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Abstract. In this paper, we introduce the notion of Finsler C*-bimodule. We generalize
some significant properties of Hilbert C*-bimodules in the framework of Finsler C*-bimodules
and show that if F is an imprimitivity Finsler A-B-bimodule of C*-algebras A and B such
that the corresponding maps 4p and pp satisfy the parallelogram law on E, then E is a
Hilbert A-B-bimodule.

1. INTRODUCTION

The notion of Finsler module is an interesting generalization of Hilbert C*-
module.
In 1995, Phillips and Weaver [8] introduced the notion of Finsler C*-module
and showed that if a C*-algebra A has no nonzero commutative ideal, then
any Finsler A-module is a Hilbert .A-module. In this paper, we introduce the
notion of Finsler C*-bimodules and prove some properties of Finsler bimodules
over commutative C*-algebras and show that if £ is an imprimitivity Finsler
A-B-bimodule of C*-algebras A and B such that the corresponding maps 4p
and pp satisfy the parallelogram law on F, then F is a Hilbert A-B-bimodule.
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2. PRELIMINARIES

Let us recall the definition of a Finlser module [2, 8].

Definition 2.1. Let A be a C*-algebra and AT be the set of all positive
elements of A. Let E be a left module over A and the map 4p : E — AT
satisfy the following conditions:

(i) The map ||.||g : = — ||ap(z)| makes E into a Banach space;

(ii) ap(ax)? = aqp(x)?a*, for alla € A and x € E.
Then FE is called a left Finsler module over A under the map 4p. A right
Finsler module is defined similarly.

A left Finsler module over a C*-algebra A is said to be full if the linear span
{ap(x)? : € E} denoted by F(E) is dense in A.

Example 2.2. If F is a left (full) Hilbert C*-module over A, then E together

with gp(z) = <a:,:v>% is a left (full) Finsler module over A, since 4p(ar)? =

az,ax) = alzx, r)a* = ap(x)’a*.
) ) Ap

3. FINSLER C*-BIMODULES

In this section, we state the notions of Finsler C*-bimodule and imprimi-
tivity Finsler bimodule. We then investigate some properties of Finsler C*-
bimodule and compare them with the Hilbert C*-bimodule. By a pre-Hilbert
bimodule 4FEp over two C*-algebras A and B we mean a left pre-Hilbert A-
module and a right pre-Hilbert B-module such that

(ax)b = a(zb),
(x,az)p = (d"z,y)5,
Alxb,y) = afz,yb")
for all a € A,b € B and x €4 Ep. See [4, Definition 2.13].

Definition 3.1. A Finsler C*-bimodule 4 Fp over a pair of C*-algebras A and
B is a left Finsler module over .4 under the map 4p and a right Finsler module
over B under the map pg such that the following conditions are satisfied:

(i) ap(z)’z = zpp(z)*;

(i) ap(zb)® = ap(xb*)* and ps(az)
where a € A, b€ B and x € 4Fp.

2 _ 2

pB(CL*x) )

Recall that a Finsler C*-bimodule 4FEg has two norms, usually different, as
follows gl||z|| = ||ap(z)| and ||z||g = ||pp(x)||. We however have the following
result.
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Lemma 3.2. Let 4Eg be a Finsler A-B-bimodule and x € 4Ep. If 4p(zb)? <
61%p(2)? and pg(az)? < |la||?ps(x)? for each a € A and b € B, then
lap(@)ll = llps(2)]-

2

Proof. Suppose that = € E and a = 4p(z)? and b = pg(x).
and

Then ax = zb

a* = (ap(2)*)* = aplaz)ip(x)? = ap(xb)dp(z)

< [IblZ%p(x)hp(@)? = [Ibl|*a*.

Hence [Jal[* = [la*]| < [[6]*||al[?, so [lal] < [|b]| or [Lap(2)|] < |lps(@)|. Similarly
we have |[pg(2)|| < [lap(2)]] u

2

Definition 3.3. A Finsler A-B-bimodule F is called an imprimitivity bimod-
ule if it is full both as a left and as a right Finsler moddule over A and B,
respectively.

Example 3.4. Every C*-algebra A is a imprimitivity Finsler 4-.4-bimodule
1 1
over A under the mappings p(z) = (z*x)2 and gp(x) = (zz*)2, x € A.

Example 3.5. Let A be a C*-subalgebra of a C*-algebra B and £ : B — A
be a conditional expectation (i.e. a positive map of norm one satisfying the
following conditions:

E(ab) =a&(b), E(ba)=EDb)a, E(a)=a,
for each a € A and b € B). Then B is a Finsler .A-A-bimodule with respect to
the mappings 4p(x) = (E(xx*))% and pa(z) = (E(x*x))%

Theorem 3.6. Suppose that E is an imprimitivity Finsler A-B-bimodule of
C*-algebras A and B with the maps 4p and pp. If 4p and pg fulfill the paral-
lelogram law on E, then E is a Hilbert A-B-bimodule.

Proof. Let 4p and pp satisfy the parallelogram law on E. Then we have

p5(x +y) + ps(z — y)* = 2p5(x)* + 2p5(y)°
and
ap(@ + )2 +aple = y)? = 24p(x)* + 24p(y)?
for each xz,y € E. By [8, Lemma 13|, F is a Hilbert left .A-module and a
Hilbert right B-module, with the following inner products
3
p(x +i*y)®
k=0

e

_,4<.’E,y> =
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and
13
— -k ko \2
6—422 pB(z +i"y)
k=0
Also
(x,ax)p = 421 ps(z + i*ax)? Zz p5((1 4 iFa)z)?
k=0
1g 1y
= 1 ps((1+1i%a) szpg (143 *a*)x)?
k=0 k:O
13
= 1 i*pp(a*z +i*2)? = (a*z, x)p.
k=0

Let o € C. Replacing x by = + ay in (z,az)p = (a*x,z)p, we get
(+ay,a(z+ay))p = (a’(z + ay),z + ay)s,

whence
(z,ax)p + oz, ay)s + aly, ax)s + aaly, ay)s

= (a"z,x)p + ala*z,y)5 + ala’y, z)5 + aala™y, y)s.
Hence
a(r,ay)s + aly,ar)p = ala’x,y)s + af{a’y, r)s.
Choose a@ =1 to get
<l’, ay)B + <y7 a$>3 = <a*1:,y>3 + <a*y,a7>3.

Also a =1 gives

(z,ay)5 — (y,az)p = (a"x, y) — (a’y, ¥)B.

Therefore (z,ay)p = (a*z,y)p.
Similarly 4(xb,y) =4 (x,yb*). Hence by [4, Definition 2.13], E is a Hilbert
A-B-bimodule. O

Theorem 3.7. Let A and B be two commutative C*-algebras and 4Eg be an
imprimitivity Finsler bimodule and there exist a map ¢ : A — B such that

ar = zp(a), (3.1)
plap (2)?) = ps()?, (3:2)
where a € A and x € sEg. Then pg is a *-isomorphism.

Proof. The proof is similar to that of [1, Main Theorem)]. O
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Let E be a Finsler module over C*-algebra A and Z be a closed two-sided
ideal. Let ZE be the closed linear span of the set {az;a € Z, x € E}. Clearly
TF is a closed submodule of E and by applying the Cohen-Hewitt factorization
theorem ([7, Theorem4.1], and [9, Proposition 2.31]) it is easy to see that
7E=T7TF ={azx;a €I, x € E}.

Theorem 3.8. ([8]) Let E be a Finsler module over a C*-algebra A, T be an
ideal of A and w: A — % be the quotient map and let p = wo 4p. Then %

s a %—module and p descends to a %—valued Finsler norm on %

Lemma 3.9. Let E be a full Finsler module over a C*-algebra A and I be an
ideal of A. Then % is a full Finsler module over C*-algebra %.

Proof. By Lemma 3.8, % is a Finsler module over C*-algebra %. Let b € %
be arbitrary. Then there exists a € A such that b = a + Z. Since F is

full, there exists {u,} in F(F) such that a = limw,. Each u, is of the form
n
kn
Uy = Z )\mAp(a:i’n)Q in which z;, € E and \;,, € C. Hence
i=1

kn kn
b= <115n ZAi,nApm,n)?) +I= (h,gnZ (Ninap(zin)® +I) )
=1 1

Therefore the linear span of { 4p(z)*> +Z : z € E} is equivalent to the linear
span of {p(w +ZIE)?:x ¢ E} which is dense in % as well as % is a full Finsler
module over % O

Theorem 3.10. Let E be an imprimitivity Finsler bimodule over commutative

C*-algebras A and B and T be an ideal of A. Then % s an imprimitivity

Finsler bimodule over % and %, when @ is the x-isomorphism in Theorem

3.7.

Proof. Suppose F is an imprimitivity Finsler bimodule over the commutative
C*-algebras A and B and ¢ : A — B is the *-isomorphism in Theorem 3.7.
Then ¢(Z) is an ideal in B and by (3.1), ZE = Ep(Z). We know that == is

a left module over %, via (a + I)(x + ZE) = ax + ZFE and is a right module

over %, via (z+ZE)(b+ ¢(Z)) =xb+ZE, forallz € E,a € Aand b € B.

By Lemmas 3.8 and 3.9, % is a left full Finsler module over % and a right
A

full Finsler module over %, where 7 : A — % is the quotient map and

E % — (%)Jr is defined by p(x + ZE) = (m o4 p)(x).
Also ' : B — % is the quotient map and p’ : £ — (%)Jr is defined by
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p'(x+ZFE) = n'opp(x). Since E is a Finsler A-B-bimodule, by (i) of Definition
3.1, we have 4p(z)%z = xpg(x)?. Hence
p(z +IE(z+IE) = (moap)(x)*(x+ZIE)
= (Ap(a:)2 —I—I) (r+7IF)
= ap(x)’z +IE
zpp(z)® + IE
(v +ZE)(ps(2)* + ¢5(T))
(x 4+ ZE)(r' o pg)(x)*
= (z+ZE)(z+IE)>.

Also
p((z+ZE)b+ ¢p(T)? = plzb+IE)?
(m 04 p)(wb)?
(o4 p)(ab*)?
= p(zb* +IE)?
= p((z+IE)(b+¢r(D)*)

for each x €4 Ep and b € B.

Similarly we can show that o/ ((a +Z)(z +ZE))* = p/ ((a +I)*(z + IE))*.

Therefore % is an imprimitivity Finsler bimodule over % and D) O

Definition 3.11. Let E be a Finsler A-B-bimodule, Z and J be ideals in A
and B, respectively. The ideal subbimodule 7E s of E associated to Z and J
is defined by

7E7 =span{azb:x € E,a€I,be J}.
Clearly, 7L 7 is a closed subbimodule of E. It can be also regarded as a Finsler
bimodule over Z and 7.

Theorem 3.12. Let E be a Finsler A-B-bimodule , T and J are ideals in A
and B, respectively. Then

7Eg =TEJ = {axb:xz € E,a € A, b€ B}.

Proof. The proof is similar to that of [3, Proposition 1.2] and we remove it. [

Remark 3.13. Let E be a Finsler bimodule over commutative C*-algebras
A and B and there exists a x-isomorphism ¢g : A — B as in Theorem 3.7.
If Z and J are ideals of A and B, respectively, and 7F 7 is the associated

ideal subbimodule, then % is a %—%—bimodule, where ¢ : E — % and
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T A— % and 7 : B — % are the quotient maps and the left action of % and
the right action of % over linear space % are defined by 7(a)q(z) = q(ax)
and g(x)7’(b) = q(xb), respectively. By Theorem 3.10, % is a Finsler %—%
“bimodule, where 4p(q(x)) = 7(4p(x)) and ps (a(x)) = (ps(x)).

In addition, % is an imprimitivity Finsler %—%—bimodule if and only if E is
an imprimitivity Finsler A-B-bimodule. This follows at once from the evident

equalities (4p(q(E))) = m(ap(E)) and (ps(¢(E))) = 7'(p5(E)).

Recall that an ideal Z of a C*-algebra A is essential, if 7+ = {a € A : aZ =
0} ={0}.
Lemma 3.14. Let T be an ideal in a C*-algebra A and It be the set of all
positive elements of Z. The following condition are mutually equivalent:

(a) Z is an essential ideal in A;

(b) llall = sup  (|labl]);
beZt,|b]|<1

(¢) |la]| = sup (||bal|) for each a € A; and
beZt,|b]|<1

(d) |lal]| = sup (||bab||) for each a € AT.
beZ+,|bll<1

Proof. The proof is similar to that of [3, Lemma 1.10], by replacing Z with
. O

Theorem 3.15. Let E be a Finsler A-B-bimodule and I, J be the essential
ideals of A and B, respectively. Then

|z = sup (lbzl]) = sup  ([[zb]])
beZ+,|bll<1 beJ+,|blI<1

for each x € E. Conversely, if E is an imprimitivity Finsler A-B-bimodule
and for each x € F,

[zl = sup  ([jbzf]) = sup  ([lzd]}),
beTH bfI<1 beg+,[lbll<1

then T and J are essential ideals in A and B, respectively.

Proof. Since E is a left Finsler module over C*-algebra A, we have
lz[1* = ap(@)l* = [ap(@)?]l = sup  ([lbap(x)?bl)
beZt,|lblI<1

= sup (||}’
beT+,||bl|<1
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for each x € E. Since FE is a right Finsler module over C*-algebra B, we have

lz]* = llps(2)1* = llps(x)*| = sup  ([[bps(z)*bl)
beJ+,|blI<1

= sup  ([ad]))?
beJt,|blI<1
for each z € F.

Conversely, let £ be an imprimitivity Finsler bimodule. If Z and J are not
essential, then Z+ # {0} and J+ # {0}. Hence there exist nonzero elements
c1 € I+ and ¢ € J+. By [2, Theorem 3.2(iii)], there exist z1,72 € E such
that c¢iz1 # 0 and xocy # 0. By the assumption, we have

[erzill = sup  ([[b(ciz1)l]) =  sup  ([|(ber)z1]]) =0
beZ+,||b|I<1 beZ+ ||blI<1
and
[z2ca|| = sup  ([[(z2c2)bl]) =  sup  ([[z2(c2b)]]) = 0.
beJt,|IblI<1 beJ+,|IblI<1
So c¢1z1 = 0 and x9co = 0, which is a contradiction. Therefore 7 and J are
essential ideals of A and B, respectively. O

Corollary 3.16. Suppose that E is an imprimitivity Finsler A-B-bimodule of
commutative C*-algebras A and B with the maps a4p and pg. Suppose that
T and J are essential ideals of A and B, respectively. If sp and pp satisfy
the parallelogram law on 7E and E, respectively, then E is a Hilbert A-B-
bimodule.

Proof. Since E is an imprimitivity Finsler A-B-bimodule with the maps 4p
and pp, the essential ideal submodules 7F and E; are Finsler modules with
the restriction mappings ap|,r and ps|g,, respectively. Since 4p and ps
satisfy the parallelogram law on 7F and E g, respectively. Hence for each
z,y € E and a € Z and b € J such that ||a|]| <1 and ||b]| < 1, we have

aplaz + ay)® + aplax — ay)® — 24p(ax)® = 24p(ay)* = 0,
a(ap(x +y)* + ap(z —y)? — 24p(x)? — 24p(y)*)a” = 0,
(ap(@ +y)* + aplz — y)* = 24p(x)* = 24p(y)*)a*a = 0.

It follows from Lemma 3.14(b)

lap(z +y)* + ap(x — y)* — 24p(x)* — 24p(y)*| = 0.
Hence
ap(x +y)? + ap(x — y)* = 24p(x)* + 24p(y)*.
Similarly
p(z +y)* + pp(z — y)* = 2p5(2)* + 2p8(y)*.
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Hence 4p and pp satisfy the parallelogram law on E. By Theorem 3.6, E is a

Hilbert A-B-bimodule. O
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