Nonlinear Functional Analysis and Applications Vol. 19, No. 4 (2014), pp. 479-487

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2014 Kyungnam University Press

IMPRIMITIVITY FINSLER C*-BIMODULES

R. Hassanniah¹, M. Amyari² and M. Hassani³

¹Department of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran e-mail: r.hasannia@yahoo.com

²Department of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran e-mail: amyari@mshdiau.ac.ir

³Department of Mathematics Mashhad Branch, Islamic Azad University, Mashhad, Iran e-mail: Hassani@mshdiau.ac.ir

Abstract. In this paper, we introduce the notion of Finsler C^* -bimodule. We generalize some significant properties of Hilbert C^* -bimodules in the framework of Finsler C^* -bimodules and show that if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule of C^* -algebras \mathcal{A} and \mathcal{B} such that the corresponding maps $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E, then E is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

1. INTRODUCTION

The notion of Finsler module is an interesting generalization of Hilbert $C^{\ast}\text{-}$ module.

In 1995, Phillips and Weaver [8] introduced the notion of Finsler C^* -module and showed that if a C^* -algebra \mathcal{A} has no nonzero commutative ideal, then any Finsler \mathcal{A} -module is a Hilbert \mathcal{A} -module. In this paper, we introduce the notion of Finsler C^* -bimodules and prove some properties of Finsler bimodules over commutative C^* -algebras and show that if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule of C^* -algebras \mathcal{A} and \mathcal{B} such that the corresponding maps $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E, then E is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

⁰Received February 18, 2014. Revised July 8, 2014.

 $^{^02010}$ Mathematics Subject Classification: 46L08, 46L05.

⁰Keywords: \mathcal{A} - \mathcal{B} -bimodule, Finsler C^* -bimodules, α -homomorphism, associated ideal.

⁰Corresponding author: M. Amyari

2. Preliminaries

Let us recall the definition of a Finlser module [2, 8].

Definition 2.1. Let \mathcal{A} be a C^* -algebra and \mathcal{A}^+ be the set of all positive elements of \mathcal{A} . Let E be a left module over \mathcal{A} and the map $_{\mathcal{A}}\rho : E \to \mathcal{A}^+$ satisfy the following conditions:

(i) The map $\|.\|_E$: $x \mapsto \|_{\mathcal{A}}\rho(x)\|$ makes E into a Banach space;

(ii) $_{\mathcal{A}}\rho(ax)^2 = a_{\mathcal{A}}\rho(x)^2 a^*$, for all $a \in \mathcal{A}$ and $x \in E$.

Then E is called a left Finsler module over \mathcal{A} under the map $_{\mathcal{A}}\rho$. A right Finsler module is defined similarly.

A left Finsler module over a C^* -algebra \mathcal{A} is said to be full if the linear span $\{\mathcal{A}\rho(x)^2 : x \in E\}$ denoted by $\mathcal{F}(E)$ is dense in \mathcal{A} .

Example 2.2. If *E* is a left (full) Hilbert *C*^{*}-module over \mathcal{A} , then *E* together with $_{\mathcal{A}}\rho(x) = \langle x, x \rangle^{\frac{1}{2}}$ is a left (full) Finsler module over \mathcal{A} , since $_{\mathcal{A}}\rho(ax)^2 = \langle ax, ax \rangle = a \langle x, x \rangle a^* = a_{\mathcal{A}}\rho(x)^2 a^*$.

3. Finsler C^* -bimodules

In this section, we state the notions of Finsler C^* -bimodule and imprimitivity Finsler bimodule. We then investigate some properties of Finsler C^* bimodule and compare them with the Hilbert C^* -bimodule. By a pre-Hilbert bimodule $_{\mathcal{A}}E_{\mathcal{B}}$ over two C^* -algebras \mathcal{A} and \mathcal{B} we mean a left pre-Hilbert \mathcal{A} module and a right pre-Hilbert \mathcal{B} -module such that

$$\begin{array}{lll} (ax)b &=& a(xb), \\ \langle x,ax \rangle_{\mathcal{B}} &=& \langle a^*x,y \rangle_{\mathcal{B}}, \\ {}_{\mathcal{A}}\langle xb,y \rangle &=& {}_{\mathcal{A}}\langle x,yb^* \rangle \end{array}$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in_{\mathcal{A}} E_{\mathcal{B}}$. See [4, Definition 2.13].

Definition 3.1. A Finsler C^* -bimodule ${}_{\mathcal{A}}E_{\mathcal{B}}$ over a pair of C^* -algebras \mathcal{A} and \mathcal{B} is a left Finsler module over \mathcal{A} under the map ${}_{\mathcal{A}}\rho$ and a right Finsler module over \mathcal{B} under the map $\rho_{\mathcal{B}}$ such that the following conditions are satisfied:

(i) $_{\mathcal{A}}\rho(x)^2x = x\rho_{\mathcal{B}}(x)^2;$

(ii)
$$_{\mathcal{A}}\rho(xb)^2 = _{\mathcal{A}}\rho(xb^*)^2$$
 and $\rho_{\mathcal{B}}(ax)^2 = \rho_{\mathcal{B}}(a^*x)^2$,
where $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in _{\mathcal{A}}E_{\mathcal{B}}$.

Recall that a Finsler C^* -bimodule $_{\mathcal{A}}E_{\mathcal{B}}$ has two norms, usually different, as follows $_E ||x|| = ||_{\mathcal{A}}\rho(x)||$ and $||x||_E = ||\rho_{\mathcal{B}}(x)||$. We however have the following result.

Lemma 3.2. Let $_{\mathcal{A}}E_{\mathcal{B}}$ be a Finsler \mathcal{A} - \mathcal{B} -bimodule and $x \in _{\mathcal{A}}E_{\mathcal{B}}$. If $_{\mathcal{A}}\rho(xb)^2 \leq \|b\|_{\mathcal{A}}^2\rho(x)^2$ and $\rho_{\mathcal{B}}(ax)^2 \leq \|a\|^2\rho_{\mathcal{B}}(x)^2$ for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$, then $\|\mathcal{A}\rho(x)\| = \|\rho_{\mathcal{B}}(x)\|$.

Proof. Suppose that $x \in E$ and $a = {}_{\mathcal{A}}\rho(x)^2$ and $b = \rho_{\mathcal{B}}(x)^2$. Then ax = xb and

$$a^{4} = ({}_{\mathcal{A}}\rho(x)^{2})^{4} = {}_{\mathcal{A}}\rho(ax)^{2}_{\mathcal{A}}\rho(x)^{2} = {}_{\mathcal{A}}\rho(xb)^{2}_{\mathcal{A}}\rho(x)^{2}$$
$$\leq \|b\|^{2}_{\mathcal{A}}\rho(x)^{2}_{\mathcal{A}}\rho(x)^{2} = \|b\|^{2}a^{2}.$$

Hence $||a||^4 = ||a^4|| \le ||b||^2 ||a||^2$, so $||a|| \le ||b||$ or $||_{\mathcal{A}}\rho(x)|| \le ||\rho_{\mathcal{B}}(x)||$. Similarly we have $||\rho_{\mathcal{B}}(x)|| \le ||_{\mathcal{A}}\rho(x)||$.

Definition 3.3. A Finsler \mathcal{A} - \mathcal{B} -bimodule E is called an imprimitivity bimodule if it is full both as a left and as a right Finsler module over \mathcal{A} and \mathcal{B} , respectively.

Example 3.4. Every C^* -algebra \mathcal{A} is a imprimitivity Finsler \mathcal{A} - \mathcal{A} -bimodule over \mathcal{A} under the mappings $\rho_{\mathcal{A}}(x) = (x^*x)^{\frac{1}{2}}$ and $_{\mathcal{A}}\rho(x) = (xx^*)^{\frac{1}{2}}$, $x \in \mathcal{A}$.

Example 3.5. Let \mathcal{A} be a C^* -subalgebra of a C^* -algebra \mathcal{B} and $\mathcal{E} : \mathcal{B} \to \mathcal{A}$ be a conditional expectation (i.e. a positive map of norm one satisfying the following conditions:

$$\mathcal{E}(ab) = a\mathcal{E}(b)$$
, $\mathcal{E}(ba) = \mathcal{E}(b)a$, $\mathcal{E}(a) = a$,

for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$). Then \mathcal{B} is a Finsler \mathcal{A} - \mathcal{A} -bimodule with respect to the mappings $_{\mathcal{A}}\rho(x) = (\mathcal{E}(xx^*))^{\frac{1}{2}}$ and $\rho_{\mathcal{A}}(x) = (\mathcal{E}(x^*x))^{\frac{1}{2}}$.

Theorem 3.6. Suppose that E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule of C^* -algebras \mathcal{A} and \mathcal{B} with the maps $_{\mathcal{A}}\rho$ and $_{\mathcal{B}}$. If $_{\mathcal{A}}\rho$ and $_{\mathcal{B}}$ fulfill the parallelogram law on E, then E is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

Proof. Let $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on E. Then we have

$$\rho_{\mathcal{B}}(x+y)^2 + \rho_{\mathcal{B}}(x-y)^2 = 2\rho_{\mathcal{B}}(x)^2 + 2\rho_{\mathcal{B}}(y)^2$$

and

$$_{\mathcal{A}}\rho(x+y)^{2} +_{\mathcal{A}}\rho(x-y)^{2} = 2_{\mathcal{A}}\rho(x)^{2} + 2_{\mathcal{A}}\rho(y)^{2}$$

for each $x, y \in E$. By [8, Lemma 13], E is a Hilbert left \mathcal{A} -module and a Hilbert right \mathcal{B} -module, with the following inner products

$$_{\mathcal{A}}\langle x,y\rangle = \frac{1}{4}\sum_{k=0}^{3}i_{\mathcal{A}}^{k}\rho(x+i^{k}y)^{2}$$

and

$$\langle x, y \rangle_{\mathcal{B}} = \frac{1}{4} \sum_{k=0}^{3} i^k \rho_{\mathcal{B}} (x+i^k y)^2.$$

Also

$$\begin{aligned} \langle x, ax \rangle_{\mathcal{B}} &= \frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}} (x + i^{k} ax)^{2} = \frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}} ((1 + i^{k} a)x)^{2} \\ &= \frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}} ((1 + i^{k} a)^{*} x)^{2} = \frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}} ((1 + i^{-k} a^{*})x)^{2} \\ &= \frac{1}{4} \sum_{k=0}^{3} i^{k} \rho_{\mathcal{B}} (a^{*} x + i^{k} x)^{2} = \langle a^{*} x, x \rangle_{\mathcal{B}}. \end{aligned}$$

Let $\alpha \in \mathbb{C}$. Replacing x by $x + \alpha y$ in $\langle x, ax \rangle_{\mathcal{B}} = \langle a^*x, x \rangle_{\mathcal{B}}$, we get

$$\langle x + \alpha y, a(x + \alpha y) \rangle_{\mathcal{B}} = \langle a^*(x + \alpha y), x + \alpha y \rangle_{\mathcal{B}},$$

whence

$$\begin{aligned} \langle x, ax \rangle_{\mathcal{B}} + \alpha \langle x, ay \rangle_{\mathcal{B}} + \bar{\alpha} \langle y, ax \rangle_{\mathcal{B}} + \alpha \bar{\alpha} \langle y, ay \rangle_{\mathcal{B}} \\ = \langle a^* x, x \rangle_{\mathcal{B}} + \alpha \langle a^* x, y \rangle_{\mathcal{B}} + \bar{\alpha} \langle a^* y, x \rangle_{\mathcal{B}} + \alpha \bar{\alpha} \langle a^* y, y \rangle_{\mathcal{B}}. \end{aligned}$$

Hence

$$\alpha \langle x, ay \rangle_{\mathcal{B}} + \bar{\alpha} \langle y, ax \rangle_{\mathcal{B}} = \alpha \langle a^* x, y \rangle_{\mathcal{B}} + \bar{\alpha} \langle a^* y, x \rangle_{\mathcal{B}}$$

Choose $\alpha = 1$ to get

$$\langle x, ay \rangle_{\mathcal{B}} + \langle y, ax \rangle_{\mathcal{B}} = \langle a^*x, y \rangle_{\mathcal{B}} + \langle a^*y, x \rangle_{\mathcal{B}}.$$

Also $\alpha = i$ gives

$$\langle x, ay \rangle_{\mathcal{B}} - \langle y, ax \rangle_{\mathcal{B}} = \langle a^*x, y \rangle_{\mathcal{B}} - \langle a^*y, x \rangle_{\mathcal{B}}.$$

Therefore $\langle x, ay \rangle_{\mathcal{B}} = \langle a^*x, y \rangle_{\mathcal{B}}$. Similarly $_{\mathcal{A}} \langle xb, y \rangle =_{\mathcal{A}} \langle x, yb^* \rangle$. Hence by [4, Definition 2.13], E is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

Theorem 3.7. Let \mathcal{A} and \mathcal{B} be two commutative C^* -algebras and $_{\mathcal{A}}E_{\mathcal{B}}$ be an imprimitivity Finsler bimodule and there exist a map $\varphi : \mathcal{A} \to \mathcal{B}$ such that

$$ax = x\varphi(a),\tag{3.1}$$

$$\varphi(\mathcal{A}\rho(x)^2) = \rho_{\mathcal{B}}(x)^2, \qquad (3.2)$$

where $a \in A$ and $x \in {}_{\mathcal{A}}E_{\mathcal{B}}$. Then φ_E is a *-isomorphism.

Proof. The proof is similar to that of [1, Main Theorem].

482

Let E be a Finsler module over C^* -algebra \mathcal{A} and \mathcal{I} be a closed two-sided ideal. Let $\mathcal{I}E$ be the closed linear span of the set $\{ax; a \in \mathcal{I}, x \in E\}$. Clearly $\mathcal{I}E$ is a closed submodule of E and by applying the Cohen-Hewitt factorization theorem ([7, Theorem4.1], and [9, Proposition 2.31]) it is easy to see that $\mathcal{I}E = \mathcal{I}E = \{ax; a \in \mathcal{I}, x \in E\}$.

Theorem 3.8. ([8]) Let *E* be a Finsler module over a C^* -algebra \mathcal{A} , \mathcal{I} be an ideal of \mathcal{A} and $\pi : \mathcal{A} \to \frac{\mathcal{A}}{\mathcal{I}}$ be the quotient map and let $\rho = \pi \circ_{\mathcal{A}} \rho$. Then $\frac{E}{\mathcal{I}E}$ is a $\frac{\mathcal{A}}{\mathcal{I}}$ -module and ρ descends to a $\frac{\mathcal{A}}{\mathcal{I}}$ -valued Finsler norm on $\frac{E}{\mathcal{I}E}$.

Lemma 3.9. Let *E* be a full Finsler module over a C^* -algebra \mathcal{A} and \mathcal{I} be an ideal of \mathcal{A} . Then $\frac{E}{\mathcal{I}_F}$ is a full Finsler module over C^* -algebra $\frac{\mathcal{A}}{\mathcal{I}}$.

Proof. By Lemma 3.8, $\frac{E}{\mathcal{I}E}$ is a Finsler module over C^* -algebra $\frac{\mathcal{A}}{\mathcal{I}}$. Let $b \in \frac{\mathcal{A}}{\mathcal{I}}$ be arbitrary. Then there exists $a \in \mathcal{A}$ such that $b = a + \mathcal{I}$. Since E is full, there exists $\{u_n\}$ in $\mathcal{F}(E)$ such that $a = \lim_{n \to \infty} u_n$. Each u_n is of the form

$$u_n = \sum_{i=1}^{k_n} \lambda_{i,n\mathcal{A}} \rho(x_{i,n})^2 \text{ in which } x_{i,n} \in E \text{ and } \lambda_{i,n} \in \mathbb{C}. \text{ Hence}$$
$$b = \left(\lim_n \sum_{i=1}^{k_n} \lambda_{i,n\mathcal{A}} \rho(x_{i,n})^2\right) + \mathcal{I} = \left(\lim_n \sum_{i=1}^{k_n} \left(\lambda_{i,n\mathcal{A}} \rho(x_{i,n})^2 + \mathcal{I}\right)\right).$$

Therefore the linear span of $\{\mathcal{A}\rho(x)^2 + \mathcal{I} : x \in E\}$ is equivalent to the linear span of $\{\rho(x + \mathcal{I}E)^2 : x \in E\}$ which is dense in $\frac{\mathcal{A}}{\mathcal{I}}$ as well as $\frac{E}{\mathcal{I}E}$ is a full Finsler module over $\frac{\mathcal{A}}{\mathcal{I}}$.

Theorem 3.10. Let E be an imprimitivity Finsler bimodule over commutative C^* -algebras \mathcal{A} and \mathcal{B} and \mathcal{I} be an ideal of \mathcal{A} . Then $\frac{E}{\mathcal{I}E}$ is an imprimitivity Finsler bimodule over $\frac{\mathcal{A}}{\mathcal{I}}$ and $\frac{\mathcal{B}}{\varphi(\mathcal{I})}$, when φ is the *-isomorphism in Theorem 3.7.

Proof. Suppose E is an imprimitivity Finsler bimodule over the commutative C^* -algebras \mathcal{A} and \mathcal{B} and $\varphi : \mathcal{A} \to \mathcal{B}$ is the *-isomorphism in Theorem 3.7. Then $\varphi(\mathcal{I})$ is an ideal in \mathcal{B} and by (3.1), $\mathcal{I}E = E\varphi(\mathcal{I})$. We know that $\frac{E}{\mathcal{I}E}$ is a left module over $\frac{\mathcal{A}}{\mathcal{I}}$, via $(a + \mathcal{I})(x + \mathcal{I}E) = ax + \mathcal{I}E$ and is a right module over $\frac{\mathcal{B}}{\varphi(\mathcal{I})}$, via $(x + \mathcal{I}E)(b + \varphi(\mathcal{I})) = xb + \mathcal{I}E$, for all $x \in E, a \in \mathcal{A}$ and $b \in \mathcal{B}$. By Lemmas 3.8 and 3.9, $\frac{E}{\mathcal{I}E}$ is a left full Finsler module over $\frac{\mathcal{A}}{\mathcal{I}}$ and a right full Finsler module over $\frac{\mathcal{B}}{\varphi(\mathcal{I})}$, where $\pi : \mathcal{A} \to \frac{\mathcal{A}}{\mathcal{I}}$ is the quotient map and $\rho : \frac{E}{\mathcal{I}E} \to (\frac{\mathcal{A}}{\mathcal{I}})^+$ is defined by $\rho(x + \mathcal{I}E) = (\pi \circ_{\mathcal{A}} \rho)(x)$. Also $\pi' : \mathcal{B} \to \frac{\mathcal{B}}{\varphi(\mathcal{I})}$ is the quotient map and $\rho' : \frac{E}{\mathcal{I}E} \to (\frac{\mathcal{B}}{\varphi(\mathcal{I})})^+$ is defined by

 $\rho'(x+\mathcal{I}E) = \pi' \circ \rho_{\mathcal{B}}(x)$. Since *E* is a Finsler *A*-*B*-bimodule, by (i) of Definition 3.1, we have $_{\mathcal{A}}\rho(x)^2x = x\rho_{\mathcal{B}}(x)^2$. Hence

$$\rho(x + \mathcal{I}E)^{2}(x + \mathcal{I}E) = (\pi \circ_{\mathcal{A}} \rho)(x)^{2}(x + \mathcal{I}E)$$

$$= (\mathcal{A}\rho(x)^{2} + \mathcal{I})(x + \mathcal{I}E)$$

$$= \mathcal{A}\rho(x)^{2}x + \mathcal{I}E$$

$$= x\rho_{\mathcal{B}}(x)^{2} + \mathcal{I}E$$

$$= (x + \mathcal{I}E)(\rho_{\mathcal{B}}(x)^{2} + \varphi_{E}(\mathcal{I}))$$

$$= (x + \mathcal{I}E)(\pi' \circ \rho_{\mathcal{B}})(x)^{2}$$

$$= (x + \mathcal{I}E)\rho'(x + \mathcal{I}E)^{2}.$$

Also

$$\rho \left((x + \mathcal{I}E)(b + \varphi_E(\mathcal{I}))^2 \right)^2 = \rho(xb + \mathcal{I}E)^2$$

$$= (\pi \circ_{\mathcal{A}} \rho)(xb)^2$$

$$= (\pi \circ_{\mathcal{A}} \rho)(xb^*)^2$$

$$= \rho(xb^* + \mathcal{I}E)^2$$

$$= \rho \left((x + \mathcal{I}E)(b + \varphi_E(\mathcal{I}))^* \right)^2$$

for each $x \in_{\mathcal{A}} E_{\mathcal{B}}$ and $b \in B$.

Similarly we can show that $\rho'((a+\mathcal{I})(x+\mathcal{I}E))^2 = \rho'((a+\mathcal{I})^*(x+\mathcal{I}E))^2$. Therefore $\frac{E}{\mathcal{I}E}$ is an imprimitivity Finsler bimodule over $\frac{\mathcal{A}}{\mathcal{I}}$ and $\frac{\mathcal{B}}{\varphi_E(\mathcal{I})}$.

Definition 3.11. Let E be a Finsler \mathcal{A} - \mathcal{B} -bimodule, \mathcal{I} and \mathcal{J} be ideals in \mathcal{A} and \mathcal{B} , respectively. The ideal subbimodule ${}_{\mathcal{I}}E_{\mathcal{J}}$ of E associated to \mathcal{I} and \mathcal{J} is defined by

$$\mathcal{I}E_{\mathcal{J}} = \overline{\operatorname{span}}\{axb : x \in E, a \in \mathcal{I}, b \in \mathcal{J}\}.$$

Clearly, $_{\mathcal{I}}E_{\mathcal{J}}$ is a closed subbimodule of E. It can be also regarded as a Finsler bimodule over \mathcal{I} and \mathcal{J} .

Theorem 3.12. Let E be a Finsler A-B-bimodule, I and J are ideals in A and B, respectively. Then

$${}_{\mathcal{I}}E_{\mathcal{J}} = \mathcal{I}E\mathcal{J} = \{axb : x \in E, a \in A, b \in B\}.$$

Proof. The proof is similar to that of [3, Proposition 1.2] and we remove it. \Box

Remark 3.13. Let *E* be a Finsler bimodule over commutative *C*^{*}-algebras \mathcal{A} and \mathcal{B} and there exists a *-isomorphism $\varphi_E : \mathcal{A} \to \mathcal{B}$ as in Theorem 3.7. If \mathcal{I} and \mathcal{J} are ideals of \mathcal{A} and \mathcal{B} , respectively, and ${}_{\mathcal{I}}E_{\mathcal{J}}$ is the associated ideal subbimodule, then $\frac{E}{{}_{\mathcal{I}}E_{\mathcal{J}}}$ is a $\frac{\mathcal{A}}{\mathcal{I}}$ - $\frac{\mathcal{B}}{\mathcal{J}}$ -bimodule, where $q : E \to \frac{E}{{}_{\mathcal{I}}E_{\mathcal{J}}}$ and

484

 $\begin{aligned} \pi: \mathcal{A} &\to \frac{\mathcal{A}}{\mathcal{I}} \text{ and } \pi': \mathcal{B} \to \frac{\mathcal{B}}{\mathcal{J}} \text{ are the quotient maps and the left action of } \frac{\mathcal{A}}{\mathcal{I}} \text{ and} \\ \text{the right action of } \frac{\mathcal{B}}{\mathcal{J}} \text{ over linear space } \frac{E}{\mathcal{I} \mathcal{E}_{\mathcal{J}}} \text{ are defined by } \pi(a)q(x) = q(ax) \\ \text{and } q(x)\pi'(b) = q(xb), \text{ respectively. By Theorem 3.10, } \frac{E}{\mathcal{I} \mathcal{E}_{\mathcal{J}}} \text{ is a Finsler } \frac{\mathcal{A}}{\mathcal{I}} - \frac{\mathcal{B}}{\mathcal{J}} \\ \text{-bimodule, where } \frac{\mathcal{A}}{\mathcal{I}} \rho(q(x)) = \pi(\mathcal{A}\rho(x)) \text{ and } \rho_{\frac{\mathcal{B}}{\mathcal{J}}}(q(x)) = \pi'(\rho_{\mathcal{B}}(x)). \end{aligned}$

In addition, $\frac{E}{\tau E_{\mathcal{J}}}$ is an imprimitivity Finsler $\frac{\mathcal{A}}{\mathcal{I}} - \frac{\mathcal{B}}{\mathcal{J}}$ -bimodule if and only if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule. This follows at once from the evident equalities $(\underline{A}_{\mathcal{I}} \rho(q(E))) = \pi(\mathcal{A}\rho(E))$ and $(\rho_{\underline{B}}(q(E))) = \pi'(\rho_{\mathcal{B}}(E))$.

Recall that an ideal \mathcal{I} of a C^* -algebra \mathcal{A} is essential, if $\mathcal{I}^{\perp} = \{a \in \mathcal{A} : a\mathcal{I} = 0\} = \{0\}.$

Lemma 3.14. Let \mathcal{I} be an ideal in a C^* -algebra \mathcal{A} and \mathcal{I}^+ be the set of all positive elements of \mathcal{I} . The following condition are mutually equivalent:

(a)
$$\mathcal{I}$$
 is an essential ideal in \mathcal{A} ;
(b) $\|a\| = \sup_{b \in \mathcal{I}^+, \|b\| \leq 1} (\|ab\|)$;
(c) $\|a\| = \sup_{b \in \mathcal{I}^+, \|b\| \leq 1} (\|ba\|)$ for each $a \in \mathcal{A}$; and
(d) $\|a\| = \sup_{b \in \mathcal{I}^+, \|b\| \leq 1} (\|bab\|)$ for each $a \in \mathcal{A}^+$.

.

Proof. The proof is similar to that of [3, Lemma 1.10], by replacing \mathcal{I} with \mathcal{I}^+ .

Theorem 3.15. Let E be a Finsler A-B-bimodule and I, J be the essential ideals of A and B, respectively. Then

$$\|x\| = \sup_{b \in \mathcal{I}^+, \|b\| \leqslant 1} (\|bx\|) = \sup_{b \in \mathcal{J}^+, \|b\| \leqslant 1} (\|xb\|)$$

for each $x \in E$. Conversely, if E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule and for each $x \in E$,

$$||x|| = \sup_{b \in \mathcal{I}^+, ||b|| \le 1} (||bx||) = \sup_{b \in \mathcal{J}^+, ||b|| \le 1} (||xb||),$$

then \mathcal{I} and \mathcal{J} are essential ideals in \mathcal{A} and \mathcal{B} , respectively.

Proof. Since E is a left Finsler module over C^* -algebra \mathcal{A} , we have

$$||x||^{2} = ||_{\mathcal{A}}\rho(x)||^{2} = ||_{\mathcal{A}}\rho(x)^{2}|| = \sup_{b \in \mathcal{I}^{+}, ||b|| \leq 1} (||b_{\mathcal{A}}\rho(x)^{2}b||)$$
$$= \sup_{b \in \mathcal{I}^{+}, ||b|| \leq 1} (||bx||)^{2},$$

for each $x \in E$. Since E is a right Finsler module over C^* -algebra \mathcal{B} , we have

$$||x||^{2} = ||\rho_{\mathcal{B}}(x)||^{2} = ||\rho_{\mathcal{B}}(x)^{2}|| = \sup_{b \in \mathcal{J}^{+}, ||b|| \leq 1} (||b\rho_{\mathcal{B}}(x)^{2}b||)$$
$$= \sup_{b \in \mathcal{J}^{+}, ||b|| \leq 1} (||xb||)^{2},$$

for each $x \in E$.

Conversely, let E be an imprimitivity Finsler bimodule. If \mathcal{I} and \mathcal{J} are not essential, then $\mathcal{I}^{\perp} \neq \{0\}$ and $\mathcal{J}^{\perp} \neq \{0\}$. Hence there exist nonzero elements $c_1 \in \mathcal{I}^{\perp}$ and $c_2 \in \mathcal{J}^{\perp}$. By [2, Theorem 3.2(iii)], there exist $x_1, x_2 \in E$ such that $c_1x_1 \neq 0$ and $x_2c_2 \neq 0$. By the assumption, we have

$$||c_1x_1|| = \sup_{b \in \mathcal{I}^+, ||b|| \le 1} (||b(c_1x_1)||) = \sup_{b \in \mathcal{I}^+, ||b|| \le 1} (||(bc_1)x_1||) = 0$$

and

$$||x_2c_2|| = \sup_{b \in \mathcal{J}^+, ||b|| \le 1} (||(x_2c_2)b||) = \sup_{b \in \mathcal{J}^+, ||b|| \le 1} (||x_2(c_2b)||) = 0.$$

So $c_1x_1 = 0$ and $x_2c_2 = 0$, which is a contradiction. Therefore \mathcal{I} and \mathcal{J} are essential ideals of \mathcal{A} and \mathcal{B} , respectively.

Corollary 3.16. Suppose that E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule of commutative C^* -algebras \mathcal{A} and \mathcal{B} with the maps $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$. Suppose that \mathcal{I} and \mathcal{J} are essential ideals of \mathcal{A} and \mathcal{B} , respectively. If $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on $_{\mathcal{I}}E$ and $E_{\mathcal{J}}$, respectively, then E is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

Proof. Since E is an imprimitivity Finsler \mathcal{A} - \mathcal{B} -bimodule with the maps $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$, the essential ideal submodules $_{\mathcal{I}}E$ and $E_{\mathcal{J}}$ are Finsler modules with the restriction mappings $_{\mathcal{A}}\rho|_{_{\mathcal{I}}E}$ and $\rho_{\mathcal{B}}|_{_{\mathcal{E}}\mathcal{J}}$, respectively. Since $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on $_{\mathcal{I}}E$ and $E_{\mathcal{J}}$, respectively. Hence for each $x, y \in E$ and $a \in \mathcal{I}$ and $b \in \mathcal{J}$ such that $||a|| \leq 1$ and $||b|| \leq 1$, we have

$$\begin{aligned} {}_{\mathcal{A}}\rho(ax+ay)^2 + {}_{\mathcal{A}}\rho(ax-ay)^2 - 2{}_{\mathcal{A}}\rho(ax)^2 - 2{}_{\mathcal{A}}\rho(ay)^2 &= 0, \\ a({}_{\mathcal{A}}\rho(x+y)^2 + {}_{\mathcal{A}}\rho(x-y)^2 - 2{}_{\mathcal{A}}\rho(x)^2 - 2{}_{\mathcal{A}}\rho(y)^2)a^* &= 0, \\ ({}_{\mathcal{A}}\rho(x+y)^2 + {}_{\mathcal{A}}\rho(x-y)^2 - 2{}_{\mathcal{A}}\rho(x)^2 - 2{}_{\mathcal{A}}\rho(y)^2)a^*a &= 0. \end{aligned}$$

It follows from Lemma 3.14(b)

$$\|_{\mathcal{A}}\rho(x+y)^{2} + {}_{\mathcal{A}}\rho(x-y)^{2} - 2_{\mathcal{A}}\rho(x)^{2} - 2_{\mathcal{A}}\rho(y)^{2}\| = 0.$$

Hence

$$_{\mathcal{A}}\rho(x+y)^{2} + _{\mathcal{A}}\rho(x-y)^{2} = 2_{\mathcal{A}}\rho(x)^{2} + 2_{\mathcal{A}}\rho(y)^{2}.$$

Similarly

$$\rho_{\mathcal{B}}(x+y)^{2} + \rho_{\mathcal{B}}(x-y)^{2} = 2\rho_{\mathcal{B}}(x)^{2} + 2\rho_{\mathcal{B}}(y)^{2}.$$

486

Hence $_{\mathcal{A}}\rho$ and $\rho_{\mathcal{B}}$ satisfy the parallelogram law on *E*. By Theorem 3.6, *E* is a Hilbert \mathcal{A} - \mathcal{B} -bimodule.

References

- M. Amyari and A. Niknam, A note on Finsler modules, Bull. Iranian Math. Soc., 29(1) (2003), 77–81.
- [2] M. Amyari and A. Niknam, On homomorphisms of Finsler modules, Intern. Math. Journal, 3(3) (2003), 277–281.
- [3] D. Bakic and B. Guljas, On a class of module maps of Hilbert C^{*}-modules, Math. Comm., 7(2) (2002), 177–192.
- [4] P. Bertozzini and W. Lewkeeratyutkul, A Spectral Theorem for Imprimitivity C^{*}bimodules, arXiv:0812.3596, (2008).
- [5] E.C. Lance, *Hilbert C^{*}-modules*, LMS Lecture Note series 210, Combridge University Press (1995).
- [6] M.S. Moslehian, Vector space structure on Finsler modules over C*-algebra, J. Anal., 9 (2001), 133–136.
- [7] G.K. Pedersen, Factorization in C*-algebras, Exposition Math., 16(2) (1998), 145–156.
- [8] N.C. Phillips and N. Weaver, Modules with norms which take values in a C*-algebra, Pacific J. of Math., 185(1) (1998), 163–181.
- [9] I. Raeburn and D.P. Williams, Morita equivalence and continuous-trace C^{*}-algebras, Mathematical Surveys and Monographs AMS, 60 (1998).