemma 2.2
(i) and (iii), and using U < u1 and definition of {un}, from mathematical
induction we can show that U < uk. Since p ≤ un ≤ xn, we get

|un − p| ≤ |xn − p| , ∀ n ≥ 1,

that is {un} converges better than {xn}.
Case 2. Let x1 = u1 < L. By Proposition 2.2, we get f(x1) > x1. As in Case
1, we can show that un ≥ xn for all n ≥ 1. Since u1 < L, by using Lemma 2.2
(ii) and (iv) and definition of {un}, by mathematical induction. It is easy to
see that un < L. This implies that

|un − p| ≤ |xn − p| , ∀ n ≥ 1,

that is {un} converges better than {xn}.
Case 3. Let L ≤ x1 = u1 < U , Assume that f(x1) 6= x1. If f(x1) < x1, then
by Lemma 2.1 (i) and (iii), {xn}, {un} are nonincreasing sequences with limit
p. So, it follow from Lemma 2.2 (i) and (iii) that p ≤ un for all n ≥ 1. As in
Case 1, we have show that un ≤ xn for all n ≥ 1. So, we have p ≤ un ≤ xn.
This implies that

|un − p| ≤ |xn − p| , ∀ n ≥ 1,

that is {un} converges better than {xn}. If f(x1) > x1, then by Lemma 2.1 (ii)
and (iv), {xn}, {un} are nondecreasing sequences with limit p. So, it follow
from Lemma 2.2 (ii) and (iv) that p ≥ un for all n ≥ 1. As in Case 2, we have
show that un ≥ xn for all n ≥ 1. So, we have p ≥ un ≥ xn. This implies that

|un − p| ≤ |xn − p| , ∀ n ≥ 1,

that is {un} converges better than {xn}. �

Remark 2.2. From Theorem 2.1, we come to a conclusion that, under the
same computational cost, Picard iteration is better than Picard-Mann hybrid
iteration.
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Next, we present a numerical example to compare the rate of convergence
of Picard and Picard-Mann hybrid iterations.

Table 1. Comparison of rate of convergence of two-step Pi-
card and Picard-Mann hybrid iterations

TSP PMH

n un xn |f(un)− un|
∣∣∣un+1−p

un−p

∣∣∣ |f(xn)− xn|
∣∣∣xn+1−p

xn−p

∣∣∣
2 1.823457 2.154780 4.452439E-01 1.567365 5.824162E-01 1.773202
3 1.155927 1.501254 9.512107E-02 1.072000 2.882195E-01 1.201427
4 1.023152 1.199367 1.441974E-02 1.010052 1.207676E-01 1.068700
5 1.003282 1.075663 2.050156E-03 1.001412 4.674634E-02 1.024656
6 1.000462 1.028217 2.887510E-04 1.000199 1.756064E-02 1.008998
...

...
...

...
...

...
...

11 1.00000 1.000003 1.588351E-08 1.000000 1.253928E-04 1.000063
12 1.00000 1.000001 2.233619E-09 1.000000 4.678466E-05 1.000023
13 1.00000 1.000000 3.141025E-010 1.000000 1.746907E-05 1.000009
14 1.00000 1.000000 4.417089E-011 1.000000 6.526881E-06 1.000003

Example 2.1. Let f : [0, 4]→ [0, 4] be defined by f(x) = x2+2
√
x+5

8 . Then it
is clear that f is continuous and nondecreasing function with the fixed point
p = 1. In the following table, the comparison of the convergence for Picard and
Picard-Mann hybrid iterations is given with the initial point u1 = x1 = 3.4 and
the sequences αn = 1

n2+1
. From the table 1, we see that the under the same

computational cost, Picard iteration converges better than the Picard-Mann
hybrid iteration.

3. A result on the Picard-Mann hybrid iteration

Ishikawa [4] proved that, under some conditions, the Ishikawa sequence
converges strongly to a fixed point of Lipschitz pseudocontractive mappings
with nonempty fixed point sets. Chidume and Mutangadura [2] constructed an
example of a Lipschitz pseudocontraction with a unique fixed point for which
every nontrivial Mann sequence fails to converge. We now show Picard-Mann
hybrid sequence also fails to converge.

Example 3.1. Let X be the real Hilbert space R2 under the usual Euclidean
inner product. If x = (a, b) ∈ X we define x⊥ ∈ X to be (b,−a). Trivially,
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we have 〈x, x⊥〉 = 0, ‖x⊥‖ = ‖x‖, 〈x⊥, y⊥〉 = 〈x, y〉, ‖x⊥ − y⊥‖ = ‖x − y‖
and 〈x⊥, y〉 + 〈x, y⊥〉 = 0 for all x, y ∈ X. Take closed and bounded convex
set K to be the closed unit ball in X and put K1 = {x ∈ X : ‖x‖ ≤ 1

2},
K1 = {x ∈ X : 1

2 ≤ ‖x‖ ≤ 1}. Define the map T : K −→ K by

Tx =

{
x+ x⊥, if x ∈ K1,
x
‖x‖ − x+ x⊥, if x ∈ K2.

The origin is the only fixed point of T .
Next, we prove that no Picard-Mann hybrid sequence for T is convergent

for any nonzero starting point.
First, we show that no such Picard-Mann hybrid sequence converges to the

fixed point. Let x ∈ K be such that x 6= 0 and let y = λx+(1−λ)Tx, λ ∈ (0, 1).
Then, in case x ∈ K1, we have ‖y‖2 = ‖λx+ (1− λ)Tx‖2 = (1 + λ2)‖x‖2, so
‖x‖2 < ‖y‖2 < 2‖x‖2. If x ∈ K2, then

‖y‖2 = ‖λx+ (1− λ)Tx‖2

= ‖
(

λ

‖x‖
+ 1− 2λ

)
x+ λx⊥‖2

=

[(
λ

‖x‖
+ 1− 2λ

)2

+ λ2

]
‖x‖2

≥ 1

2
‖x‖2.

Furthermore if yn ∈ K1, we have ‖xn+1‖ = ‖Tyn‖2 = 2‖yn‖2 ≥ ‖yn‖2. If
yn ∈ K2, we have ‖xn+1‖ = ‖Tyn‖2 ≥ ‖yn‖2. We therefore conclude that,
in addition, any Picard-Mann hybrid iterate of any nonzero vector in K is
itself nonzero. Thus any Picard-Mann hybrid sequence {xn}, starting from a
nonzero vector, must be infinite. For such a sequence to converge to the origin,

xn would have to lie in the neighborhood K0 = {x ∈ X : ‖x‖ ≤
√
2
4 } ⊂ K1

of the origin and yn lies in K1 for all n > N0, for some real N0. This is not
possible because, as already established for K1, ‖xn‖ < ‖yn‖ < ‖xn+1‖ for all
n > N0.
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