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Abstract. In this paper, we introduce the notion of Finsler C∗-bimodule. We generalize

some significant properties of Hilbert C∗-bimodules in the framework of Finsler C∗-bimodules

and show that if E is an imprimitivity Finsler A-B-bimodule of C∗-algebras A and B such

that the corresponding maps Aρ and ρB satisfy the parallelogram law on E, then E is a

Hilbert A-B-bimodule.

1. Introduction

The notion of Finsler module is an interesting generalization of Hilbert C∗-
module.
In 1995, Phillips and Weaver [8] introduced the notion of Finsler C∗-module
and showed that if a C∗-algebra A has no nonzero commutative ideal, then
any Finsler A-module is a Hilbert A-module. In this paper, we introduce the
notion of Finsler C∗-bimodules and prove some properties of Finsler bimodules
over commutative C∗-algebras and show that if E is an imprimitivity Finsler
A-B-bimodule of C∗-algebras A and B such that the corresponding maps Aρ
and ρB satisfy the parallelogram law on E, then E is a Hilbert A-B-bimodule.
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2. Preliminaries

Let us recall the definition of a Finlser module [2, 8].

Definition 2.1. Let A be a C∗-algebra and A+ be the set of all positive
elements of A. Let E be a left module over A and the map Aρ : E → A+

satisfy the following conditions:

(i) The map ‖.‖E : x 7→ ‖Aρ(x)‖ makes E into a Banach space;
(ii) Aρ(ax)2 = aAρ(x)2a∗, for all a ∈ A and x ∈ E.

Then E is called a left Finsler module over A under the map Aρ. A right
Finsler module is defined similarly.
A left Finsler module over a C∗-algebra A is said to be full if the linear span{
Aρ(x)2 : x ∈ E

}
denoted by F(E) is dense in A.

Example 2.2. If E is a left (full) Hilbert C∗-module over A, then E together

with Aρ(x) = 〈x, x〉
1
2 is a left (full) Finsler module over A, since Aρ(ax)2 =

〈ax, ax〉 = a〈x, x〉a∗ = aAρ(x)2a∗.

3. Finsler C∗-bimodules

In this section, we state the notions of Finsler C∗-bimodule and imprimi-
tivity Finsler bimodule. We then investigate some properties of Finsler C∗-
bimodule and compare them with the Hilbert C∗-bimodule. By a pre-Hilbert
bimodule AEB over two C∗-algebras A and B we mean a left pre-Hilbert A-
module and a right pre-Hilbert B-module such that

(ax)b = a(xb),

〈x, ax〉B = 〈a∗x, y〉B,
A〈xb, y〉 = A〈x, yb∗〉

for all a ∈ A, b ∈ B and x ∈A EB. See [4, Definition 2.13].

Definition 3.1. A Finsler C∗-bimodule AEB over a pair of C∗-algebras A and
B is a left Finsler module over A under the map Aρ and a right Finsler module
over B under the map ρB such that the following conditions are satisfied:

(i) Aρ(x)2x = xρB(x)2;
(ii) Aρ(xb)2 = Aρ(xb∗)2 and ρB(ax)2 = ρB(a∗x)2,

where a ∈ A, b ∈ B and x ∈ AEB.

Recall that a Finsler C∗-bimodule AEB has two norms, usually different, as
follows E‖x‖ = ‖Aρ(x)‖ and ‖x‖E = ‖ρB(x)‖. We however have the following
result.
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Lemma 3.2. Let AEB be a Finsler A-B-bimodule and x ∈ AEB. If Aρ(xb)2 ≤
‖b‖2Aρ(x)2 and ρB(ax)2 ≤ ‖a‖2ρB(x)2 for each a ∈ A and b ∈ B, then
‖Aρ(x)‖ = ‖ρB(x)‖.

Proof. Suppose that x ∈ E and a = Aρ(x)2 and b = ρB(x)2. Then ax = xb
and

a4 = (Aρ(x)2)4 = Aρ(ax)2Aρ(x)2 = Aρ(xb)2Aρ(x)2

≤ ‖b‖2Aρ(x)2Aρ(x)2 = ‖b‖2a2.
Hence ‖a‖4 = ‖a4‖ ≤ ‖b‖2‖a‖2, so ‖a‖ ≤ ‖b‖ or ‖Aρ(x)‖ ≤ ‖ρB(x)‖. Similarly
we have ‖ρB(x)‖ ≤ ‖Aρ(x)‖. �

Definition 3.3. A Finsler A-B-bimodule E is called an imprimitivity bimod-
ule if it is full both as a left and as a right Finsler moddule over A and B,
respectively.

Example 3.4. Every C∗-algebra A is a imprimitivity Finsler A-A-bimodule

over A under the mappings ρA(x) = (x∗x)
1
2 and Aρ(x) = (xx∗)

1
2 , x ∈ A.

Example 3.5. Let A be a C∗-subalgebra of a C∗-algebra B and E : B → A
be a conditional expectation (i.e. a positive map of norm one satisfying the
following conditions:

E(ab) = aE(b) , E(ba) = E(b)a , E(a) = a ,

for each a ∈ A and b ∈ B). Then B is a Finsler A-A-bimodule with respect to

the mappings Aρ(x) = (E(xx∗))
1
2 and ρA(x) = (E(x∗x))

1
2 .

Theorem 3.6. Suppose that E is an imprimitivity Finsler A-B-bimodule of
C∗-algebras A and B with the maps Aρ and ρB. If Aρ and ρB fulfill the paral-
lelogram law on E, then E is a Hilbert A-B-bimodule.

Proof. Let Aρ and ρB satisfy the parallelogram law on E. Then we have

ρB(x+ y)2 + ρB(x− y)2 = 2ρB(x)2 + 2ρB(y)2

and

Aρ(x+ y)2 +A ρ(x− y)2 = 2Aρ(x)2 + 2Aρ(y)2

for each x, y ∈ E. By [8, Lemma 13], E is a Hilbert left A-module and a
Hilbert right B-module, with the following inner products

A〈x, y〉 =
1

4

3∑
k=0

ikAρ(x+ iky)2
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and

〈x, y〉B =
1

4

3∑
k=0

ikρB(x+ iky)2.

Also

〈x, ax〉B =
1

4

3∑
k=0

ikρB(x+ ikax)2 =
1

4

3∑
k=0

ikρB((1 + ika)x)2

=
1

4

3∑
k=0

ikρB((1 + ika)∗x)2 =
1

4

3∑
k=0

ikρB((1 + i−ka∗)x)2

=
1

4

3∑
k=0

ikρB(a∗x+ ikx)2 = 〈a∗x, x〉B.

Let α ∈ C. Replacing x by x+ αy in 〈x, ax〉B = 〈a∗x, x〉B, we get

〈x+ αy, a(x+ αy)〉B = 〈a∗(x+ αy), x+ αy〉B,

whence
〈x, ax〉B + α〈x, ay〉B + ᾱ〈y, ax〉B + αᾱ〈y, ay〉B
= 〈a∗x, x〉B + α〈a∗x, y〉B + ᾱ〈a∗y, x〉B + αᾱ〈a∗y, y〉B.

Hence

α〈x, ay〉B + ᾱ〈y, ax〉B = α〈a∗x, y〉B + ᾱ〈a∗y, x〉B.
Choose α = 1 to get

〈x, ay〉B + 〈y, ax〉B = 〈a∗x, y〉B + 〈a∗y, x〉B.

Also α = i gives

〈x, ay〉B − 〈y, ax〉B = 〈a∗x, y〉B − 〈a∗y, x〉B.

Therefore 〈x, ay〉B = 〈a∗x, y〉B.
Similarly A〈xb, y〉 =A 〈x, yb∗〉. Hence by [4, Definition 2.13], E is a Hilbert
A-B-bimodule. �

Theorem 3.7. Let A and B be two commutative C∗-algebras and AEB be an
imprimitivity Finsler bimodule and there exist a map ϕ : A → B such that

ax = xϕ(a), (3.1)

ϕ(Aρ
(
x)2
)

= ρB(x)2, (3.2)

where a ∈ A and x ∈ AEB. Then ϕE is a ∗-isomorphism.

Proof. The proof is similar to that of [1, Main Theorem]. �
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Let E be a Finsler module over C∗-algebra A and I be a closed two-sided
ideal. Let IE be the closed linear span of the set {ax; a ∈ I, x ∈ E}. Clearly
IE is a closed submodule of E and by applying the Cohen-Hewitt factorization
theorem ([7, Theorem4.1], and [9, Proposition 2.31]) it is easy to see that

IE = IE = {ax; a ∈ I, x ∈ E}.

Theorem 3.8. ([8]) Let E be a Finsler module over a C∗-algebra A, I be an
ideal of A and π : A → A

I be the quotient map and let ρ = π ◦ Aρ. Then E
IE

is a AI -module and ρ descends to a AI -valued Finsler norm on E
IE .

Lemma 3.9. Let E be a full Finsler module over a C∗-algebra A and I be an
ideal of A. Then E

IE is a full Finsler module over C∗-algebra AI .

Proof. By Lemma 3.8, E
IE is a Finsler module over C∗-algebra AI . Let b ∈ AI

be arbitrary. Then there exists a ∈ A such that b = a + I. Since E is
full, there exists {un} in F(E) such that a = lim

n
un. Each un is of the form

un =

kn∑
i=1

λi,nAρ(xi,n)2 in which xi,n ∈ E and λi,n ∈ C. Hence

b =

(
lim
n

kn∑
i=1

λi,nAρ(xi,n)2
)

+ I =

(
lim
n

kn∑
1

(
λi,nAρ(xi,n)2 + I

))
.

Therefore the linear span of
{
Aρ(x)2 + I : x ∈ E

}
is equivalent to the linear

span of
{
ρ(x+ IE)2 : x ∈ E

}
which is dense in AI as well as E

IE is a full Finsler

module over AI . �

Theorem 3.10. Let E be an imprimitivity Finsler bimodule over commutative
C∗-algebras A and B and I be an ideal of A. Then E

IE is an imprimitivity

Finsler bimodule over AI and B
ϕ(I) , when ϕ is the ∗-isomorphism in Theorem

3.7.

Proof. Suppose E is an imprimitivity Finsler bimodule over the commutative
C∗-algebras A and B and ϕ : A → B is the ∗-isomorphism in Theorem 3.7.
Then ϕ(I) is an ideal in B and by (3.1), IE = Eϕ(I). We know that E

IE is

a left module over AI , via (a + I)(x + IE) = ax + IE and is a right module

over B
ϕ(I) , via (x+ IE)(b+ ϕ(I)) = xb+ IE, for all x ∈ E, a ∈ A and b ∈ B.

By Lemmas 3.8 and 3.9, E
IE is a left full Finsler module over AI and a right

full Finsler module over B
ϕ(I) , where π : A → A

I is the quotient map and

ρ : E
IE → (AI )+ is defined by ρ(x+ IE) = (π ◦A ρ)(x).

Also π′ : B → B
ϕ(I) is the quotient map and ρ′ : E

IE → ( Bϕ(I))
+ is defined by
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ρ′(x+IE) = π′◦ρB(x). Since E is a Finsler A-B-bimodule, by (i) of Definition
3.1, we have Aρ(x)2x = xρB(x)2. Hence

ρ(x+ IE)2(x+ IE) = (π ◦A ρ)(x)2(x+ IE)

=
(
Aρ(x)2 + I

)
(x+ IE)

= Aρ(x)2x+ IE
= xρB(x)2 + IE
= (x+ IE)(ρB(x)2 + ϕE(I))

= (x+ IE)(π′ ◦ ρB)(x)2

= (x+ IE)ρ′(x+ IE)2.

Also

ρ ((x+ IE)(b+ ϕE(I))2 = ρ(xb+ IE)2

= (π ◦A ρ)(xb)2

= (π ◦A ρ)(xb∗)2

= ρ(xb∗ + IE)2

= ρ ((x+ IE)(b+ ϕE(I))∗)2

for each x ∈A EB and b ∈ B.
Similarly we can show that ρ′ ((a+ I)(x+ IE))2 = ρ′ ((a+ I)∗(x+ IE))2 .
Therefore E

IE is an imprimitivity Finsler bimodule over AI and B
ϕE(I) . �

Definition 3.11. Let E be a Finsler A-B-bimodule, I and J be ideals in A
and B, respectively. The ideal subbimodule IEJ of E associated to I and J
is defined by

IEJ = span{axb : x ∈ E, a ∈ I, b ∈ J }.
Clearly, IEJ is a closed subbimodule of E. It can be also regarded as a Finsler
bimodule over I and J .

Theorem 3.12. Let E be a Finsler A-B-bimodule , I and J are ideals in A
and B, respectively. Then

IEJ = IEJ = {axb : x ∈ E, a ∈ A, b ∈ B}.

Proof. The proof is similar to that of [3, Proposition 1.2] and we remove it. �

Remark 3.13. Let E be a Finsler bimodule over commutative C∗-algebras
A and B and there exists a ∗-isomorphism ϕE : A → B as in Theorem 3.7.
If I and J are ideals of A and B, respectively, and IEJ is the associated
ideal subbimodule, then E

IEJ
is a AI - BJ -bimodule, where q : E → E

IEJ
and
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π : A → A
I and π′ : B → B

J are the quotient maps and the left action of AI and

the right action of BJ over linear space E
IEJ

are defined by π(a)q(x) = q(ax)

and q(x)π′(b) = q(xb), respectively. By Theorem 3.10, E
IEJ

is a Finsler AI - BJ
-bimodule, where A

I
ρ(q(x)) = π(Aρ(x)) and ρ B

J
(q(x)) = π′(ρB(x)).

In addition, E
IEJ

is an imprimitivity Finsler AI - BJ -bimodule if and only if E is

an imprimitivity Finsler A-B-bimodule. This follows at once from the evident
equalities (A

I
ρ(q(E))) = π(Aρ(E)) and (ρ B

J
(q(E))) = π′(ρB(E)).

Recall that an ideal I of a C∗-algebra A is essential, if I⊥ = {a ∈ A : aI =
0} = {0}.

Lemma 3.14. Let I be an ideal in a C∗-algebra A and I+ be the set of all
positive elements of I. The following condition are mutually equivalent:

(a) I is an essential ideal in A;
(b) ‖a‖ = sup

b∈I+,‖b‖61
(‖ab‖);

(c) ‖a‖ = sup
b∈I+,‖b‖61

(‖ba‖) for each a ∈ A; and

(d) ‖a‖ = sup
b∈I+,‖b‖61

(‖bab‖) for each a ∈ A+.

Proof. The proof is similar to that of [3, Lemma 1.10], by replacing I with
I+. �

Theorem 3.15. Let E be a Finsler A-B-bimodule and I, J be the essential
ideals of A and B, respectively. Then

‖x‖ = sup
b∈I+,‖b‖61

(‖bx‖) = sup
b∈J+,‖b‖61

(‖xb‖)

for each x ∈ E. Conversely, if E is an imprimitivity Finsler A-B-bimodule
and for each x ∈ E,

‖x‖ = sup
b∈I+,‖b‖61

(‖bx‖) = sup
b∈J+,‖b‖61

(‖xb‖),

then I and J are essential ideals in A and B, respectively.

Proof. Since E is a left Finsler module over C∗-algebra A, we have

‖x‖2 = ‖Aρ(x)‖2 = ‖Aρ(x)2‖ = sup
b∈I+,‖b‖61

(‖bAρ(x)2b‖)

= sup
b∈I+,‖b‖61

(‖bx‖)2,
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for each x ∈ E. Since E is a right Finsler module over C∗-algebra B, we have

‖x‖2 = ‖ρB(x)‖2 = ‖ρB(x)2‖ = sup
b∈J+,‖b‖61

(‖bρB(x)2b‖)

= sup
b∈J+,‖b‖61

(‖xb‖)2,

for each x ∈ E.
Conversely, let E be an imprimitivity Finsler bimodule. If I and J are not

essential, then I⊥ 6= {0} and J ⊥ 6= {0}. Hence there exist nonzero elements
c1 ∈ I⊥ and c2 ∈ J ⊥. By [2, Theorem 3.2(iii)], there exist x1, x2 ∈ E such
that c1x1 6= 0 and x2c2 6= 0. By the assumption, we have

‖c1x1‖ = sup
b∈I+,‖b‖61

(‖b(c1x1)‖) = sup
b∈I+,‖b‖61

(‖(bc1)x1‖) = 0

and

‖x2c2‖ = sup
b∈J+,‖b‖61

(‖(x2c2)b‖) = sup
b∈J+,‖b‖61

(‖x2(c2b)‖) = 0.

So c1x1 = 0 and x2c2 = 0, which is a contradiction. Therefore I and J are
essential ideals of A and B, respectively. �

Corollary 3.16. Suppose that E is an imprimitivity Finsler A-B-bimodule of
commutative C∗-algebras A and B with the maps Aρ and ρB. Suppose that
I and J are essential ideals of A and B, respectively. If Aρ and ρB satisfy
the parallelogram law on IE and EJ , respectively, then E is a Hilbert A-B-
bimodule.

Proof. Since E is an imprimitivity Finsler A-B-bimodule with the maps Aρ
and ρB, the essential ideal submodules IE and EJ are Finsler modules with
the restriction mappings Aρ|IE and ρB|EJ , respectively. Since Aρ and ρB
satisfy the parallelogram law on IE and EJ , respectively. Hence for each
x, y ∈ E and a ∈ I and b ∈ J such that ‖a‖ ≤ 1 and ‖b‖ ≤ 1, we have

Aρ(ax+ ay)2 + Aρ(ax− ay)2 − 2Aρ(ax)2 − 2Aρ(ay)2 = 0,

a(Aρ(x+ y)2 + Aρ(x− y)2 − 2Aρ(x)2 − 2Aρ(y)2)a∗ = 0,

(Aρ(x+ y)2 + Aρ(x− y)2 − 2Aρ(x)2 − 2Aρ(y)2)a∗a = 0.

It follows from Lemma 3.14(b)

‖Aρ(x+ y)2 + Aρ(x− y)2 − 2Aρ(x)2 − 2Aρ(y)2‖ = 0.

Hence

Aρ(x+ y)2 + Aρ(x− y)2 = 2Aρ(x)2 + 2Aρ(y)2.

Similarly

ρB(x+ y)2 + ρB(x− y)2 = 2ρB(x)2 + 2ρB(y)2.
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Hence Aρ and ρB satisfy the parallelogram law on E. By Theorem 3.6, E is a
Hilbert A-B-bimodule. �
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