IMPRIMITIVITY FINSLER C^{*}-BIMODULES

R. Hassanniah ${ }^{1}$, M. Amyari ${ }^{2}$ and M. Hassani ${ }^{3}$
${ }^{1}$ Department of Mathematics
Mashhad Branch, Islamic Azad University, Mashhad, Iran
e-mail: r.hasannia@yahoo.com
${ }^{2}$ Department of Mathematics
Mashhad Branch, Islamic Azad University, Mashhad, Iran
e-mail: amyari@mshdiau.ac.ir
${ }^{3}$ Department of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran
e-mail: Hassani@mshdiau.ac.ir

Abstract

In this paper, we introduce the notion of Finsler C^{*}-bimodule. We generalize some significant properties of Hilbert C^{*}-bimodules in the framework of Finsler C^{*}-bimodules and show that if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule of C^{*}-algebras \mathcal{A} and \mathcal{B} such that the corresponding maps $\mathcal{A} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E, then E is a Hilbert \mathcal{A} - \mathcal{B}-bimodule.

1. Introduction

The notion of Finsler module is an interesting generalization of Hilbert C^{*} module.
In 1995, Phillips and Weaver [8] introduced the notion of Finsler C^{*}-module and showed that if a C^{*}-algebra \mathcal{A} has no nonzero commutative ideal, then any Finsler \mathcal{A}-module is a Hilbert \mathcal{A}-module. In this paper, we introduce the notion of Finsler C^{*}-bimodules and prove some properties of Finsler bimodules over commutative C^{*}-algebras and show that if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule of C^{*}-algebras \mathcal{A} and \mathcal{B} such that the corresponding maps $\mathcal{A} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E, then E is a Hilbert \mathcal{A} - \mathcal{B}-bimodule.

[^0]
2. Preliminaries

Let us recall the definition of a Finlser module [2, 8].
Definition 2.1. Let \mathcal{A} be a C^{*}-algebra and \mathcal{A}^{+}be the set of all positive elements of \mathcal{A}. Let E be a left module over \mathcal{A} and the $\operatorname{map}_{\mathcal{A}} \rho: E \rightarrow \mathcal{A}^{+}$ satisfy the following conditions:
(i) The map $\|\cdot\|_{E}: x \mapsto\left\|_{\mathcal{A}} \rho(x)\right\|$ makes E into a Banach space;
(ii) $\mathcal{A} \rho(a x)^{2}=a_{\mathcal{A}} \rho(x)^{2} a^{*}$, for all $a \in \mathcal{A}$ and $x \in E$.

Then E is called a left Finsler module over \mathcal{A} under the map ${ }_{\mathcal{A}} \rho$. A right Finsler module is defined similarly.
A left Finsler module over a C^{*}-algebra \mathcal{A} is said to be full if the linear span $\left\{{ }_{\mathcal{A}} \rho(x)^{2}: x \in E\right\}$ denoted by $\mathcal{F}(E)$ is dense in \mathcal{A}.

Example 2.2. If E is a left (full) Hilbert C^{*}-module over \mathcal{A}, then E together with $\mathcal{A}_{\mathcal{A}} \rho(x)=\langle x, x\rangle^{\frac{1}{2}}$ is a left (full) Finsler module over \mathcal{A}, since ${ }_{\mathcal{A}} \rho(a x)^{2}=$ $\langle a x, a x\rangle=a\langle x, x\rangle a^{*}=a_{\mathcal{A}} \rho(x)^{2} a^{*}$.

3. Finsler C^{*}-bimodules

In this section, we state the notions of Finsler C^{*}-bimodule and imprimitivity Finsler bimodule. We then investigate some properties of Finsler C^{*} bimodule and compare them with the Hilbert C^{*}-bimodule. By a pre-Hilbert bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ over two C^{*}-algebras \mathcal{A} and \mathcal{B} we mean a left pre-Hilbert \mathcal{A} module and a right pre-Hilbert \mathcal{B}-module such that

$$
\begin{aligned}
(a x) b & =a(x b), \\
\langle x, a x\rangle_{\mathcal{B}} & =\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}, \\
\mathcal{A}\langle x b, y\rangle & =\mathcal{A}^{\left\langle x, y b^{*}\right\rangle}
\end{aligned}
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in_{\mathcal{A}} E_{\mathcal{B}}$. See [4, Definition 2.13].
Definition 3.1. A Finsler C^{*}-bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ over a pair of C^{*}-algebras \mathcal{A} and \mathcal{B} is a left Finsler module over \mathcal{A} under the map $\mathcal{A}_{\mathcal{A}} \rho$ and a right Finsler module over \mathcal{B} under the map $\rho_{\mathcal{B}}$ such that the following conditions are satisfied:
(i) $\mathcal{A} \rho(x)^{2} x=x \rho_{\mathcal{B}}(x)^{2}$;
(ii) $\mathcal{A} \rho(x b)^{2}={ }_{\mathcal{A}} \rho\left(x b^{*}\right)^{2}$ and $\rho_{\mathcal{B}}(a x)^{2}=\rho_{\mathcal{B}}\left(a^{*} x\right)^{2}$,
where $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in{ }_{\mathcal{A}} E_{\mathcal{B}}$.
Recall that a Finsler C^{*}-bimodule ${ }_{\mathcal{A}} E_{\mathcal{B}}$ has two norms, usually different, as follows ${ }_{E}\|x\|=\left\|_{\mathcal{A}} \rho(x)\right\|$ and $\|x\|_{E}=\left\|\rho_{\mathcal{B}}(x)\right\|$. We however have the following result.

Lemma 3.2. Let ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be a Finsler \mathcal{A} - \mathcal{B}-bimodule and $x \in{ }_{\mathcal{A}} E_{\mathcal{B}}$. If $\mathcal{A}_{\mathcal{A}} \rho(x b)^{2} \leq$ $\|b\|_{\mathcal{A}}^{2} \rho(x)^{2}$ and $\rho_{\mathcal{B}}(a x)^{2} \leq\|a\|^{2} \rho_{\mathcal{B}}(x)^{2}$ for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$, then $\left\|_{\mathcal{A}} \rho(x)\right\|=\left\|\rho_{\mathcal{B}}(x)\right\|$.
Proof. Suppose that $x \in E$ and $a=\mathcal{A}^{\rho} \rho(x)^{2}$ and $b=\rho_{\mathcal{B}}(x)^{2}$. Then $a x=x b$ and

$$
\begin{aligned}
a^{4} & =\left({ }_{\mathcal{A}} \rho(x)^{2}\right)^{4}={ }_{\mathcal{A}} \rho(a x)_{\mathcal{A}}^{2} \rho(x)^{2}={ }_{\mathcal{A}} \rho(x b)_{\mathcal{A}}^{2} \rho(x)^{2} \\
& \leq\|b\|_{\mathcal{A}}^{2} \rho(x)_{\mathcal{A}}^{2} \rho(x)^{2}=\|b\|^{2} a^{2} .
\end{aligned}
$$

Hence $\|a\|^{4}=\left\|a^{4}\right\| \leq\|b\|^{2}\|a\|^{2}$, so $\|a\| \leq\|b\|$ or $\left\|_{\mathcal{A}} \rho(x)\right\| \leq\left\|\rho_{\mathcal{B}}(x)\right\|$. Similarly we have $\left\|\rho_{\mathcal{B}}(x)\right\| \leq\left\|_{\mathcal{A}} \rho(x)\right\|$.

Definition 3.3. A Finsler \mathcal{A} - \mathcal{B}-bimodule E is called an imprimitivity bimodule if it is full both as a left and as a right Finsler moddule over \mathcal{A} and \mathcal{B}, respectively.

Example 3.4. Every C^{*}-algebra \mathcal{A} is a imprimitivity Finsler \mathcal{A} - \mathcal{A}-bimodule over \mathcal{A} under the mappings $\rho_{\mathcal{A}}(x)=\left(x^{*} x\right)^{\frac{1}{2}}$ and ${ }_{\mathcal{A}} \rho(x)=\left(x x^{*}\right)^{\frac{1}{2}}, x \in \mathcal{A}$.

Example 3.5. Let \mathcal{A} be a C^{*}-subalgebra of a C^{*}-algebra \mathcal{B} and $\mathcal{E}: \mathcal{B} \rightarrow \mathcal{A}$ be a conditional expectation (i.e. a positive map of norm one satisfying the following conditions:

$$
\mathcal{E}(a b)=a \mathcal{E}(b), \quad \mathcal{E}(b a)=\mathcal{E}(b) a, \quad \mathcal{E}(a)=a,
$$

for each $a \in \mathcal{A}$ and $b \in \mathcal{B})$. Then \mathcal{B} is a Finsler \mathcal{A} - \mathcal{A}-bimodule with respect to the mappings ${ }_{\mathcal{A}} \rho(x)=\left(\mathcal{E}\left(x x^{*}\right)\right)^{\frac{1}{2}}$ and $\rho_{\mathcal{A}}(x)=\left(\mathcal{E}\left(x^{*} x\right)\right)^{\frac{1}{2}}$.

Theorem 3.6. Suppose that E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule of C^{*}-algebras \mathcal{A} and \mathcal{B} with the maps $\mathcal{A} \rho$ and $\rho_{\mathcal{B}}$. If $\mathcal{A}_{\mathcal{A}} \rho$ and $\rho_{\mathcal{B}}$ fulfill the parallelogram law on E, then E is a Hilbert \mathcal{A}-B-bimodule.

Proof. Let $\mathcal{A}_{\mathcal{A}} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E. Then we have

$$
\rho_{\mathcal{B}}(x+y)^{2}+\rho_{\mathcal{B}}(x-y)^{2}=2 \rho_{\mathcal{B}}(x)^{2}+2 \rho_{\mathcal{B}}(y)^{2}
$$

and

$$
\mathcal{A}_{\mathcal{A}} \rho(x+y)^{2}+{ }_{\mathcal{A}} \rho(x-y)^{2}=2_{\mathcal{A}} \rho(x)^{2}+2_{\mathcal{A}} \rho(y)^{2}
$$

for each $x, y \in E$. By [8, Lemma 13], E is a Hilbert left \mathcal{A}-module and a Hilbert right \mathcal{B}-module, with the following inner products

$$
\mathcal{A}^{\langle }\langle x, y\rangle=\frac{1}{4} \sum_{k=0}^{3} i_{\mathcal{A}}^{k} \rho\left(x+i^{k} y\right)^{2}
$$

and

$$
\langle x, y\rangle_{\mathcal{B}}=\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(x+i^{k} y\right)^{2} .
$$

Also

$$
\begin{aligned}
\langle x, a x\rangle_{\mathcal{B}} & =\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(x+i^{k} a x\right)^{2}=\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(\left(1+i^{k} a\right) x\right)^{2} \\
& =\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(\left(1+i^{k} a\right)^{*} x\right)^{2}=\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(\left(1+i^{-k} a^{*}\right) x\right)^{2} \\
& =\frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}}\left(a^{*} x+i^{k} x\right)^{2}=\left\langle a^{*} x, x\right\rangle_{\mathcal{B}} .
\end{aligned}
$$

Let $\alpha \in \mathbb{C}$. Replacing x by $x+\alpha y$ in $\langle x, a x\rangle_{\mathcal{B}}=\left\langle a^{*} x, x\right\rangle_{\mathcal{B}}$, we get

$$
\langle x+\alpha y, a(x+\alpha y)\rangle_{\mathcal{B}}=\left\langle a^{*}(x+\alpha y), x+\alpha y\right\rangle_{\mathcal{B}},
$$

whence

$$
\begin{aligned}
& \langle x, a x\rangle_{\mathcal{B}}+\alpha\langle x, a y\rangle_{\mathcal{B}}+\bar{\alpha}\langle y, a x\rangle_{\mathcal{B}}+\alpha \bar{\alpha}\langle y, a y\rangle_{\mathcal{B}} \\
& =\left\langle a^{*} x, x\right\rangle_{\mathcal{B}}+\alpha\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}+\bar{\alpha}\left\langle a^{*} y, x\right\rangle_{\mathcal{B}}+\alpha \bar{\alpha}\left\langle a^{*} y, y\right\rangle_{\mathcal{B}} .
\end{aligned}
$$

Hence

$$
\alpha\langle x, a y\rangle_{\mathcal{B}}+\bar{\alpha}\langle y, a x\rangle_{\mathcal{B}}=\alpha\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}+\bar{\alpha}\left\langle a^{*} y, x\right\rangle_{\mathcal{B}} .
$$

Choose $\alpha=1$ to get

$$
\langle x, a y\rangle_{\mathcal{B}}+\langle y, a x\rangle_{\mathcal{B}}=\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}+\left\langle a^{*} y, x\right\rangle_{\mathcal{B}} .
$$

Also $\alpha=i$ gives

$$
\langle x, a y\rangle_{\mathcal{B}}-\langle y, a x\rangle_{\mathcal{B}}=\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}-\left\langle a^{*} y, x\right\rangle_{\mathcal{B}} .
$$

Therefore $\langle x, a y\rangle_{\mathcal{B}}=\left\langle a^{*} x, y\right\rangle_{\mathcal{B}}$.
Similarly $\mathcal{A}^{\mathcal{A}}\langle x b, y\rangle={ }_{\mathcal{A}}\left\langle x, y b^{*}\right\rangle$. Hence by [4, Definition 2.13], E is a Hilbert \mathcal{A} - \mathcal{B}-bimodule.

Theorem 3.7. Let \mathcal{A} and \mathcal{B} be two commutative C^{*}-algebras and ${ }_{\mathcal{A}} E_{\mathcal{B}}$ be an imprimitivity Finsler bimodule and there exist $\operatorname{arap} \varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{array}{r}
a x=x \varphi(a), \\
\varphi\left({ }_{\mathcal{A}} \rho(x)^{2}\right)=\rho_{\mathcal{B}}(x)^{2}, \tag{3.2}
\end{array}
$$

where $a \in A$ and $x \in{ }_{\mathcal{A}} E_{\mathcal{B}}$. Then φ_{E} is $a *$-isomorphism.
Proof. The proof is similar to that of [1, Main Theorem].

Let E be a Finsler module over C^{*}-algebra \mathcal{A} and \mathcal{I} be a closed two-sided ideal. Let $\mathcal{I} E$ be the closed linear span of the set $\{a x ; a \in \mathcal{I}, x \in E\}$. Clearly $\mathcal{I} E$ is a closed submodule of E and by applying the Cohen-Hewitt factorization theorem ([7, Theorem4.1], and [9, Proposition 2.31]) it is easy to see that ${ }_{\mathcal{I}} E=\mathcal{I} E=\{a x ; a \in \mathcal{I}, x \in E\}$.

Theorem 3.8. ([8]) Let E be a Finsler module over a C^{*}-algebra \mathcal{A}, \mathcal{I} be an ideal of \mathcal{A} and $\pi: \mathcal{A} \rightarrow \frac{\mathcal{A}}{\mathcal{I}}$ be the quotient map and let $\rho=\pi \circ_{\mathcal{A}} \rho$. Then $\frac{E}{\mathcal{I} E}$ is a $\frac{\mathcal{A}}{\mathcal{I}}$-module and ρ descends to a $\frac{\mathcal{A}}{\mathcal{I}}$-valued Finsler norm on $\frac{E}{\mathcal{I} E}$.

Lemma 3.9. Let E be a full Finsler module over a C^{*}-algebra \mathcal{A} and \mathcal{I} be an ideal of \mathcal{A}. Then $\frac{E}{I E}$ is a full Finsler module over C^{*}-algebra $\frac{\mathcal{A}}{\mathcal{I}}$.
Proof. By Lemma 3.8, $\frac{E}{\mathcal{I} E}$ is a Finsler module over C^{*}-algebra $\frac{\mathcal{A}}{\mathcal{I}}$. Let $b \in \frac{\mathcal{A}}{\mathcal{I}}$ be arbitrary. Then there exists $a \in \mathcal{A}$ such that $b=a+\mathcal{I}$. Since E is full, there exists $\left\{u_{n}\right\}$ in $\mathcal{F}(E)$ such that $a=\lim _{n} u_{n}$. Each u_{n} is of the form

$$
\begin{aligned}
u_{n}= & \sum_{i=1}^{k_{n}} \lambda_{i, n \mathcal{A}} \rho\left(x_{i, n}\right)^{2} \text { in which } x_{i, n} \in E \text { and } \lambda_{i, n} \in \mathbb{C} . \text { Hence } \\
& b=\left(\lim _{n} \sum_{i=1}^{k_{n}} \lambda_{i, n \mathcal{A}} \rho\left(x_{i, n}\right)^{2}\right)+\mathcal{I}=\left(\lim _{n} \sum_{1}^{k_{n}}\left(\lambda_{i, n \mathcal{A}} \rho\left(x_{i, n}\right)^{2}+\mathcal{I}\right)\right) .
\end{aligned}
$$

Therefore the linear span of $\left\{{ }_{\mathcal{A}} \rho(x)^{2}+\mathcal{I}: x \in E\right\}$ is equivalent to the linear span of $\left\{\rho(x+\mathcal{I} E)^{2}: x \in E\right\}$ which is dense in $\frac{\mathcal{A}}{\mathcal{I}}$ as well as $\frac{E}{\mathcal{I} E}$ is a full Finsler module over $\frac{\mathcal{A}}{\mathcal{I}}$.

Theorem 3.10. Let E be an imprimitivity Finsler bimodule over commutative C^{*}-algebras \mathcal{A} and \mathcal{B} and \mathcal{I} be an ideal of \mathcal{A}. Then $\frac{E}{\mathcal{I} E}$ is an imprimitivity Finsler bimodule over $\frac{\mathcal{A}}{\mathcal{I}}$ and $\frac{\mathcal{B}}{\varphi(\mathcal{I})}$, when φ is the $*$-isomorphism in Theorem 3.7.

Proof. Suppose E is an imprimitivity Finsler bimodule over the commutative C^{*}-algebras \mathcal{A} and \mathcal{B} and $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is the $*$-isomorphism in Theorem 3.7. Then $\varphi(\mathcal{I})$ is an ideal in \mathcal{B} and by $(3.1), \mathcal{I} E=E \varphi(\mathcal{I})$. We know that $\frac{E}{\mathcal{I} E}$ is a left module over $\frac{\mathcal{A}}{\mathcal{I}}$, via $(a+\mathcal{I})(x+\mathcal{I} E)=a x+\mathcal{I} E$ and is a right module over $\frac{\mathcal{B}}{\varphi(\mathcal{I}}$, via $(x+\mathcal{I} E)(b+\varphi(\mathcal{I}))=x b+\mathcal{I} E$, for all $x \in E, a \in \mathcal{A}$ and $b \in \mathcal{B}$. By Lemmas 3.8 and 3.9, $\frac{E}{\mathcal{I} E}$ is a left full Finsler module over $\frac{\mathcal{A}}{\mathcal{I}}$ and a right full Finsler module over $\frac{\mathcal{B}}{\varphi(\mathcal{I})}$, where $\pi: \mathcal{A} \rightarrow \frac{\mathcal{A}}{\mathcal{I}}$ is the quotient map and $\rho: \frac{E}{\mathcal{I} E} \rightarrow\left(\frac{\mathcal{A}}{\mathcal{I}}\right)^{+}$is defined by $\rho(x+\mathcal{I} E)=\left(\pi \circ_{\mathcal{A}} \rho\right)(x)$.
Also $\pi^{\prime}: \mathcal{B} \rightarrow \frac{\mathcal{B}}{\varphi(\mathcal{I})}$ is the quotient map and $\rho^{\prime}: \frac{E}{\mathcal{I} E} \rightarrow\left(\frac{\mathcal{B}}{\varphi(\mathcal{I})}\right)^{+}$is defined by
$\rho^{\prime}(x+\mathcal{I} E)=\pi^{\prime} \circ \rho_{\mathcal{B}}(x)$. Since E is a Finsler \mathcal{A} - \mathcal{B}-bimodule, by (i) of Definition 3.1, we have $\mathcal{A}_{\mathcal{A}} \rho(x)^{2} x=x \rho_{\mathcal{B}}(x)^{2}$. Hence

$$
\begin{aligned}
\rho(x+\mathcal{I} E)^{2}(x+\mathcal{I} E) & =\left(\pi \circ_{\mathcal{A}} \rho\right)(x)^{2}(x+\mathcal{I} E) \\
& =\left(\mathcal{A} \rho(x)^{2}+\mathcal{I}\right)(x+\mathcal{I} E) \\
& =\mathcal{A} \rho(x)^{2} x+\mathcal{I} E \\
& =x \rho_{\mathcal{B}}(x)^{2}+\mathcal{I} E \\
& =(x+\mathcal{I} E)\left(\rho_{\mathcal{B}}(x)^{2}+\varphi_{E}(\mathcal{I})\right) \\
& =(x+\mathcal{I} E)\left(\pi^{\prime} \circ \rho_{\mathcal{B}}\right)(x)^{2} \\
& =(x+\mathcal{I} E) \rho^{\prime}(x+\mathcal{I} E)^{2} .
\end{aligned}
$$

Also

$$
\begin{aligned}
\rho\left((x+\mathcal{I} E)\left(b+\varphi_{E}(\mathcal{I})\right)^{2}\right. & =\rho(x b+\mathcal{I} E)^{2} \\
& =\left(\pi \circ_{\mathcal{A}} \rho\right)(x b)^{2} \\
& =\left(\pi \circ_{\mathcal{A}} \rho\right)\left(x b^{*}\right)^{2} \\
& =\rho\left(x b^{*}+\mathcal{I} E\right)^{2} \\
& =\rho\left((x+\mathcal{I} E)\left(b+\varphi_{E}(\mathcal{I})\right)^{*}\right)^{2}
\end{aligned}
$$

for each $x \in_{\mathcal{A}} E_{\mathcal{B}}$ and $b \in B$.
Similarly we can show that $\rho^{\prime}((a+\mathcal{I})(x+\mathcal{I} E))^{2}=\rho^{\prime}\left((a+\mathcal{I})^{*}(x+\mathcal{I} E)\right)^{2}$. Therefore $\frac{E}{\mathcal{I} E}$ is an imprimitivity Finsler bimodule over $\frac{\mathcal{A}}{\mathcal{I}}$ and $\frac{\mathcal{B}}{\varphi_{E}(\mathcal{I})}$.

Definition 3.11. Let E be a Finsler \mathcal{A} - \mathcal{B}-bimodule, \mathcal{I} and \mathcal{J} be ideals in \mathcal{A} and \mathcal{B}, respectively. The ideal subbimodule ${ }_{\mathcal{I}} E_{\mathcal{J}}$ of E associated to \mathcal{I} and \mathcal{J} is defined by

$$
{ }_{\mathcal{I}} E_{\mathcal{J}}=\overline{\operatorname{span}}\{a x b: x \in E, a \in \mathcal{I}, b \in \mathcal{J}\} .
$$

Clearly, ${ }_{\mathcal{I}} E_{\mathcal{J}}$ is a closed subbimodule of E. It can be also regarded as a Finsler bimodule over \mathcal{I} and \mathcal{J}.

Theorem 3.12. Let E be a Finsler \mathcal{A} - \mathcal{B}-bimodule, \mathcal{I} and \mathcal{J} are ideals in \mathcal{A} and \mathcal{B}, respectively. Then

$$
{ }_{\mathcal{I}} E_{\mathcal{J}}=\mathcal{I} E \mathcal{J}=\{a x b: x \in E, a \in A, b \in B\}
$$

Proof. The proof is similar to that of [3, Proposition 1.2] and we remove it.
Remark 3.13. Let E be a Finsler bimodule over commutative C^{*}-algebras \mathcal{A} and \mathcal{B} and there exists a $*$-isomorphism $\varphi_{E}: \mathcal{A} \rightarrow \mathcal{B}$ as in Theorem 3.7. If \mathcal{I} and \mathcal{J} are ideals of \mathcal{A} and \mathcal{B}, respectively, and ${ }_{\mathcal{I}} E_{\mathcal{J}}$ is the associated ideal subbimodule, then $\frac{E}{\mathcal{I}_{\mathcal{J}}}$ is a $\frac{\mathcal{A}}{\mathcal{I}}-\frac{\mathcal{B}}{\mathcal{J}}$-bimodule, where $q: E \rightarrow \frac{E}{\mathcal{I}_{\mathcal{J}}}$ and
$\pi: \mathcal{A} \rightarrow \frac{\mathcal{A}}{\mathcal{I}}$ and $\pi^{\prime}: \mathcal{B} \rightarrow \frac{\mathcal{B}}{\mathcal{J}}$ are the quotient maps and the left action of $\frac{\mathcal{A}}{\mathcal{I}}$ and the right action of $\frac{\mathcal{B}}{\mathcal{J}}$ over linear space $\frac{E}{\mathcal{I} E_{\mathcal{J}}}$ are defined by $\pi(a) q(x)=q(a x)$ and $q(x) \pi^{\prime}(b)=q(x b)$, respectively. By Theorem 3.10, $\frac{E}{\mathcal{I} E_{\mathcal{J}}}$ is a Finsler $\frac{\mathcal{A}}{\mathcal{I}}-\frac{\mathcal{B}}{\mathcal{J}}$ -bimodule, where ${ }_{\frac{A}{\mathcal{I}}} \rho(q(x))=\pi\left({ }_{\mathcal{A}} \rho(x)\right)$ and $\rho_{\frac{\mathcal{B}}{\mathcal{J}}}(q(x))=\pi^{\prime}\left(\rho_{\mathcal{B}}(x)\right)$.
In addition, $\frac{E}{\mathcal{I} E_{\mathcal{J}}}$ is an imprimitivity Finsler $\frac{\mathcal{A}}{\mathcal{I}}-\frac{\mathcal{B}}{\mathcal{J}}$-bimodule if and only if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule. This follows at once from the evident equalities $\left.{ }_{\frac{\mathcal{A}}{\mathcal{I}}} \rho(q(E))\right)=\pi\left(\mathcal{A}_{\mathcal{A}} \rho(E)\right)$ and $\left(\rho_{\frac{\mathcal{B}}{\mathcal{J}}}(q(E))\right)=\pi^{\prime}\left(\rho_{\mathcal{B}}(E)\right)$.

Recall that an ideal \mathcal{I} of a C^{*}-algebra \mathcal{A} is essential, if $\mathcal{I}^{\perp}=\{a \in \mathcal{A}: a \mathcal{I}=$ $0\}=\{0\}$.

Lemma 3.14. Let \mathcal{I} be an ideal in a C^{*}-algebra \mathcal{A} and \mathcal{I}^{+}be the set of all positive elements of \mathcal{I}. The following condition are mutually equivalent:
(a) \mathcal{I} is an essential ideal in \mathcal{A};
(b) $\|a\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|a b\|)$;
(c) $\|a\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|b a\|)$ for each $a \in \mathcal{A}$; and
(d) $\|a\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|b a b\|)$ for each $a \in \mathcal{A}^{+}$.

Proof. The proof is similar to that of [3, Lemma 1.10], by replacing \mathcal{I} with \mathcal{I}^{+}.

Theorem 3.15. Let E be a Finsler \mathcal{A}-B-bimodule and \mathcal{I}, \mathcal{J} be the essential ideals of \mathcal{A} and \mathcal{B}, respectively. Then

$$
\|x\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|b x\|)=\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}(\|x b\|)
$$

for each $x \in E$. Conversely, if E is an imprimitivity Finsler \mathcal{A}-B-bimodule and for each $x \in E$,

$$
\|x\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|b x\|)=\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}(\|x b\|),
$$

then \mathcal{I} and \mathcal{J} are essential ideals in \mathcal{A} and \mathcal{B}, respectively.
Proof. Since E is a left Finsler module over C^{*}-algebra \mathcal{A}, we have

$$
\begin{aligned}
\|x\|^{2} & =\left\|_{\mathcal{A}} \rho(x)\right\|^{2}=\left\|_{\mathcal{A}} \rho(x)^{2}\right\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}\left(\left\|b_{\mathcal{A}} \rho(x)^{2} b\right\|\right) \\
& =\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}(\|b x\|)^{2}
\end{aligned}
$$

for each $x \in E$. Since E is a right Finsler module over C^{*}-algebra \mathcal{B}, we have

$$
\begin{aligned}
\|x\|^{2} & =\left\|\rho_{\mathcal{B}}(x)\right\|^{2}=\left\|\rho_{\mathcal{B}}(x)^{2}\right\|=\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}\left(\left\|b \rho_{\mathcal{B}}(x)^{2} b\right\|\right) \\
& =\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}(\|x b\|)^{2}
\end{aligned}
$$

for each $x \in E$.
Conversely, let E be an imprimitivity Finsler bimodule. If \mathcal{I} and \mathcal{J} are not essential, then $\mathcal{I}^{\perp} \neq\{0\}$ and $\mathcal{J}^{\perp} \neq\{0\}$. Hence there exist nonzero elements $c_{1} \in \mathcal{I}^{\perp}$ and $c_{2} \in \mathcal{J}^{\perp}$. By [2, Theorem 3.2(iii)], there exist $x_{1}, x_{2} \in E$ such that $c_{1} x_{1} \neq 0$ and $x_{2} c_{2} \neq 0$. By the assumption, we have

$$
\left\|c_{1} x_{1}\right\|=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}\left(\left\|b\left(c_{1} x_{1}\right)\right\|\right)=\sup _{b \in \mathcal{I}^{+},\|b\| \leqslant 1}\left(\left\|\left(b c_{1}\right) x_{1}\right\|\right)=0
$$

and

$$
\left\|x_{2} c_{2}\right\|=\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}\left(\left\|\left(x_{2} c_{2}\right) b\right\|\right)=\sup _{b \in \mathcal{J}^{+},\|b\| \leqslant 1}\left(\left\|x_{2}\left(c_{2} b\right)\right\|\right)=0 .
$$

So $c_{1} x_{1}=0$ and $x_{2} c_{2}=0$, which is a contradiction. Therefore \mathcal{I} and \mathcal{J} are essential ideals of \mathcal{A} and \mathcal{B}, respectively.

Corollary 3.16. Suppose that E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule of commutative C^{*}-algebras \mathcal{A} and \mathcal{B} with the maps $\mathcal{A}^{\rho} \rho$ and $\rho_{\mathcal{B}}$. Suppose that \mathcal{I} and \mathcal{J} are essential ideals of \mathcal{A} and \mathcal{B}, respectively. If $\mathcal{A}_{\mathcal{A}} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on $\mathcal{I} E$ and $E_{\mathcal{J}}$, respectively, then E is a Hilbert $\mathcal{A}-\mathcal{B}-$ bimodule.

Proof. Since E is an imprimitivity Finsler \mathcal{A} - \mathcal{B}-bimodule with the maps $\mathcal{A} \rho$ and $\rho_{\mathcal{B}}$, the essential ideal submodules $\mathcal{I}_{\mathcal{I}} E$ and $E_{\mathcal{J}}$ are Finsler modules with the restriction mappings $\left.\mathcal{A}^{\mathcal{A}}\right|_{\mathcal{I} E}$ and $\left.\rho_{\mathcal{B}}\right|_{E_{\mathcal{J}}}$, respectively. Since $\mathcal{A}^{\mathcal{A}} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on ${ }_{\mathcal{I}} E$ and $E_{\mathcal{J}}$, respectively. Hence for each $x, y \in E$ and $a \in \mathcal{I}$ and $b \in \mathcal{J}$ such that $\|a\| \leq 1$ and $\|b\| \leq 1$, we have

$$
\begin{aligned}
\mathcal{A} \rho(a x+a y)^{2}+{ }_{\mathcal{A}} \rho(a x-a y)^{2}-2_{\mathcal{A}} \rho(a x)^{2}-2_{\mathcal{A}} \rho(a y)^{2} & =0 \\
a\left({ }_{\mathcal{A}} \rho(x+y)^{2}+{ }_{\mathcal{A}} \rho(x-y)^{2}-2_{\mathcal{A}} \rho(x)^{2}-2_{\mathcal{A}} \rho(y)^{2}\right) a^{*} & =0 \\
\left(\mathcal{A} \rho(x+y)^{2}+{ }_{\mathcal{A}} \rho(x-y)^{2}-2_{\mathcal{A}} \rho(x)^{2}-2_{\mathcal{A}} \rho(y)^{2}\right) a^{*} a & =0
\end{aligned}
$$

It follows from Lemma 3.14(b)

$$
\left\|_{\mathcal{A}} \rho(x+y)^{2}+{ }_{\mathcal{A}} \rho(x-y)^{2}-2_{\mathcal{A}} \rho(x)^{2}-2_{\mathcal{A}} \rho(y)^{2}\right\|=0 .
$$

Hence

$$
{ }_{\mathcal{A}} \rho(x+y)^{2}+{ }_{\mathcal{A}} \rho(x-y)^{2}=2_{\mathcal{A}} \rho(x)^{2}+2_{\mathcal{A}} \rho(y)^{2} .
$$

Similarly

$$
\rho_{\mathcal{B}}(x+y)^{2}+\rho_{\mathcal{B}}(x-y)^{2}=2 \rho_{\mathcal{B}}(x)^{2}+2 \rho_{\mathcal{B}}(y)^{2} .
$$

Hence $\mathcal{A}_{\mathcal{A}} \rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E. By Theorem 3.6, E is a Hilbert \mathcal{A} - \mathcal{B}-bimodule.

References

[1] M. Amyari and A. Niknam, A note on Finsler modules, Bull. Iranian Math. Soc., 29(1) (2003), 77-81.
[2] M. Amyari and A. Niknam, On homomorphisms of Finsler modules, Intern. Math. Journal, 3(3) (2003), 277-281.
[3] D. Bakic and B. Guljas, On a class of module maps of Hilbert C^{*}-modules, Math. Comm., 7(2) (2002), 177-192.
[4] P. Bertozzini and W. Lewkeeratyutkul, A Spectral Theorem for Imprimitivity C^{*} bimodules, arXiv:0812.3596, (2008).
[5] E.C. Lance, Hilbert C^{*}-modules, LMS Lecture Note series 210, Combridge University Press (1995).
[6] M.S. Moslehian, Vector space structure on Finsler modules over C^{*}-algebra, J. Anal., 9 (2001), 133-136.
[7] G.K. Pedersen, Factorization in C^{*}-algebras, Exposition Math., 16(2) (1998), 145-156.
[8] N.C. Phillips and N. Weaver, Modules with norms which take values in a C^{*}-algebra, Pacific J. of Math., 185(1) (1998), 163-181.
[9] I. Raeburn and D.P. Williams, Morita equivalence and continuous-trace C^{*}-algebras, Mathematical Surveys and Monographs AMS, 60 (1998).

[^0]: ${ }^{0}$ Received February 18, 2014. Revised July 8, 2014.
 ${ }^{0} 2010$ Mathematics Subject Classification: 46L08, 46L05.
 ${ }^{0}$ Keywords: \mathcal{A} - \mathcal{B}-bimodule, Finsler C^{*}-bimodules, α-homomorphism, associated ideal.
 ${ }^{0}$ Corresponding author: M. Amyari

