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Abstract. We prove a couple of local asymptotic stability results for a hybrid functional

nonlinear fractional integral equations under weaker Lipschitz and compactness type condi-

tions. It is shown that comparable solutions of the considered hybrid functional nonlinear

fractional integral equation are uniformly locally ultimately attractive and asymptotically

stable on unbounded intervals of real line. We claim that our results are new and rely on a

measure theoretic fixed point theorem of Dhage (2014).

1. Introduction

The object of this paper is to discuss local attractivity and asymptotic
stability results for comparable solutions of the following functional nonlinear
fractional integral equation (in short FIE)

x(t) = f(t, x(α(t))) +
1

Γ(q)

β(t)∫
0

(t− s)q−1g(s, x(γ(s))) ds, t ∈ R+, (1.1)
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where f : R+ × R → R, g : R+ × R → R, α, β, γ : R+ → R+ are continuous
functions, 1 ≤ q < 2 and Γ is the Euler gamma function.

By a solution of the FIE (1.1) we mean a function x ∈ C(R+,R) that
satisfies the equation (1.1), where C(R+,R) is the space of continuous real-
valued functions on R+.

Observe that the above integral equation in question has rather general
form and includes several classes of functional, integral and functional integral
equations considered in the literature (cf. [1, 3, 5, 6] and references therein).
Let us also mention that the functional integral equation considered in [3, 5]
is a special case of the equation (1.1), where α(t) = β(t) = γ(t) = t.

In this paper, we prove a couple of results on the existence and uniform
local attractivity of solutions for the above functional nonlinear fractional in-
tegral equation. Our investigations will be carried out in the Banach space
of real functions which are defined, continuous and bounded on the right half
real axis R+. The main tool used in our considerations is the technique of
partially measures of noncompactness and the fixed point result established in
Dhage [5]. The measure of noncompactness used in this paper allows us not
only to obtain the existence of solutions of the mentioned functional integral
equation but also to characterize the solutions in terms of uniform local ulti-
mate attractivity. This assertion means that all possible comparable solutions
of the nonlinear fractional integral equation in question are locally uniformly
attractive in the sense of notion defined in the following section.

2. Auxiliary results

Let (E,�, ‖ · ‖) be a partially ordered normed linear space. We frequently
need the concept of regulatory of E in what follows. It is known that E is
regular if {xn} is a nondecreasing (resp. nonincreasing) sequence in E such
that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. Then
following definitions have been introduced in Dhage [4] which are frequently
used in the subsequent part of this paper.

A subset S of E is called partially bounded if every chain C in S is bounded.
Again S is called uniformly partially bounded if all chains in S are bounded
with a unique constant.

Note that every bounded subset of a partially ordered normed linear space
is uniformly partially bounded and uniformly partially bounded set in E is
partially bounded, but the converse implications may not be held.



Local attractivity and stability of nonlinear fractional integral equations 415

Definition 2.1. A mapping T : E → E is called isotonic or monotonic if it
is either monotone nondecreasing or non-increasing, that is, if x � y implies
T x � T y or T x � T y for all x, y ∈ E.

Definition 2.2. (Dhage [6, 7]) A mapping T : E → E is called partially
continuous at a point a ∈ E if for ε > 0 there exists a δ > 0 such that
‖T x − T a‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. T called
partially continuous on E if it is partially continuous at every point of it. It
is clear that if T is partially continuous on E, then it is continuous on every
chain C contained in E. T is called partially bounded if T (C) is a bounded
subset of E for all totally ordered sets or chains C in E.

If C is a chain in E then the symbols C stands for the order-closure of C
in E defined by C = inf C ∪ C ∪ supC provided inf C and supC exist. The
supC is an element z ∈ E such that for every ε > 0 there exists a c ∈ C
such that d(c, z) < ε and x ≤ z for all x ∈ C. Similarly, inf C is defined in
the same way. Then C is again a chain, called the closed chain in E. Thus,
C is the intersection of all closed chains containing C. Moreover, we denote
by Pcl(E), Pbd(E), Prcp(E), Pch(E), Pbd,ch(E), Prcp,ch(E) the family of all
nonempty and closed, bounded, relatively compact, chains, bounded chains
and relatively compact chains of E respectively.

We accept the following definition of partially measure of noncompactness
in partially ordered normed linear spaces given in Dhage [5].

Definition 2.3. A mapping µp : Pbd,ch(E) → R+ = [0,∞) is said to be a
partially measure of noncompactness in E if it satisfies the following condi-
tions:

1o ∅ 6= (µp)−1({0}) ⊂ Prcp,ch(E),

2o µp(C) = µp(C),
3o µp is nondecreasing, i.e., if C1 ⊂ C2 ⇒ µp(C1) ≤ µp(C2), and
4o If {Cn} is a sequence of closed chains from Pbd,ch(E) such that Cn+1 ⊂

Cn (n = 1, 2, ...) and if lim
n→∞

µp(Cn) = 0, then the intersection set

C∞ =
⋂∞
n=1Cn is nonempty.

The partially measure µp of noncompactness is called sublinear if it satisfies

5o µp(C1 + C2) ≤ µp(C1) + µp(C2) for all C1, C2 ∈ Pbd,ch(E), and
6o µp(λC) = |λ|µp(C) for λ ∈ R.

Remark 2.1. The family of sets described in 1o is said to be kernel of the
measure of noncompactness µp and is defined as

ker µp =
{
C ∈ Pbd,ch(E)

∣∣µp(C) = 0
}
.
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Clearly, ker µp ⊂ Prcp,ch(E). Observe that the intersection set C∞ from con-
dition 4o is a member of the family ker µp. In fact, since µp(C∞) ≤ µp(Cn) for
any n, we infer that µp(C∞) = 0. This yields that C∞ ∈ ker µp. This simple
observation will be essential in our further investigations.

Definition 2.4. A mapping T : E → E is called a partially k-set-contraction
if there exists a constant k > 0 such that for any bounded chain C, T (C) is a
bounded chain and µp(T (C)) ≤ k µp(C).

We need the following definition in what follows.

Definition 2.5. (Dhage [5]) The order relation � and the metric d on a non-
empty set E are said to be compatible if {xn} is a monotone, that is, monotone
nondecreasing or monotone nondecreasing sequence in E and if a subsequence
{xnk

} of {xn} converges to x∗ implies that the whole sequence {xn} converges
to x∗. Similarly, given a partially ordered normed linear space (E,�, ‖ · ‖),
the order relation � and the norm ‖ · ‖ are said to be compatible if � and the
metric d defined through the norm ‖ · ‖ are compatible.

The following applicable hybrid fixed point theorem for monotone mappings
proved in Dhage [6] is the key tool for proving the main existence results of
this paper.

Theorem 2.1. (Dhage [6]) Let S be a non-empty, closed and partially bounded
subset of a regular partially ordered complete normed linear space (E,�, ‖ · ‖)
such that the order relation � and the norm ‖·‖ are compatible. Let T : S → S
be a partially continuous, nondecreasing and partially k-set-contraction with
k < 1. If there exists an element x0 ∈ S such that x0 � T x0 or x0 � Tx0,
then T has a fixed point x∗ and the sequence {T nx0} of successive iterations
converges to x∗.

Proof. The proof is given in Dhage [6] using the compatness of the every
bounded chain under the k-set-contraction mapping T on E. Since the proof
is not well-known, we give the details of it. Define a sequence {xn} of points
in E by

xn+1 = T xn, n = 0, 1, 2, . . . . (2.1)

Since T is nondecreasing and x0 � T x0, we have that

x0 � x1 � x2 � · · · � xn � · · · . (2.2)

Denote

Cn = {xn, xn+1, . . .}
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for n = 0, 1, 2, . . . . By construction, each Cn is a bounded and closed chain in
E and

Cn = T (Cn−1), n = 0, 1, 2, . . . .

Moreover,

C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · · . (2.3)

Therefore, by nondecreasing nature of µp we obtain

µp(Cn) = µp(T (Cn−1))

≤ k µp(Cn−1)

≤ k2 µp(Cn−2)

...

≤ kn µp(C0). (2.4)

Taking the limit superior as n → ∞ in the above equality (2.4), in view of
Lemma 3.1 we obtain that

lim
n→∞

µp(Cn) ≤ lim sup
n→∞

kn µp(C0) = lim
n→∞

kn µp(C0) = 0. (2.5)

Hence, by condition (4o) of µp,

C∞ =
∞⋂
n=1

Cn 6= ∅ and C∞ ∈ Prcp,ch(E).

From (2.5) it follows that for every ε > 0 there exists an n0 ∈ N such that

µp(Cn) < ε, ∀ n ≥ n0.

This shows that Cn0 and consequently C0 is a compact chain in E. Hence,
{xn} has a convergent subsequence. Furthermore, since the order relation �
and the norm ‖ · ‖ are compatible, the whole sequence {xn} = {T nx0} is
convergent and converges to a point, say x∗ ∈ C0. Finally, from the regularity
of E and partial continuity of T , we get

T x∗ = T
(

lim
n→∞

xn

)
= lim

n→∞
T xn = lim

n→∞
xn+1 = x∗.

This completes the proof. �

Remark 2.2. The regularity of E and the partial continuity of T in above
Theorem 2.1 may be replaced with a stronger continuity condition of the
operator T on E.
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Remark 2.3. If the set S of solutions to the above operator equation is chain,
then all solutions belonging to S are comparable. Further, if µp(S) > 0, then
µp(S) = µp(T S) ≤ ψ(µp(S)) < µp(S) which is a contradiction. Consequently,
S ∈ ker µp. This simple fact has been utilized in the study of qualitative
properties of dynamic systems under consideration.

Remark 2.4. Suppose that the order relation � is introduced in E with the
help of an order cone K which is a non-empty closed set K in E satisfying (i)
K + K ⊆ K, (ii) λK ⊆ K and (iii) {−K} ∩ K = {0} (cf. [9]). Then the order
relation � in E is defined as x � y ⇐⇒ y − x ∈ K. The element x0 ∈ E
satisfying x0 � T x0 in above Theorem 2.1 is called a lower solution of the
operator equation x = T x. If the operator equation x = T x has more than
one lower solution and set of all these lower solutions are comparable, then
the corresponding set S of solutions to above operator equation is a chain and
hence all solutions in S are comparable. To see this, let x0 and y0 be any
two lower solutions of the above operator equation such that x0 � y0 and let
x∗ and y∗ respectively be the corresponding solutions under the conditions of
Theorem 2.1. Now, by definition of �, one has y0−x0 ∈ K and from monotone
nondecreasing nature of T it follows that Tny0−Tnx0 ∈ K. Since K is closed,
we have that y∗ − x∗ ∈ K or x∗ � y∗.

For our purpose we introduce a handy tool for the partial measure of non-
compactness in the space BC(R+,R) which is useful in the study of the solu-
tions of certain nonlinear integral equations. To define this partial measure,
let us fix a nonempty and bounded chain X of the space BC(R+,R) and a
positive real number T . For x ∈ X and ε ≥ 0 denote by ωT (x, ε) the modulus
of continuity of the function x on the interval [0, T ] defined by

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.
Next, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT0 (X) = lim

ε→0
ωT (X, ε),

ω0(X) = lim
T→∞

ωT0 (X).

The partial ball or Hausdorff measure of noncompactness βp is very useful
in applications to nonlinear differential and integral equations and it can be
shown that

βp(X) =
1

2
ω0(X)

for all bounded chain X in BC(R+,R). Thus ω0 is a handy tool for βp in
BC(R+,R).
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Now, for a fixed number t ∈ R+ and a fixed bounded chain X in BC(R+,R),
let us denote

X(t) = {x(t) : x ∈ X}.
Let

δa(X(t)) = |X(t)| = sup{|x(t)| : x ∈ X} ,

δTa (X(t)) = sup
t≥T

δa(X(t)) = sup
t≥T
|X(t)|

and

δa(X) = lim
T→∞

δTa (X(t)) = lim sup
t→∞

|X(t)|.

Again, for a fixed real number c, denote

X(t)− c = {x(t)− c : x ∈ X},

δb(X(t)) = |X(t)− c| = sup{|x(t)− c| : x ∈ X} ,

δTb (X(t)) = sup
t≥T

δb(X(t)) = sup
t≥T
|X(t)− c|

and

δb(X) = lim
T→∞

δTb (X(t)) = lim sup
t→∞

|X(t)− c|.

Similarly, let

δc(X(t)) = diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X} ,

δTc (X(t)) = sup
t≥T

δ(X(t)) = sup
t≥T

diamX(t)

and

δc(X) = lim
T→∞

δT (X(t)) = lim sup
t→∞

diam X(t).

The details of the functions δa, δb and δc appear in Dhage [5]. Finally, let us
consider the functions µpa, µ

p
b and µpc defined on the family of bounded chains

in BC(R+,R) by the formula

µpa(X) = ω0(X) + δa(X), (2.6)

µpb(X) = ω0(X) + δb(X) (2.7)

and

µpc(X) = ω0(X) + δc(X). (2.8)

It can be shown that the function µpa, µ
p
b and µpc are partially measures of

noncompactness in the space BC(R+,R). The components ω0 and δa are
called the characteristic values of the partially measure of noncompactness
µpa. Similarly, ω0, δb and ω0, δc are respectively the characteristic values of the
partially measure of noncompactness µpb and µpc in BC(R+,R).
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Remark 2.5. The kernels ker µpa, ker µpb and ker µpc consist of nonempty
and bounded chains X of BC(R+,R) such that functions from X are locally
equicontinuous on R+ and the thickness of the bundle formed by functions
from X tends to zero at infinity. This particular characteristic of ker µpa,
ker µpb and ker µpc has been useful in establishing the local attractivity and
local asymptotic stability of the comparable solutions for functional integral
equations.

3. Attractivity and stability results

Our considerations will be placed in the Banach space BC(R+,R) consisting
of all real functions x = x(t) defined, continuous and bounded on R+. This
space is equipped with the standard supremum norm

||x|| = sup{|x(t)| : t ∈ R+}. (3.1)

Define the order relation ≤ in BC(R+,R) as follows. Let x, y ∈ BC(R+,R).
Then by x ≤ y we mean x(t) ≤ y(t) for all t ∈ R+. It is clear that
(BC(R+,R),≤, ‖ · ‖) is regular and the order relation ≤ and the norm ‖ · ‖
are compatible in BC(R+,R).

In order to introduce further concepts used in the paper let us assume that Ω
is a nonempty chain of the space BC(R+,R). Moreover, let Q be an operator
defined on Ω with values in BC(R+,R).

Consider the operator equation of the form

x(t) = Qx(t), t ∈ R+ . (3.2)

Definition 3.1. We say that comparable solutions of the equation (3.2) are
locally attractive if there exists an open ball B(x0, r) in the space BC(R+,R)
such that for arbitrary comparable solutions x = x(t) and y = y(t) of the
equation (3.2) belonging to B(x0, r) ∩ Ω we have that

lim
t→∞

[
x(t)− y(t)

]
= 0 . (3.3)

In the case when limit (3.2) is uniform with respect to the set B(x0, r) ∩ Ω,
i.e., when for each ε > 0 there exists T > 0 such that

|x(t)− y(t)| ≤ ε (3.4)

for all x, y ∈ B(x0, r)∩Ω being the comparable solutions of (3.2) and for t ≥ T ,
we will say that the comparable solutions of the operator equation (3.2) are
uniformly locally ultimately attractive defined on R+.
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Definition 3.2. We say that comparable solutions of the equation (3.2) are
locally asymptotically stable to the line x(t) = c for all t ∈ R+ if there exists an
open ball B(x0, r) in the space BC(R+,R) such that for arbitrary comparable
solution x = x(t) of the equation (3.2) belonging to B(x0, r)∩Ω we have that

lim
t→∞

[x(t)− c] = 0 . (3.5)

In the case when limit (3.2) is uniform with respect to the set B(x0, r) ∩ Ω,
i.e. when for each ε > 0 there exists T > 0 such that

|x(t)− c| ≤ ε (3.6)

for all x ∈ B(x0, r) ∩Ω being the comparable solutions of (3.2) and for t ≥ T ,
we will say that the comparable solutions of the operator equation (3.2) are
uniformly locally asymptotically stable to the line x(t) = c defined on R+.

The equation (1.1) will be considered under the following assumptions:

(H1) The functions α, β, γ : R+ → R+ are continuous and satisfy α(t) ≥ t
and β(t) ≤ t for all t ∈ R+.

(H2) The function F : R+ → R+ defined by F (t) = |f(t, 0)| is bounded on
R+ with

F0 = sup
t≥0

F (t).

(H3) There exists a constant L > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ L(x− y)

for all x, y ∈ R with x ≥ y. Moreover L < 1.
(H4) g(t, x) is nondecreasing in x for each t ∈ J .
(H5) There exists an element u ∈ C(J,R) such that

u(t) ≤ f(t, u(α(t))) +
1

Γ(q)

∫ β(t))

t0

(t− s)q−1g(s, u(γ(s)))) ds

for all t ∈ J .
(H6) There exists a function b : R+ → R+ such that

|g(t, x)| ≤ b(t)

for t ∈ R+ and x ∈ R. Moreover, we assume that

lim
t→∞

β(t)∫
0

(t− s)q−1 b(s) ds = 0 .

(H7) There exists a real number c such that f(t, c) = c for all t ∈ R+.
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The hypotheses (H1) through (H7) are standard and have been widely used in
the literature on nonlinear differential and integral equations. The hypothesis
(H3) is considered recently in Nieto and Lopez [12]. Now we formulate the
main existence results for the integral equation (1.1) under above mentioned
natural conditions.

Theorem 3.1. Assume that the hypotheses (H1) through (H6) hold. Then the
functional FIE (1.1) has at least one solution x∗ in the space BC(R+,R) and
the sequence {xn} of successive approximations defined by

xn(t) = f(t, xn−1(α(t)))

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1 g(s, xn−1(γ(s))) ds, t ∈ R+,

(3.7)

for each n ∈ N with x0 = u converges to x∗. Moreover, the comparable so-
lutions of the FIE (1.1) are uniformly locally ultimately attractive defined on
R+.

Proof. We seek the solutions of the FIE (1.1) in the space E = BC(R+,R).
Consider the operator Q defined on the space E by the formula

Qx(t) = f(t, x(α(t))) +
1

Γ(q)

β(t)∫
0

(t− s)q−1 g(s, x(γ(s))) ds, t ∈ R+. (3.8)

Observe that in view of our assumptions, for any function x ∈ E the function
Qx is continuous on R+. As a result, Q defines a mapping Q : E → E. We
show that Q satisfies all the conditions of Theorem 3.1 on E. This will be
achieved in a series of following steps:

Step I. Q is nondecreasing on E.

Let x, y ∈ E be such that x ≤ y. Then by hypothesis (H3)-(H4), we obtain

Qx(t) = f(t, x(α(t))) +
1

Γ(q)

∫ β(t)

0
(t− s)q−1 g(s, x(γ(s))) ds

≤ f(t, y(α(t))) +
1

Γ(q)

∫ β(t)

0
(t− s)q−1 g(s, y(γ(s))) ds

= Qy(t)

for all t ∈ R+. This shows that Q is a nondecreasing operator on E.

Step II. Q maps a closed and partially bounded set into itself.

Define an open ball B(x0, r), where r =
‖x0‖+ F0 + V/Γ(q)

1− L
. Let X be a

chain in B(x0, r) and let x ∈ X be arbitrary. Since the function v : R+ → R
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defined by

v(t) = lim
t→∞

∫ β(t)

0
(t− s)q−1 b(s) ds (3.9)

is continuous and in view of hypothesis (H6), the number V = supt≥0 v(t)
exists. Moreover if x ≥ θ, then for arbitrarily fixed t ∈ R+ we obtain:

|x0(t)−Qx(t)|

≤ |x0(t)|+ |f(t, x(α(t)))|+ 1

Γ(q)

∫ β(t)

0
(t− s)q−1 |g(s, x(s))| ds

≤ |x0(t)|+ |f(t, x(α(t)))− f(t, 0)|+ |f(t, 0)|

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1 b(s) ds

≤ |x0(t)|+ L |x(α(t))|+ F (t) +
v(t)

Γ(q)

≤ ‖x0‖+ L ‖x‖+ F0 +
V

Γ(q)

= r. (3.10)

Similarly, if x ≤ θ, then it can be shown that |x0(t)−Qx(t)| ≤ r for all t ∈ R+.
Taking the supremum over t, we obtain ‖x0 − Qx‖ ≤ r for all x ∈ X. This
means that the operator Q transforms any bounded chain X into a bounded
chain in E. More precisely, we infer that the operator Q transforms the chain
X belonging to B(x0, r) into the chain Q(X) contained in the ball B(x0, r).
As a result, Q defines a mapping Q : Pch(B(x0, r)))→ Pch(B(x0, r))) and that
Q is partially bounded on S = B(x0, r) into itself.

Step III. Q is partially continuous on S.

Now we show that the operatorQ is partially continuous on the ball B(x0, r).
To do this, let us fix arbitrarily ε > 0 and take x, y ∈ X ⊂ B(x0, r) such that
x ≥ y and ||x− y|| ≤ ε. Then we get:

|Qx(t)−Qy(t)| ≤
∣∣f(t, x(α(t)))− f(t, y(α(t)))

∣∣
+

1

Γ(q)

∣∣∣∣∣
∫ β(t)

0
(t− s)q−1 g(s, x(γ(s))) ds

− 1

Γ(q)

∫ β(t)

0
(t− s)q−1 g(s, y(γ(s))) ds

∣∣∣∣∣
≤
∣∣f(t, x(α(t)))− f(t, y(α(t)))

∣∣
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+
1

Γ(q)

∫ β(t)

0
|(t− s)q−1 g(s, x(γ(s)))| ds

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1 |g(s, y(γ(s)))| ds

≤ L|x(α(t))− y(α(t))|+ 2

Γ(q)

∫ β(t)

0
(t− s)q−1 b(s) ds

≤ L‖x− y‖+
2

Γ(q)
v(t)

< Lε+
2

Γ(q)
v(t).

Hence, by virtue of hypothesis (B6), we infer that there exists T > 0 such that
v(t) ≤ ε

2/Γ(q) for t ≥ T . Thus, for t ≥ T we derive that

|Qx(t)−Qy(t)| < (L+ 1)ε. (3.11)

Further, let us assume that t ∈ [0, T ]. Similarly, evaluating as above we get:

|Qx(t)−Qy(t)|

≤ |f(t, x(α(t)))− f(t, y(α(t)))|
∣∣∣

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1 [|g(s, x(γ(s)))− g(s, y(γ(s)))|] ds

≤ L |x(α(t))− y(α(t))|

+
1

Γ(q)

∫ t

0
(t− s)q−1

[
|g(s, x(γ(s)))− g(s, y(γ(s)))|

]
ds

< ε+
T q

Γ(q + 1)
ωTr (g, ε) , (3.12)

where we have denoted

ωTr (g, ε) = sup{|g(s, x)− g(s, y)| :
t, s ∈ [0, T ], x, y ∈ [−r, r], |x− y| ≤ ε}.

Obviously, in view of continuity of β, we have that T ≤ T < ∞. Moreover,
from the uniform continuity of the function g(s, x) on the set [0, T ]× [−r, r] we
derive that ωTr (g, ε) → 0 as ε → 0. Now, linking (3.11), (3.12) and the above
established facts we conclude that the operator Q maps partially continuously
the ball B(x0, r) into itself.

Step IV. Q is a k-set-contraction w.r.t. the characteristic value ω0.

Further on let us take a chain X belonging to the ball B(x0, r). Next, fix
arbitrarily T > 0 and ε > 0. Let us choose x ∈ X and t1, t2 ∈ [0, T ] with
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|t2 − t1| ≤ ε. Without loss of generality we may assume that x(α(t1)) ≥
x(α(t2)). Then, taking into account our assumptions, we get:

|Qx(t1)−Qx(t2)|
≤
∣∣f(t1, x(α(t1)))− f(t2, x(α(t2)))

∣∣
+

∣∣∣∣∣ 1

Γ(q)

∫ β(t1)

0
(t1 − s)q−1 g(s, x(γ(s))) ds

− 1

Γ(q)

∫ β(t2)

0
(t2 − s)q−1 g(s, x(γ(s))) ds

∣∣∣∣∣
≤
∣∣f(t1, x(α(t1)))− f(t2, x(α(t2)))

∣∣
+

∣∣∣∣∣ 1

Γ(q)

∫ β(t1)

0
(t1 − s)q−1 g(s, x(γ(s))) ds

− 1

Γ(q)

∫ β(t1)

0
(t2 − s)q−1 g(s, x(γ(s))) ds

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ(q)

∫ β(t1)

0
(t2 − s)q−1 g(s, x(γ(s))) ds

− 1

Γ(q)

∫ β(t2)

0
(t2 − s)q−1 g(s, x(γ(s))) ds

∣∣∣∣∣
≤
∣∣f(t1, x(α(t1)))− f(t2, x(α(t2)))

∣∣
+

1

Γ(q)

∫ β(t1)

0
|(t1 − s)q−1 − (t2 − s)q−1| |g(s, x(γ(s)))| ds

+

∣∣∣∣∣ 1

Γ(q)

∫ β(t1)

β(t2)
(t2 − s)q−1 |g(s, x(γ(s)))| ds

∣∣∣∣∣
≤
∣∣f(t1, x(α(t1)))− f(t2, x(α(t2)))

∣∣
+

1

Γ(q)

∫ T

0
|(t1 − s)q−1 − (t2 − s)q−1| b(s) ds

+
GTr
Γ(q)
|β(t1)− β(t2)|, (3.13)

where

GTr = sup{|g(t, s, x)| : t ∈ [0, T ], s ∈ [0, T ], x ∈ [−r, r]}
which does exists in view of the fact that the function g(t, s, x) = (t−s)q−1g(s, x)
is continuous on compact [0, T ]× [0, T ]× [−r, r].
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Now, from (3.13) we obtain,

|Qx(t2)−Qx(t1)| ≤
∣∣f(t1, x(α(t1)))− f(t2, x(α(t1)))

∣∣
+ L |x(α(t1))− x(α(t2))|

+
1

Γ(q)

∫ T

0
|(t1 − s)q−1 − (t2 − s)q−1| b(s) ds

+
GTr
Γ(q)
|β(t1)− β(t2)|

≤ LωT (x, ωT (α, ε)) + ωTr (f, ε)

+
1

Γ(q)

∫ T

0
|(t1 − s)q−1 − (t2 − s)q−1| b(s) ds

+
GTr
Γ(q)

ωT (β, ε), (3.14)

where we have denoted

ωT (α, ε) = sup{|α(t2)− α(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, },

ωT (v, ε) = sup{|v(t2)− v(t1)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, }
and

ωTr (f, ε) = sup{|f(t2, x)− f(t1, x)| :
t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, x ∈ [−r, r]} .

From the above estimate we derive the following one:

ωT (Q(X), ε) ≤ LωT (X,ωT (α, ε)) + ωTr (f, ε)

+
1

Γ(q)

∫ T

0
|(t1 − s)q−1 − (t2 − s)q−1| b(s) ds

+
GTr
Γ(q)

ωT (β, ε). (3.15)

Observe that ωTr (f, ε)→ 0 and |(t1−s)q−1−(t2−s)q−1| → 0 as ε→ 0, which is
a simple consequence of the uniform continuity of the functions f and (t−s)q−1

on the sets [0, T ]× [−r, r] and [0, T ]× [0, T ] respectively. Moreover, from the
uniform continuity of α, β on [0, T ], it follows that ωT (α, ε)→ 0, ωT (β, ε)→ 0
as ε→ 0. Thus, linking the established facts with the estimate (3.15) we get

ωT0 (Q(X)) ≤ LωT0 (X) .

Consequently, we obtain

ω0(Q(X)) ≤ L ω0(X) . (3.16)

Step V. Q is a k-set-contraction w.r.t. characteristic value δc.
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Now, taking into account our assumptions, for arbitrarily fixed t ∈ R+ and
for x, y ∈ X with x ≥ y, we deduce the following estimate:

|(Qx)(t)− (Qy)(t)| ≤ |f(t, x(α(t)))− f(t, y(α(t)))|

+ 2

(
1

Γ(q)

∫ β(t)

0
(t− s)q−1b(s) ds

)

≤ L|x(α(t))− y(α(t))|+ 2v(t)

Γ(q)
.

From the above inequality it follows that

diam (QX(t)) ≤ Ldiam (X(α(t))) +
2v(t)

Γ(q)

for each t ∈ R+. Therefore, taking limit superior over t→∞, we obtain

δc(QX) = lim sup
t→∞

diam (Q(X(t)))

≤ L lim sup
t→∞

diam (X(α(t)))

≤ L lim sup
t→∞

diam (X(t))

= Lδc(X). (3.17)

Step VI. Q is a partially k-set-contraction on S.

Further, using the measure of noncompactness µpc defined by the formula
(2.8) and keeping in mind the estimates (3.16) and (3.17), we obtain

µpc(QX) = ω0(QX) + δc(QX)

≤ Lω0(X) + Lδc(X)

= Lµpc(X).

This shows that Q is a partially nonlinear k-set-contraction on S with k = L <
1. Again, by hypothesis (H5), there exists an element x0 = u ∈ S such that
x0 ≤ Qx0, that is, x0 is a lower solution of the FIE (1.1) defined on R+. Thus
Q satisfies all the conditions of Theorem 2.1 on S. Hence we apply it to the
operator equation Qx = x and deduce that the operator Q has a fixed point
x∗ in the ball B(x0, r). Obviously x∗ is a solution of the functional integral
equation (1.1) and the sequence {xn} of successive approximations defined by

xn(t) = f(t, xn−1(α(t)))

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1 g(s, xn−1(γ(s))) ds, t ∈ R+,
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for each n ∈ N converges to x∗. Moreover, taking into account that the image
of every chain X under the operator Q is again a chain Q(X) contained in the
ball B(x0, r) we infer that the set F(Q) of all fixed points of Q is contained
in B(x0, r). If the set F(Q) contains all comparable solutions of the equation
(1.1), then we conclude from Remark 2.3 that the set F(Q) belongs to the
family ker µpc . Now, taking into account the description of sets belonging
to ker µpc (given in Section 2) we deduce that all comparable solutions of
the equation (1.1) are uniformly locally ultimately attractive on R+. This
completes the proof. �

Theorem 3.2. Assume that the hypotheses (H1) through (H7) hold. Then the
functional FIE (1.1) has at least one solution x∗ in the space BC(R+,R) and
the sequence {xn} of successive approximations defined by (3.7) converges to
x∗. Moreover, the comparable solutions of the equation (1.1) are uniformly
locally ultimately asymptotically stable to the line x(t) = c defined on R+.

Proof. As in Theorem 3.1, we seek the solutions of the FIE (1.1) in the space
E = BC(R+,R). Define the closed bounded set S = B(x0, r) and define the
operator Q on S into itself by (3.8). Then proceeding as in the Step IV of the
proof of Theorem 3.1 it can be proved that

ω0(Q(X)) ≤ L ω0(X) .

Next, we show that Q is k-set-contraction with respect to the characteristic
value δa. Now, taking into account our assumptions, for arbitrarily fixed
t ∈ R+ and for x ∈ X with x ≥ c, we deduce the following estimate:

|(Qx)(t)− c| ≤ |f(t, x(α(t)))− f(t, c)|+ 1

Γ(q)

∫ β(t)

0
(t− s)q−1b(s) ds

≤ L |x(α(t))− c|+ v(t)

Γ(q)
.

From the above inequality it follows that

|QX(t)− c| ≤ L |X(α(t))− c|+ v(t)

Γ(q)

for each t ∈ R+. Therefore, taking limit superior over t→∞, we obtain

δb(QX) = lim sup
t→∞

|Q(X(t))− c|

≤ L lim sup
t→∞

|X(α(t))− c|

≤ L lim sup
t→∞

|X(t)− c|

= Lδb(X). (3.18)
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Further, using the measure of noncompactness µpb defined by the formula (2.7)
and keeping in mind the estimates (3.16) and (3.18), we obtain

µpb(QX) = ω0(QX) + δb(QX)

≤ Lω0(X) + Lδb(X)

= Lµpb(X). (3.19)

This shows that Q is a partially k-set-contraction on S with k = L < 1. Again,
by hypothesis (H5), there exists an element x0 = u ∈ S such that x0 ≤ Qx0,
that is, x0 is a lower solution of the FIE (1.1) defined on R+. The rest of
the proof is similar to Theorem 3.1 and now we conclude from Remark 2.3
that the set F(Q) belongs to the family ker µpb . Now, taking into account the
description of sets belonging to ker µpb (given in Section 2) we deduce that the
equation (1.1) has a solution x∗ and the sequence {xn} of successive iterations
defined by (3.7) converges to x∗. Moreover, all comparable solutions of the
equation (1.1) are uniformly locally ultimately asymptotically stable to the
line x(t) = c on R+. This completes the proof. �

If c = 0 in Theorem 3.2, we obtain the following existence result concern-
ing the asymptotically stability of the solutions to zero and all comparable
solutions if exist have the same property.

Theorem 3.3. Assume that the hypotheses (H1) through (H7) hold with c =
0. Then the functional FIE (1.1) has at least one solution x∗ in the space
BC(R+,R) and the sequence {xn} of successive approximations defined by
(3.7) converges to x∗. Moreover, the comparable solutions of the equation
(1.1) are uniformly locally ultimately asymptotically stable to 0 defined on R+.

Remark 3.1. The conclusion of Theorems 3.1, 3.2 and 3.3 also remains true
if we replace the hypothesis (H5) with the following one:

(H′5) There exists an element u ∈ C(R+,R) such that

u(t) ≥ f(t, u(α(t))) +
1

Γ(q)

∫ β(t))

t0

(t− s)q−1g(s, u(γ(s)))) ds,

for all t ∈ R+.

The proof under this new hypothesis is similar to Theorem 3.1, and 3.2 and
now, the desired conclusion follows by an application of Theorem 3.2.

Remark 3.2. The existence theorems proved in Section 3 may be extended
with appropriate modifications to the generalized nonlinear hybrid functional
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integral equation

x(t) = f(t, x(α1(t)), . . . , x(αn(t)))

+
1

Γ(q)

∫ β(t)

0
(t− s)q−1g(s, x(γ1(s)), . . . , γn(s))) ds, (3.20)

for all t ∈ R+, where αi, β, γi : R+ → R+, i = 1, 2, . . . , n, f : R+ × Rn → R,
and g : R+ × R+ × Rn → R are continuous functions.

4. Conclusion

In this paper we have been able to weaken the Lipschitz condition to par-
tially Lipschitz condition which otherwise is considered to be a very strong con-
dition in the existence theory for nonlinear differential and integral equations.
However, we needed an additional assumption of monotonicity on the nonlin-
earities involved in the integral equation in order to guarantee the required
characterization of attractivity of the comparable solutions. The advantage of
the present approach over previous ones lies in the fact that we have been able
to develop an algorithm for the solutions of the considered integral equations
which otherwise is not possible via classical approach of measure of noncom-
pactness treated in Banas and Goebel [2]. Another interesting feature of our
work is that we generally need the uniqueness of the solution for predicting
the behavior of the dynamic systems related to the considered nonlinear frac-
tional integral equation, however with the present approach it possible for us
to discuss the qualitative behaviour of the systems even though there exist a
number of solutions. Finally, while concluding this paper we mention that the
results presented here are of local nature, however analogous study can also be
made for global asymptotic attractivity and stability using similar arguments
with appropriate modifications and some of the results in this direction will
be elsewhere.
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