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Abstract. Using tools of functional analysis and a fixed point theorem of Krasnosel’skii

type, this paper proves solvability and asymptotically stable of a mixed functional integral

equation in N variables. Furthermore, the set of solutions is compact. In order to illustrate

the results obtained here, an example is given.

1. Introduction

In this paper, we consider the mixed functional integral equation in N
variables of the form
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u(x) = V

(
x, u(x),

∫
Bx

V1 (x, y, u(σ1(y)), ..., u(σp(y))) dy

)
(1.1)

+

∫
RN+

F (x, y, u(χ1(y)), ...., u(χq(y))) dy,

where x ∈ RN+ = {(x1, ..., xN ) ∈ RN : x1 ≥ 0, ..., xN ≥ 0},

V : RN+ × E2 → E, V1 : ∆× Ep → E, F : R2N
+ × Eq → E,

σ1, ..., σp, χ1, ..., χq : RN+ → RN+ are continuous,

∆ = {(x, y) ∈ R2N
+ : y ∈ Bx}, Bx = [0, x1]× ...× [0, xN ],

the functions σ1, ..., σp, χ1, ..., χq : RN+ → RN+ are continuous with

σ1(x), ..., σp(x) ∈ Bx, ∀x ∈ RN+ , E is a Banach space with norm |·| .

It is well known that, nonlinear integral equations and nonlinear functional
integral equations have been some topics of great interest in the field of non-
linear analysis for a long time. Since the pioneering work of Volterra up to
our days, integral equations have attracted the interest of scientists not only
because of their mathematical context but also because of their miscellaneous
applications in various fields of science and technology, see [14]. The special
cases of (1.1) occur in mechanics, population dynamics, engineering systems,
the theory of “adiabatic tubular chemical reactors”, etc. For the details of
such problems, it can be found in, for example, Corduneanu [3] or Deimling
[4]. It also can be found some applications of integral or integrodifferential
equations to various problems occurring in contemporary research, such as
the following integrodifferential equation is encountered in the mathematical
description of coagulation process [3], under certain simplifying assumptions

f(t, x) = f0(x) +
1

2

∫ t

0

∫ x

0
φ(x− y, y)f(s, x− y)f(s, y)dyds

−
∫ t

0

∫ ∞
0

f(s, x)φ(x, y)f(s, y)dyds.

In general, existence results of integral equations have been obtained via
the fundamental methods in which the fixed point theorems are often applied,
see [1]–[14] and the references given therein. Recently, using the technique of
the measure of noncompactness and the Darbo fixed point theorem, Z. Liu et
al.,, [6] have proved the existence and asymptotic stability of solutions for the
equation

x(t) = f

(
t, x(t),

∫ t

0
u(t, s, x(a(s)), x(b(s))) ds

)
, t ∈ R+.
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In [2], using a fixed point theorem of Krasnosel’skii, Avramescu and Vladim-
irescu have proved the existence of asymptotically stable solutions to the fol-
lowing integral equation

u(t) = q(t) +

∫ t

0
K(t, s, u(s))ds+

∫ ∞
0

G(t, s, u(s))ds, t ∈ R+,

where the functions given with real values are supposed to be continuous
satisfying suitable conditions. In case the Banach space E is arbitrary, recently
in [10], [11], the existence of asymptotically stable solutions to the following
integral equations

x(t) = q(t) + f(t, x(t)) +

∫ t

0
V (t, s, x(s))ds+

∫ ∞
0

G(t, s, x(s))ds, t ∈ R+

or

u(x, y) = q(x, y) + f(x, y, u(x, y)) +

∫ x

0

∫ y

0
V (x, y, s, t, u(s, t)) dsdt

+

∫ ∞
0

∫ ∞
0

F (x, y, s, t, u(s, t)) dsdt, (x, y) ∈ R2
+,

also have been proved by using the fixed point theorem of Krasnosel’skii type
as follows.

Theorem 1.1. ([9]) Let (X, |·|n) be a Fréchet space and let U, C : X → X be
two operators. Assume that

(i) U is a k−contraction operator, k ∈ [0, 1) (depending on n), with respect
to a family of seminorms ‖·‖n equivalent with the family |·|n ;

(ii) C is completely continuous;

(iii) lim
|x|n→∞

|Cx|n
|x|n

= 0, ∀n ∈ N.

Then U + C has a fixed point.

In [8], Lungu and Rus established some results relative to existence, unique-
ness, integral inequalities and data dependence for solutions of the following
functional Volterra-Fredholm integral equation in two variables with deviating
argument in a Banach space by Picard operators technique

u(x, y) = g(x, y, h(u)(x, y)) +

∫ x

0

∫ y

0
K (x, y, s, t, u(s, t)) dsdt, (x, y) ∈ R2

+.

In [12], based on the applications of the Banach fixed point theorem coupled
with Bielecki type norm and the integral inequality with explicit estimates, B.
G. Pachpatte studied some basic properties of solutions of the Fredholm type
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integral equation in two variables as follows

u(x, y) = f(x, y) +

∫ a

0

∫ b

0
g (x, y, s, t, u(s, t), D1u(s, t), D2u(s, t)) dtds.

With the same methods, in [13], the existence, uniqueness and other prop-
erties of solutions of certain Volterra integral and integrodifferential equations
in two variables were considered.

Applying the Banach fixed point theorem, in [5], El-Borai et al., have proved
the existence of a unique solution of a nonlinear integral equation of type
Volterra-Hammerstein in n-dimensional of the form

µφ(x, t) = f(x, t) + λ

∫ t

0

∫
Ω
F (t, τ)K(x, y)γ (τ, y, φ(y, τ)) dydτ,

where x = (x1, ..., xn), y = (y1, ..., yn); µ, λ are constants. After that, in [1], M.
A. Abdou et al., investigated the following mixed nonlinear integral equation
of the second kind in n−dimensional

µφ(x, t) = λ

∫
Ω
k(x, y)γ (t, y, φ(y, t)) dy

+λ

∫ t

0

∫
Ω
G(t, τ)k(x, y)γ (τ, y, φ(y, τ)) dydτ

+λ

∫ t

0
F (t, τ)φ(x, τ)dτ + f(x, t),

where x = (x1, ..., xn), y = (y1, ..., yn). Also using the Banach fixed point
theorem, the existence of a unique solution of this equation was proved.

Motivated by the above mentioned works, because of mathematical context,
we continue to show that Theorem 1.1 associated with tools of functional
analysis can be applied in order to obtain the existence result and asymptotic
stability of solutions of (1.1). This paper consists of five sections and the
existence of solutions, the existence of asymptotically stable solutions for (1.1)
will be presented in sections 2 and 3. On the other hand, the set of solutions
is compact, see section 4. Finally, we give an illustrated example.

2. Preliminaries

Let X = C(RN+ ;E) be the space of all continuous functions on RN+ to E which
be equipped with the numerable family of seminorms

|u|n = sup
x∈[0,n]N

|u(x)| , n ≥ 1.

Then X is complete with the metric
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d(u, v) =
∑∞

n=1
2−n

|u− v|n
1 + |u− v|n

and X is the Fréchet space.
Consider in X the other family of seminorms ‖·‖n defined by

‖u‖n = |u|γn + |u|hn , n ≥ 1,

where

|u|γn = sup
x∈[0,n]N , |x|1≤γn

|u(x)| ,

|u|hn = sup
x∈[0,n]N , |x|1≥γn

e−hn(|x|1−γn) |u(x)| ,

|x|1 = x1 + ...+ xN ,

γn ∈ (0, n) and hn > 0 are arbitrary numbers. ‖·‖n and |·|n are equivalent
because

e−hn(nN−γn) |u|n ≤ ‖u‖n ≤ 2 |u|n , ∀u ∈ X, ∀n ≥ 1.

We have the following condition for the relative compactness of a subset of
X. The proof of this condition is similar to that in Appendix of [9] via the
Ascoli-Arzela’s Theorem (see [7], p. 211).

Lemma 2.1. Let X = C(RN+ ;E) be the Fréchet space defined as above and A

be a subset of X. For each n ∈ N, let Xn = C([0, n]N ;E) be the Banach space
of all continuous functions u : [0, n]N → E with the norm

|u|n = sup
x∈[0,n]N

|u(x)|

and An = {u|[0,n]N : u ∈ A}. The set A in X is relatively compact if and only

if for each n ∈ N, An is equicontinuous in Xn and for every x ∈ [0, n]N , the
set An(x) = {u(x) : u ∈ An} is relatively compact in E.

Based on the notion of asymptotically stable solutions to the functional
equation mentioned in [2] with citations and notes, we use the following defi-
nition and also note that it is stated on spaces of functions defined on RN+ not
necessarily bounded.

Definition 2.1. A function ũ is said to be an asymptotically stable solution
of (1.1) if for any solution u of (1.1), lim

|x|1→+∞
|u(x)− ũ(x)| = 0.
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3. Main result

We make the following assumptions.
(A1) There exist a constant L ∈ [0, 1) and a continuous function ω0 : RN+ →

R+ such that

|V (x;u, v)− V (x; ū, v̄)| ≤ L |u− ū|+ ω0(x) |v − v̄| ,
for all x ∈ RN+ , u, v, ū, v̄ ∈ E.

(A2) There exists a continuous function ω1 : ∆→ R+ such that

|V1 (x, y;u1, ..., up)− V1 (x, y; ū1, ..., ūp)| ≤ ω1(x, y)

p∑
i=1

|ui − ūi| ,

for all (x, y;u1, ..., up) , (x, y; ū1, ..., ūp) ∈ ∆× Ep.
(A3) F is completely continuous such that for all bounded subsets I1, I2 of

RN+ and for any bounded subset J of Eq, for all ε > 0, there exists
δ > 0, such that ∀ x, x̄ ∈ I1,

|x− x̄|1 < δ =⇒ |F (x, y;u1, ..., uq)− F (x̄, y;u1, ..., uq)| < ε,

for all (y;u1, ..., uq) ∈ I2 × J.
(A4) There exists a continuous function ω2 : R2N

+ → R+ such that for each

bounded subset I of RN+ ,∫
RN+

sup
x∈I

ω2(x, y)dy <∞

and
|F (x, y;u1, ..., uq)| ≤ ω2(x, y),

for all (x, y;u1, ..., uq) ∈ I × RN+ × Eq.
(A5) lim

η→0+

∫
Bx,|σi(y)|1≤η

dy = 0, ∀ i = 1, ..., p.

Theorem 3.1. Let (A1)− (A5) hold. Then the equation (1.1) has a solution
on RN+ . Furthermore, if

lim
|x|1→+∞

[
ā(x) + R̄(x) exp

(
R̄(0)x1x2...xN

) ∫
Bx

ā(y)dy

]
= 0,

where
ā(x) = a(x) +

∑p
i=1 a(σi(x)), a(x) = 1

1−L
∫
RN+

ω2(x, y)dy,

R̄(x) = R(x) +
∑p

i=1R(σi(x)), R(x) = 1
1−Lω0(x)ω1(x, 0),

ω0(x)ω1(x, y) ≤ ω0(x)ω1(x, 0) ≤ ω0(0)ω1(0, 0), ∀y ∈ Bx, ∀x ∈ RN+ ,

then every solution u of (1.1) is an asymptotically stable solution.
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Proof. First, we define

Φu(x) = V

(
x, u(x),

∫
Bx

V1 (x, y, u(σ1(y)), ..., u(σp(y))) dy

)
, (x, u) ∈ RN+ ×X

and choose ‖·‖n such that Φ is a Ln− contraction on Fréchet space (X, ‖·‖n) as
below.

Let n ∈ N be fixed. Consider every x ∈ [0, n]N . Assume |x|1 ≤ γn, with
γn ∈ (0, n) chosen later. It follows from (A1), (A2) and σi(x) ∈ Bx, ∀x ∈
[0, n]N , that

|Φu(x)− Φv(x)|

≤ L |u(x)− v(x)|+ ω0(x)

p∑
i=1

∫
Bx

ω1(x, y) |u(σi(y))− v(σi(y))| dy

≤
(
L+ pω̄n

γNn
NN

)
|u− v|γn , ∀ u, v ∈ X,

where

ω̄n = sup
x∈[0,n]N

ω0(x) sup
(x,y)∈∆n

ω1(x, y), ∆n = {(x, y) ∈ [0, n]2N : y ∈ Bx}.

If |x|1 ≥ γn then Φ has the following property

|Φu(x)− Φv(x)|

≤ L |u(x)− v(x)|+ ω̄n

p∑
i=1

∫
Bx, |σi(y)|1≤γn

|u(σi(y))− v(σi(y))| dy

+ ω̄n

p∑
i=1

∫
Bx, |σi(y)|1≥γn

|u(σi(y))− v(σi(y))| dy,

leads to

|Φu(x)− Φv(x)| e−hn(|x|1−γn)

≤ L |u− v|hn

+ ω̄ne
−hn(|x|1−γn) |u− v|γn

p∑
i=1

∫
Bx, |σi(y)|1≤γn

dy

+ ω̄n |u− v|hn
p∑
i=1

∫
Bx, |σi(y)|1≥γn

ehn(|σi(y)|1−|x|1)dy

≤ L |u− v|hn + ω̄ne
−hn(|x|1−γn) |u− v|γn ϕ(γn)

+ ω̄n |u− v|hn
p∑
i=1

1

hNn
,
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where hn > 0 is also chosen later and ϕ(γn) =
p∑
i=1

∫
Bx, |σi(y)|1≤γn

dy, so

|Φu− Φv|hn ≤
(
L+ pω̄n

1

hNn

)
|u− v|hn + ω̄nϕ(γn) |u− v|γn .

Consequently

‖Φu− Φv‖n = |Φu− Φv|γn + |Φu− Φv|hn ≤ Ln ‖u− v‖n ,
with

Ln = max

{
L+ ω̄n

(
p
γNn
NN

+ ϕ(γn)

)
, L+ pω̄n

1

hNn

}
.

Φ becomes a Ln-contraction on (X, ‖·‖n) if we can choose γn ∈ (0, n), hn > 0

such that Ln < 1. Clearly, we need choose hn > N

√
pω̄n
1−L .

By (A5), lim
γn→0+

(
p γ

N
n

NN + ϕ(γn)
)

= 0, so γn can be chosen small enough such

that 0 < p γ
N
n

NN + ϕ(γn) < 1−L
ω̄n

. Thus, Φ has one fixed point ξ.

Next, with the transformation u = v + ξ, Eq (1.1) is written in the form

v(x) = Uv(x) + Cv(x), x ∈ RN+ , (3.1)

where
Uv(x) = −ξ(x) + V

(
x, v(x) + ξ(x),∫

Bx
V1 (x, y, (v + ξ) (σ1(y)), ..., (v + ξ) (σp(y))) dy

)
,

Cv(x) =
∫
RN+

F (x, y; (v + ξ) (χ1(y)), ..., (v + ξ) (χq(y)) ) dy, x ∈ RN+ .

It is similar to Φ, we can show that U is a Ln−contraction, with respect to
‖·‖n.

Now we prove that C is completely continuous on X. By (A3)− (A5), using
the dominated convergence theorem and Lemma 2.1, this proof as follows.
(i) For any v0 ∈ X, let {vm} be a sequence in X such that lim

m→∞
vm = v0. Let

n ∈ N be fixed. For any given ε > 0, by
∫
RN+

sup
x∈[0,n]N

ω2(x, y)dy < ∞, there

exists Tn ∈ N (Tn is big enough) such that∫
RN+ \B̄n

ω2(x, y)dy ≤
∫
RN+ \B̄n

sup
x∈[0,n]N

ω2(x, y)dy <
ε

4
, ∀x ∈ [0, n]N . (3.2)

where B̄n = {y ∈ RN+ : y2
1 + y2

2 + ...+ y2
N ≤ T 2

n}.
Put K1 = {(vm + ξ) (χ1(y)) : y ∈ B̄n, m ∈ Z+}, then K1 is compact in

E. The same holds true for K2, ...,Kq. For ε > 0 be given as above, by F
is continuous on the compact set [0, n]N × B̄n × K1 × ... × Kq, there exists
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δ > 0 such that for every (u1, ..., uq), (ū1, ..., ūq) ∈ K1 × ...×Kq, |ui − vi| < δ,
i = 1, ..., q,

|F (x, y;u1, ..., uq)− F (x, y; ū1, ..., ūq)| <
ε

2mes(B̄n)
,

for all (x, y) ∈ [0, n]N × B̄n. With i = 1, ..., q, by

lim
m→∞

sup
y∈B̄n

|(vm + ξ)(χi(y))− (v0 + ξ)(χi(y))| = 0,

there exists m0 such that for m > m0,

|(vm + ξ)(χi(s))− (v0 + ξ)(χi(s))| < δ,

for all y ∈ B̄n, i = 1, ..., q. This implies that for all x ∈ [0, n]N , for all m > m0,

|Cvm(x)− Cv0(x)| ≤
∫
B̄n

|F (x, y; (vm + ξ)(χ1(y)), ..., (vm + ξ) (χq(y)) )

− F (x, y; (v0 + ξ)(χ1(y)), ..., (v0 + ξ) (χq(y)) )| dy

+2

∫
RN+ \B̄n

ω2(x, y)dy

< mes(B̄n)× ε

2mes(B̄n)
+ 2

ε

4
= ε,

so |Cvm − Cv0|n < ε, for all m > m0, and the continuity of C is proved.
(ii) It remains to show that C maps a bounded set Ω of X into relatively
compact set. Let n ∈ N be fixed. Consider any ε > 0 given. Then, there
exists Tn ∈ N such that (3.2) is valid.

(a) For any v ∈ Ω, for all x, x̄ ∈ [0, n]N ,

|Cv(x)− Cv(x̄)|

≤
∫
B̄n

|F (x, y; (v + ξ)(χ1(y)), ..., (v + ξ) (χq(y)))

− F (x̄, y; (v + ξ)(χ1(y)), ..., (v + ξ) (χq(y)))| dy

+

∫
RN+ \B̄n

(ω2(x, y) + ω2(x̄, y)) dy. (3.3)

According to (3.2), (3.3) and the hypothesis (A4), (CΩ)n is equicontinuous on
Xn.

(b) For every x ∈ [0, n]N , consider the set (CΩ)n(x) = {Cv|[0,n]N (x) : v ∈ Ω}
and let {Cvk|[0,n]N (x)}k, vk ∈ Ω, be a sequence in (CΩ)n(x). We need show

that there exists a convergent subsequence of {Cvk|[0,n]N (x)}k.
Put Si = {(y + ξ)(χi(y)) : y ∈ Ω, y ∈ B̄n}, i = 1, ..., q. Then S1, ..., Sq

are bounded in E and consequently the set F ([0, n]N × B̄n × S1 × ... × Sq)
is relatively compact in E, since F is completely continuous. The sequence
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{F (x, y; (vk + ξ)(χ1(y)), ..., (vk + ξ)(χq(y)))}k belongs to F ([0, n]N×B̄n×S1×
...× Sq), so there exists a subsequence{

F
(
x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))

)}
j

and Ψ(x, y) ∈ E, such that∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)
−Ψ(x, y)

∣∣→ 0 (3.4)

as j →∞. On the other hand, by (A4),∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)∣∣ ≤ ω2(x, y),

for all (x, y) ∈ [0, n]N × B̄n. Hence∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)
−Ψ(x, y)

∣∣ ≤ 2ω2(x, y), (3.5)

for all (x, y) ∈ [0, n]N × B̄n, ω2(x, ·) ∈ L1
(
B̄n
)
. Using the dominated conver-

gence theorem, (3.4) and (3.5) yield∫
B̄n

∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)
−Ψ(x, y)

∣∣ dy → 0

as j →∞. It means that, for given ε > 0, there exists j0 such that for j > j0,∫
B̄n

∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)
−Ψ(x, y)

∣∣ dy < ε

2
.

Consequently, for j > j0,∣∣∣∣Cvkj (x)−
∫
B̄n

Ψ(x, y)dy

∣∣∣∣
≤

∫
B̄n

∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)
−Ψ(x, y)

∣∣ dy
+

∫
RN+ \B̄n

∣∣F (x, y; (vkj + ξ)(χ1(y)), ..., (vkj + ξ)(χq(y))
)∣∣ dy

≤ ε

2
+

∫
RN+ \B̄n

ω2(x, y)dy <
ε

2
+
ε

4
< ε,{

Cvkj (x)
}
j

is a convergent subsequence of {Cvk(x)}k, then (CΩ)n(x) is rela-

tively compact in E. In view of Lemma 2.1, C(Ω) is relatively compact in X.
Therefore, C is completely continuous.

On the other hand, it follows from (A4) that

|Cv(x)| ≤
∫
RN+

sup
x∈[0,n]N

ω2(x, y)dy <∞, ∀ x ∈ [0, n]N .

The result is lim
|v|n→∞

|Cv|n
|v|n

= 0. Applying Theorem 1.1, U +C has a fixed point

v in X. Hence, (1.1) has a solution u = v + ξ on RN+ .
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Finally, we show that every solution u of (1.1) is an asymptotically stable
solution. Note that for all x ∈ RN+ ,

ξ(x) = V

(
x, ξ(x),

∫
Bx

V1 (x, y, ξ(σ1(y)), ..., ξ(σp(y))) dy

)
.

So, with v = u− ξ, we obtain

|v(x)| ≤ L |v(x)|+ ω0(x)

p∑
i=1

∫
Bx

ω1(x, y)|v(σi(y))|dy +

∫
RN+

ω2(x, y)dy.

It follows that

|v(x)| ≤
p∑
i=1

∫
Bx

r(x, y)|v(σi(y))|dy + a(x),

where

a(x) =
1

1− L

∫
RN+

ω2(x, y)dy,

r(x, y) =
1

1− L
ω0(x)ω1(x, y) ≤ r(x, 0) ≤ r(0, 0).

It implies the next property of |v(x)|, the proof will be presented in Remark
3.2 below,

|v(x)| ≤ ā(x) + R̄(x) exp
(
R̄(0)x1x2...xN

) ∫
Bx

ā(y)dy. (3.6)

Obviously, if the following condition holds

lim
|x|1→+∞

[
ā(x) + R̄(x) exp

(
R̄(0)x1x2...xN

) ∫
Bx

ā(y)dy

]
= 0, (3.7)

then

lim
|x|1→+∞

|v(x)| = lim
|x|1→+∞

|u(x)− ξ(x)| = 0.

So, for any solution ũ of (1.1), lim
|x|1→+∞

|u(x)− ũ(x)| = 0. Theorem 3.1 is

proved. �

Remark 3.1. Assumption (A5) is reasonable. Can choose the following two
examples.
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Example 3.1. Consider σi(x) = x, then σi satisfies (A5). Indeed,∫
y∈[0,n]N , |y|1≤η

dy ≤
∫
RN+ , |y|1≤η

dy

=

∫
...

∫
RN+ , y1+...+yN≤η

dy1...dyN =
ηN

N !
→ 0,

as η → 0+.

Example 3.2. In the case of σi(y) = by, 0 < b < 1, (A5) also holds. Indeed,
we have∫

y∈[0,n]N , |by|1≤η
dy =

∫
y∈[0,n]N , |y|1≤

η
b

dy ≤
(η
b

)N
N !

=
ηN

N !bN
→ 0,

as η → 0+. So is the condition (3.7). We give an example in which ω0, ω1, ω2,
σi satisfying (3.7).

Example 3.3.
ω1(x, y) =

√
(1−L)α1√

1+β1 exp(γ1|x|N1 )+β2|y|
λ1
1

, ω0(x) =

√
(1−L)α1√

1+β1 exp(γ1|x|N1 )
,

ω2(x, y) =
exp(−γ2|x|1)

1+|y|λ22
, |y|2 =

√
y2

1 + ...+ y2
N ; σi(x) = σ̄ix, 1 ≤ i ≤ p,

where α1, β1, β2, γ1, γ2, λ1, λ2, σ̄i (1 ≤ i ≤ p) are positive constants with

λ1 > N, λ2 > N, 0 < σ̄i ≤ 1, σmin = min
1≤i≤p

σ̄i, γ1 >
(p+1)α1

NN (1+β1)σmin
.

Calculating the functions r(x, y), R(x), a(x) :

r(x, y) = 1
1−Lω0(x)ω1(x, y) = α1√

1+β1 exp(γ1|x|N1 )+β2|y|N+1
1

√
1+β1 exp(γ1|x|N1 )

,

r(x, y) ≤ r(x, 0) = α1

1+β1 exp(γ1|x|N1 )
≡ R(x) ≤ r(0, 0) = α1

1+β1
,

a(x) = 1
1−L

∫
RN+

ω2(x, y)dy =
exp(−γ2|x|1)

1−L
∫
RN+

dy

1+|y|λ22

=
exp(−γ2|x|1)

1−L ωN
∫∞

0
rN−1dy
1+rλ2

≡ α2 exp (−γ2 |x|1) ,

α2 = ωN
1−L

∫∞
0

rN−1dy
1+rλ2

, where ωN is the area of unit sphere in RN .
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And calculating the functions ā(x),
∫
Bx
ā(y)dy, R̄(x) :

ā(x) = a(x) +
∑p

i=1
a(σi(x))

= α2

[
exp (−γ2 |x|1) +

p∑
i=1

exp (−γ2 |σ̄ix|1)

]
≤ (p+ 1)α2 exp (−σminγ2 |x|1)→ 0, as |x|1 → +∞,∫

Bx

ā(y)dy ≤ (p+ 1)α2

(σminγ2)N
(1− e−σminγ2x1)...(1− e−σminγ2xN )

≤ (p+ 1)α2

(σminγ2)N
for all x ∈ RN+ ,

R̄(x) = R(x) +

p∑
i=1

R(σi(x))

=
α1

1 + β1 exp
(
γ1 |x|N1

) +

p∑
i=1

α1

1 + β1 exp
(
γ1 |σ̄ix|N1

)
≤ (p+ 1)α1

1 + β1 exp
(
σminγ1 |x|N1

) ≤ (p+ 1)α1

β1
exp

(
−σminγ1 |x|N1

)
,

R̄(0) =
(p+ 1)α1

1 + β1
.

Since γ1 >
(p+1)α1

NN (1+β1)σmin
, it follows that

R̄(x) exp
(
R̄(0)x1x2...xN

)
≤ (p+ 1)α1

β1
exp

(
−σminγ1 |x|N1

)
exp

(
(p+ 1)α1

1 + β1

|x|N1
NN

)

=
(p+ 1)α1

β1
exp

(
−
[
σminγ1 −

(p+ 1)α1

NN (1 + β1)

]
|x|N1

)
→ 0,

as |x|1 → +∞. Then (3.7) holds.

Remark 3.2. The inequality (3.6) is true. Indeed, put

w(x) = |v(x)|, Aw(x) =

∫
Bx

r(x, y)w(y)dy,

R(x) = r(x, 0), R̄(x) = R(x) +

p∑
i=1

R(σi(x)), x ∈ RN+ .
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(i) Assume that p = 1, σ1(y) = y, then

Aw(x) =

∫
Bx

r(x, y)w(y)dy ≤ R(x)

∫
Bx

w(y)dy, ∀ w ∈ C(RN+ ;R+).

It implies that

w(x) ≤ a(x) +Aw(x) ≤ a(x) +A (a+Aw) (x)

= a(x) +Aa(x) +A2w(x) ≤ ...

≤ a(x) +

n−1∑
k=0

Ak+1a(x) +An+1w(x).

By induction, the result is

Ak+1w(x) ≤ R(x)
(R(0)x1x2...xN )k

(k!)N

∫
Bx

w(y)dy.

So

w(x) ≤ a(x) +R(x)
∑n−1

k=0

(R(0)x1x2...xN )k

(k!)N

∫
Bx

a(y)dy (3.8)

+R(x)
(R(0)x1x2...xN )n

(n!)N

∫
Bx

w(y)dy.

For X0 > 0 is given, it leads to∣∣∣∣∣(R(0)x1x2...xN )k

(k!)N

∣∣∣∣∣ ≤
(
R(0)XN

0

)k
(k!)N

, ∀ x ∈ [0, X0]N , ∀ k ∈ N.

The positive series
∑∞

k=0
(R(0)XN

0 )
k

(k!)N
converges (via a standard of D’Alembert)

and then
∑∞

k=0
(R(0)x1x2...xN )k

(k!)N
converges uniformly on [0, X0]N (via a standard

of Weierstrass). By the continuity of the function x 7−→ (R(0)x1x2...xN )k

(k!)N
on

[0, X0]N , the sum of the series
∑∞

k=0
(R(0)x1x2...xN )k

(k!)N
is continuous on [0, X0]N .

On the other hand, X0 > 0 is arbitrary, so the sum of this series is continuous
on N

+ .

Note that (R(0)x1x2...xN )n

(n!)N
→ 0 as n → ∞, for all x ∈ RN+ , it implies from

(3.8) that

w(x) ≤ a(x) +R(x)

∞∑
k=0

(R(0)x1x2...xN )k

(k!)N

∫
Bx

a(y)dy, ∀ x ∈ RN+ .
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(ii) Let p ≥ 2, note that Bσi(x) ⊂ Bx, for all x ∈ RN+ , so we have

w(σi(x)) ≤ a(σi(x)) +R(σi(x))

p∑
j=1

∫
Bx

w(σj(y))dy.

Hence
p∑
i=1

w(σi(x)) ≤
p∑
i=1

a(σi(x)) +

p∑
i=1

R(σi(x))

p∑
j=1

∫
Bx

w(σj(y))dy.

Put w̄(x) = w(x) +
∑p

i=1w(σi(x)), consequently

w̄(x) ≤ ā(x) + R̄(x)

∫
Bx

w̄(y)dy.

By

0 ≤
(
R̄(0)x1x2...xN

)k
(k!)N

≤
(
R̄(0)x1x2...xN

)k
k!

, ∀x ∈ RN+ .

Consequently,

∞∑
k=0

(
R̄(0)x1x2...xN

)k
(k!)N

≤
∞∑
k=0

(
R̄(0)x1x2...xN

)k
k!

= exp
(
R̄(0)x1x2...xN

)
, ∀x ∈ RN+ .

Therefore

w(x) ≤ w̄(x) ≤ ā(x) + R̄(x) exp
(
R̄(0)x1x2...xN

) ∫
Bx

ā(y)dy,

for all x ∈ RN+ . Then (3.6) holds.

4. Compactness of the set of solutions

Theorem 4.1. Let (A1)− (A5) hold. Then the set of solutions of the problem
(1.1) is nonempty and compact.

Proof. Put

Φu(x) = V

(
x, u(x),

∫
Bx

V1 (x, y, u(σ1(y)), ..., u(σp(y))) dy

)
, (4.1)

C̄u(x) =

∫
RN+

F (x, y, u(χ1(y)), ...., u(χq(y))) dy, (x, u) ∈ RN+ ×X.

It is similar to C, we can show that C̄ : X → X is completely continuous such

that lim
|u|n→∞

|C̄u|
n

|u|n
= 0, ∀n ∈ N. Then Φ + C̄ has a fixed point, it implies that

Q = {u ∈ X : u = (I − Φ)−1C̄u} 6= φ. We shall show that Q is compact.
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First, Q bounded in X. Indeed, by Assumption (A4), for all n ∈ N, for all
(x, u) ∈ [0, n]N ×X, we get∣∣C̄u(x)

∣∣ ≤ ∫
RN+
|F (x, y, u(χ1(y)), ...., u(χq(y)))| dy (4.2)

≤
∫
RN+

ω2(x, y)dy ≤
∫
RN+

sup
x∈[0,n]N

ω2(x, y)dy

≡ Dn <∞.
Hence ∣∣C̄u∣∣

n
≤ Dn. (4.3)

Then, for all u ∈ Q, we have

‖u‖n =
∥∥Φu+ C̄u

∥∥
n
≤ ‖Φu− Φ0‖n + ‖Φ0‖n +

∥∥C̄u∥∥
n

≤ Ln ‖u‖n + ‖Φ0‖n +
∥∥C̄u∥∥

n
.

Thus

‖u‖n ≤
‖Φ0‖n +

∥∥C̄u∥∥
n

1− Ln
≤
‖Φ0‖n + 2

∣∣C̄u∣∣
n

1− Ln
(4.4)

≤
‖Φ0‖n + 2Dn

1− Ln
, ∀ u ∈ Q.

Next, from the compactness of the operator (I−Φ)−1C̄ : X → X, it follows
from (4.4) that Q = (I −Φ)−1C̄(Q) is relatively compact. It remains to prove
that Q is closed. Let {um}m ⊂ Q be a sequence and um → u0 in X.

For all n ∈ N, by the continuity of the operators Φ, C̄ : X → X, we have∣∣Φu0 + C̄u0 − u0

∣∣
n
≤

∣∣um − u0 − Φum + Φu0 − C̄um + C̄u0

∣∣
n

≤ |um − u0|n + |Φum − Φu0|n +
∣∣C̄um − C̄u0

∣∣
n

→ 0.

So
u0 = Φu0 + C̄u0,

which implies that u0 ∈ Q. Therefore, Q is closed. The proof of Theorem 4.1
is complete. �

5. An example

Let us illustrate the results obtained by means of an example.

Let E = C([0, 1];R) be the Banach space of all continuous functions v :
[0, 1]→ R with the norm

‖v‖ = sup
0≤t≤1

|v(t)| , v ∈ E.
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Then, for all u ∈ X = C(R2
+;E), for any x ∈ R2

+, u(x) is an element of
E and we denote

u(x)(t) = u(x, t), 0 ≤ t ≤ 1.

Consider (1.1) in form

u(x) = V

(
x, u(x),

∫
Bx

V1 (x, y, u(σ1(y)), ..., u(σp(y))) dy

)
(5.1)

+

∫
R2
+

F (x, y, u(χ1(y)), ...., u(χq(y))) dy, x ∈ R2
+,

where σi(x) = σ̄ix, 0 < σ̄i ≤ 1, i = 1, ..., p; χi(x) = χ̄ix, 0 < χ̄i ≤ 1, i = 1, ..., q;
Bx = [0, x1]× [0, x2]. Giving the continuous functions V, V1, F as follows.
(i) Function V : R2

+ × E2 → E,

V (x, u, v)(t) = 2(1− k1)u∗(x, t) + k1 |u(t)|+ e−γ|x|
2
1 |v(t)| ,

0 ≤ t ≤ 1, (x, u, v) ∈ R2
+ × E2 with u∗(x, t) = 1

t+e|x|1
and γ, k1 are given

constants such that 0 < k1 < 1, γ > (1+p)π
2(1−k1)θ > 0, θ = min

1≤i≤p
σ̄2
i .

(ii) Function V1 : ∆× Ep → E,

V1 (x, y;u1, ..., up) (t) = e−2|y|1u∗(x, t)

p∑
i=1

sin

(
π

ui(t)

u∗(σi(y), t)

)
,

0 ≤ t ≤ 1, (x, y;u1, ..., up) ∈ ∆× Ep, ∆ = {(x, y) ∈ R2
+ × R2

+ : y ∈ Bx}.
(iii) Function F : R2

+ × R2
+ × Eq → E,

F (x, y;u1, ..., uq) (t)

=
4

q
(k1 − 1) e−2|y|1u∗(x, t)

q∑
i=1

sin

(
π

2

∫ 1

0

ui(s)

u∗(χi(y), s)
ds

)
,

0 ≤ t ≤ 1, (x, y;u1, ..., uq) ∈ R2
+ × R2

+ × Eq.

We can prove that (A1) − (A5) hold. It is easy to see that (A5) holds, see
Remark 3.1.

(a) Assumption (A1) holds, by for all (x, u, v), (x, ū, v̄) ∈ R2
+×E2, ∀t ∈ [0, 1],

‖V (x, u, v)− V (x, ū, v̄)‖ ≤ k1 ‖u− ū‖+ ω0(x) ‖v − v̄‖

with ω0(x) = e−γ|x|
2
1 .
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(b) Assumption (A2) holds, for all (x, y;u1, ..., up) , (x, y; ū1, ..., ūp) ∈ ∆×Ep,
∆ = {(x, y) ∈ R2

+ × R2
+ : y ∈ Bx}, ∀t ∈ [0, 1],

|V1 (x, y;u1, ..., up) (t)− V1 (x, y; ū1, ..., ūp) (t)|

≤ e−2|y|1u∗(x, t)

p∑
i=1

π

u∗(σi(y), t)
|ui(t)− ūi(t)|

≤ πe−2|y|1 1

t+ e|x|1

p∑
i=1

(t+ e|σi(y)|1) ‖ui − ūi‖

= πe−|y|1
1

t+ e|x|1

p∑
i=1

(te−|y|1 + e−|y|1+|σi(y)|1) ‖ui − ūi‖

≤ 2πe−|x|1−|y|1
p∑
i=1

‖ui − ūi‖

= ω1(x, y)
∑p

i=1
‖ui − ūi‖ ,

in which

ω1(x, y) = 2πe−|x|1−|y|1 .

(c) Assumption (A3) is also fulfilled.
First, we can show F : R2

+ × R2
+ × Eq → E is continuous.

Next, we show F : R2
+ × R2

+ × Eq → E is compact. Let B is bounded in
R2

+ × R2
+ × Eq, we deduce from

‖F (x, y;u1, ..., uq)‖ ≤ ω2(x, y) = 4(1− k1)e−|x|1−2|y|1

≤ 4(1− k1) ≡M, ∀ (x, y;u1, ..., uq) ∈ B,

that F (B) is uniformly bounded in E. For all t1, t2 ∈ [0, 1], (x, y;u1, ..., uq) ∈
B,

F (x, y;u1, ..., uq) (t1)− F (x, y;u1, ..., uq) (t2)

=
4

q
(k1 − 1) e−2|y|1 t2 − t1(

t1 + e|x|1
) (
t2 + e|x|1

) q∑
i=1

sin

(
π

2

∫ 1

0

ui(s)

u∗(χi(y), s)
ds

)
,

so

|F (x, y;u1, ..., uq) (t1)− F (x, y;u1, ..., uq) (t2)|

≤ 4(1− k1)e−2|y|1 |t2 − t1|(
t1 + e|x|1

) (
t2 + e|x|1

)
≤ 4(1− k1) |t2 − t1| ,

it implies that F (B) is equicontinuous.
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Finally, for all bounded subsets I1, I2 of R2
+ and for any bounded subset J

of Eq, for all ε > 0, there exists δ > 0, such that

∀ x, x̄ ∈ I1, |x− x̄|1 < δ =⇒ ‖F (x, y;u1, ..., uq)−F (x̄, y;u1, ..., uq)‖ < ε,

for all (y;u1, ..., uq) ∈ I2 × J.
We get the above property, since

‖F (x, y;u1, ..., uq)− F (x̄, y;u1, ..., uq)‖ ≤ 4(1− k1) |x− x̄|1 ,

for all x, x̄ ∈ I1, (y;u1, ..., uq) ∈ I2 × J. Indeed,

F (x, y;u1, ..., uq)(t)− F (x̄, y;u1, ..., uq)(t)

=
4

q
(k1 − 1) e−2|y|1 [u∗(x, t)− u∗(x̄, t)]

q∑
i=1

sin

(
π

2

∫ 1

0

ui(s)

u∗(χi(y), s)
ds

)

=
4

q
(k1 − 1) e−2|y|1 e|x̄|1 − e|x|1

(t+ e|x|1)(t+ e|x̄|1)

q∑
i=1

sin

(
π

2

∫ 1

0

ui(s)

u∗(χi(y), s)
ds

)
,

so

|F (x, y;u1, ..., uq)(t)− F (x̄, y;u1, ..., uq)(t)|

≤ 4(1− k1)e−2|y|1

∣∣e|x̄|1 − e|x|1∣∣
(t+ e|x|1)(t+ e|x̄|1)

≤ 4(1− k1)e−2|y|1 ||x̄|1 − |x|1|
≤ 4(1− k1) |x̄− x|1 .

(d) Assumption (A4) is also clearly, by the fact that, for all bounded subset
I ⊂ R2

+, ∀(x, y;u1, ..., uq) ∈ I × R2
+ × Eq, ∀t ∈ [0, 1],

|F (x, y;u1, ..., uq) (t)| ≤ 4 (1− k1) e−2|y|1u∗(x, t) ≤
4(1− k1)e−2|y|1

t+ e|x|1

≤ 4(1− k1)e−|x|1−2|y|1 = ω2(x, y),∫
R2
+

sup
x∈I

ω2(x, y)dy ≤ 4(1− k1)

∫
R2
+

e−2|y|1dy = 1− k1 <∞,

since
∫
R2
+
e−2|y|1dy = 1

4 . On the other hand, the condition (3.7) is true. Indeed,

ω0(x) = e−γ|x|
2
1 ,

ω1(x, y) = 2πe−|x|1−|y|1 ,

ω2(x, y) = 4(1− k1)e−|x|1−2|y|1 .

(i) ā(x)→ 0 as |x|1 → +∞ :
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a(x) =
1

1− k1

∫
R2
+

ω2(x, y)dy

=
1

1− k1
4(1− k1)e−|x|1

∫
R2
+

e−2|y|1dy = e−|x|1 , ∀x ∈ R2
+;

ā(x) = a(x) +

p∑
i=1

a(σi(x)) = e−|x|1 +

p∑
i=1

e−σ̄i|x|1 → 0.

(ii) R̄(x) exp
(
R̄(0)x1x2

) ∫
Bx
ā(y)dy → 0 as |x|1 → +∞ :

(ii1)
∫
Bx
ā(y)dy is bounded:

∫
Bx

ā(y)dy =

∫
Bx

e−|y|1dy +

p∑
i=1

∫
Bx

e−σ̄i|y|1dy

= (1− e−x1)(1− e−x2) +

p∑
i=1

1

σ̄2
i

(1− e−σ̄ix1)(1− e−σ̄ix2)

≤ 1 +

p∑
i=1

1

σ̄2
i

,

(ii2) R̄(x) exp
(
R̄(0)x1x2

)
→ 0 as |x|1 → +∞ :

R(x) =
1

1− L
ω0(x)ω1(x, 0) =

2π

1− k1
e−γ|x|

2
1−|x|1 ,

R̄(x) = R(x) +

p∑
i=1

R(σi(x))

=
2π

1− k1

[
e−γ|x|

2
1−|x|1 +

p∑
i=1

e−γσ̄
2
i |x|

2
1−σ̄i|x|1

]
≤ 2(1 + p)π

1− k1
e−γθ|x|

2
1 ,

θ = min
1≤i≤p

σ̄2
i , R̄(0) =

2(1 + p)π

1− k1
,
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R̄(x) exp
(
R̄(0)x1x2

)
≤ 2(1 + p)π

1− k1
e−γθ|x|

2
1 exp

(
R̄(0)

1

4
|x|21

)
=

2(1 + p)π

1− k1
e−γθ|x|

2
1 exp

(
(1 + p)π

2(1− k1)
|x|21

)
=

2(1 + p)π

1− k1
exp

[
−
(
γ − (1 + p)π

2(1− k1)θ

)
θ |x|21

]
→ 0, as |x|1 → +∞,

since γ − (1+p)π
2(1−k1)θ > 0. The result is R̄(x) exp

(
R̄(0)x1x2

) ∫
Bx
ā(y)dy → 0 as

|x|1 → +∞, then (3.7) follows. Theorem 3.1 holds for (5.1). For more details,
it is not difficult to show that the following equation

ξ(t) = V

(
x, ξ(x),

∫
Bx

V1 (x, y, ξ(σ1(y)), ..., ξ(σp(y))) dy

)
, x ∈ R2

+

has a unique solution ξ defined by

ξ : R2
+ → E, ξ(x)(t) = ξ(x, t) =

2

t+ e|x|1
, ∀ t ∈ [0, 1], (5.2)

and

u∗ : R2
+ → E, u∗(x)(t) = u∗(x, t) =

1

t+ e|x|1
, ∀ t ∈ [0, 1], (5.3)

is the solution of (5.1). Furthermore

lim
|x|1→∞

‖u∗(x)− ξ(x)‖ = lim
|x|1→∞

e−|x|1 = 0.

Consequently, ξ and x∗ as in (5.2), (5.3) are asymptotically stable solutions
of (5.1).
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