STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATION FOR TWO ASYMPTOTICALLY ϕ-NONEXPANSIVE MAPPINGS IN A BANACH SPACE

Ying Liu ${ }^{1}$ and Guochun Zhang ${ }^{2}$
${ }^{1}$ College of Mathematics and Computer, Hebei University Baoding 071002, P.R. China
e-mail: ly_cyh2013@163.com
${ }^{2}$ College of Mathematics and Computer, Hebei University Baoding 071002, P.R. China
e-mail: zhangguochun@cmc.hbu.cn

Abstract

In this paper, we propose an iteration sequence by using the modified Ishikawa iteration method in a Banach space. Furthermore, we prove the iteration sequence converges strongly a concrete common fixed point of two asymptotically ϕ-nonexpansive mappings.

1. Introduction

Let E be a Banach space, E^{*} be the dual space of $E .\langle\cdot, \cdot\rangle$ denotes the duality pairing of E and E^{*}. The function $\phi: E \times E \rightarrow R$ is defined by

$$
\phi(y, x)=\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2},
$$

for all $x, y \in E$, where J is the normalized duality mapping from E to E^{*}. Let C be a closed convex subset of E, and let T be a mapping from C into itself. We denote by $F(T)$ the set of fixed points of T. A point p in C is said to be an asymptotic fixed point of $T[10]$ if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left(x_{n}-T x_{n}\right)=0$. The set of asymptotic fixed points of T will be denoted by $\hat{F}(T)$. From $[2,14]$, we can find the following definitions:

[^0]The mapping T is said to be closed if for any sequence $\left\{x_{n}\right\} \subset C$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ and $\lim _{n \rightarrow \infty} T x_{n}=y_{0}$, then $T x_{0}=y_{0}$. The mapping T is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$ and quasinonexpansive if $F(T) \neq \emptyset$ and $\|x-T y\| \leq\|x-y\|$ for all $x \in F(T)$ and $y \in C . T$ is said to be asymptotically nonexpansive if there exists a sequence $k_{n} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|$, $\forall x, y \in C, \forall n \geq 1$. T is said to be asymptotically quasi-nonexpansive if $F(T) \neq$ \emptyset and there exists a sequence $k_{n} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $\left\|x-T^{n} y\right\| \leq k_{n}\|x-y\|, \forall x \in F(T), y \in C, \forall n \geq 1 . T$ is said to be relatively nonexpansive if $F(T)=\hat{F}(T)$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T) . \quad T$ is said to be relatively asymptotically nonexpansive, if $F(T)=\hat{F}(T) \neq \emptyset$ and there exists a sequence $k_{n} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $\phi\left(p, T^{n} x\right) \leq k_{n} \phi(p, x)$ for all $x \in C, p \in F(T)$ and $n \geq 1$. T is said to be ϕ-nonexpansive if $\phi(T x, T y) \leq \phi(x, y)$ for all $x, y \in C . T$ is said to be quasi- ϕ-nonexpansive if $F(T) \neq \emptyset$ and $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. T is said to be asymptotically ϕ-nonexpansive if there exists a sequence $k_{n} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $\phi\left(T^{n} x, T^{n} y\right) \leq k_{n} \phi(x, y)$ for all $x, y \in C . T$ is said to be asymptotically quasi-ϕ-nonexpansive if $F(T) \neq \emptyset$ and there exists a sequence $\left\{k_{n}\right\} \subset[1,+\infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that $\phi\left(p, T^{n} x\right) \leq k_{n} \phi(p, x)$ for all $x \in C, p \in F(T)$ and $n \geq 1$.
Remark 1.1. ([14]) The class of (asymptotically) quasi- ϕ-nonexpansive mappings is more general than the class of relatively (asymptotically) nonexpansive mappings which requires the restriction: $F(T)=\hat{F}(T)$.

Remark 1.2. In the framework of Hilbert spaces, (asymptotically) ϕ-nonexpansive mappings are reduced to (asymptotically) nonexpansive mappings.

Two classical iteration processes are often used to approximate a fixed point of a nonexpansive mapping. The first one is introduced in 1953 by Mann [8] which is well-known as Mann's iteration process and is defined as follows:

$$
\left\{\begin{align*}
x_{0} & \in C \text { chosen arbitrarily, } \tag{1.1}\\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0,
\end{align*}\right.
$$

where the sequence $\left\{\alpha_{n}\right\}$ is chosen in $[0,1]$. Twenty-one years later, Ishikawa [6] enlarged and improved Mann's iteration (1.1) to the new iteration method, it is often cited as Ishikawa iteration process which is defined recursively by

$$
\left\{\begin{align*}
x_{0} & \in C \text { chosen arbitrarily, } \tag{1.2}\\
y_{n} & =\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}, \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, \quad n \geq 0,
\end{align*}\right.
$$

where α_{n} and β_{n} are sequences in the interval $[0,1]$.

Both iterations processes (1.1) and (1.2) have only weak convergence, in general Banach space (see [4], for more details). As a matter of fact, process (1.1) may fail to converge while process (1.2) can still converge for a Lipschitz pseudo-contractive mapping in a Hilbert space [3].

Some attempts to modify the Mann iteration method so that strong convergence is guaranteed have recently been made. Nakajo and Takahashi [12] proposed the following modification of the Mann iteration method for a single nonexpansive mapping T in a Hilbert space H :

$$
\left\{\begin{align*}
x_{0} & =x \in C, \tag{1.3}\\
y_{n} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n}, \\
C_{n} & =\left\{z \in C:\left\|z-y_{n}\right\| \leq\left\|z-x_{n}\right\|\right\}, \\
Q_{n} & =\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1} & =P_{C_{n} \cap Q_{n}} x, \quad n=0,1,2, \cdots,
\end{align*}\right.
$$

where P_{K} denotes the metric projection from H onto a closed convex subset K of H. They proved that if the sequence $\left\{\alpha_{n}\right\}$ is bounded above from one, then $\left\{x_{n}\right\}$ defined by (1.3) converges strongly to $P_{F(T)} x$.

In 2006, Martinez-Yanes and Xu [9] has adapted Nakajo and Takahashi's [12] idea to modify the process (1.2) for a single nonexpansive mapping T in a Hilbert space H :

$$
\left\{\begin{align*}
& x_{0} \in C, \tag{1.4}\\
& z_{n}= \beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}, \\
& y_{n}= \alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}, \\
& C_{n}=\left\{v \in C:\left\|y_{n}-v\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}+\left(1-\alpha_{n}\right)\left(\left\|z_{n}\right\|^{2}\right.\right. \\
&\left.\left.-\left\|x_{n}\right\|^{2}+2\left\langle x_{n}-z_{n}, v\right\rangle\right)\right\}, \\
& Q_{n}=\left\{v \in C:\left\langle x_{n}-v, x_{0}-x_{n}\right\rangle \geq 0\right\}, \\
& x_{n+1}= P_{C_{n} \cap Q_{n} x_{0} .} .
\end{align*}\right.
$$

They proved that if $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are sequences in $[0,1]$ such that $\alpha_{n} \leq 1-\delta$ for some $\delta \in(0,1]$ and $\beta_{n} \rightarrow 1$, then the sequence $\left\{x_{n}\right\}$ generated by (1.4) converges strongly to $P_{F(T)} x_{0}$.

In 2007, Plubtieng and Ungchittrakool [13] have again modified the process (1.2) for two asymptotically nonexpansive mappings. More precisely, they proved the following theorem.
Theorem PU. Let C be a bounded closed convex subset of a Hilbert space H and let $S, T: C \rightarrow C$ be two asymptotically nonexpansive mappings with sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ respectively. Assume that $\alpha_{n} \leq a$ for all n and for some $0<a<1$ and $\beta_{n} \in[b, c]$ for all n and $0<b<c<1$. If $F:=$ $F(S) \bigcap F(T) \neq \emptyset$, then the sequence $\left\{x_{n}\right\}$ generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \quad \text { chosen arbitrarily } \tag{1.5}\\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T^{n} z_{n} \\
z_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S^{n} x_{n} \\
C_{n}=\left\{v \in C:\left\|y_{n}-v\right\|^{2} \leq\left\|x_{n}-v\right\|^{2}+\theta_{n}\right\} \\
Q_{n}=\left\{v \in C:\left\langle x_{n}-v, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n}} \cap Q_{n} x_{0}
\end{array}\right.
$$

where $\theta_{n}=\left(1-\alpha_{n}\right)\left[\left(t_{n}^{2}-1\right)+\left(1-\beta_{n}\right) t_{n}^{2}\left(s_{n}^{2}-1\right)\right](\operatorname{diamC})^{2} \rightarrow 0$ as $n \rightarrow \infty$, converges in norm to $P_{F} x_{0}$.

The ideas to generalize the processes (1.3)-(1.5) from Hilbert space to Banach space have recently been made. By using available properties on uniformly convex and uniformly smooth Banach space, Matsushita and Takahashi [10] presented their ideas as the following method for a single relatively nonexpansive mapping T in a Banach space E :

$$
\left\{\begin{align*}
x_{0} & =x \in C \tag{1.6}\\
y_{n} & =J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right) \\
H_{n} & =\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
W_{n} & =\left\{z \in C:\left\langle x_{n}-z, J x-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{H_{n} \cap W_{n}} x, n=0,1,2, \cdots,
\end{align*}\right.
$$

where $\alpha_{n} \subset[0,1)$, limsup $\alpha_{n}<1$, and $\Pi_{H_{n} \bigcap W_{n}}$ is the generalized projection from C into $H_{n} \bigcap W_{n}^{n \rightarrow \infty}$. They proved $\left\{x_{n}\right\}$ converges strongly $\Pi_{F(T)} x_{0}$.

Qin and Su [15] proposed the following modified Ishikawa iteration process for a single relatively nonexpansive mapping T in a Banach space E :

$$
\left\{\begin{align*}
x_{0} & \in C, \tag{1.7}\\
z_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J T x_{n}\right) \\
y_{n} & =J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T z_{n}\right) \\
C_{n} & =\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(v, z_{n}\right)\right\} \\
Q_{n} & =\left\{v \in C:\left\langle x_{n}-v, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{C_{n} \cap Q_{n}} x_{0},
\end{align*}\right.
$$

where $\alpha_{n} \subset[0,1)$, $\limsup \alpha_{n}<1, \beta_{n} \rightarrow 1$. They proved if T is uniformly continuous, then $\left\{x_{n}\right\}^{n \rightarrow \infty}$ converges strongly to $\Pi_{F(T)} x_{0}$.

In 2009, Liu et al. [7] generalized the modified Ishikawa iteration process (1.7) for two relatively nonexpansive mappings T and S in a Banach space without assuming the uniform continuity on T or S.

Very recently, Qin et al. [14] proposed the following modified Mann iteration process for a single closed, asymptotically quasi- ϕ-nonexpansive mapping T in
a uniformly smooth and strictly convex Banach space E which enjoys the Kadec-Klee property:

$$
\left\{\begin{align*}
x_{0} & \in E \text { chosen arbitrarily, } \tag{1.8}\\
C_{1} & =C, \\
x_{1} & =\Pi_{C_{1}} x_{0}, \\
y_{n} & =J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T^{n} x_{n}\right), \\
C_{n+1} & =\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)+\left(k_{n}-1\right) M_{n}\right\}, \\
x_{n+1} & =\Pi_{C_{n+1} x_{0}},
\end{align*}\right.
$$

where $M_{n}=\sup \left\{\phi\left(z, x_{n}\right): z \in F(T)\right\}$ for each $n \geq 1, \alpha_{n} \subset[0,1), \limsup _{n \rightarrow \infty} \alpha_{n}<$ 1. They proved if T is asymptotically regular and $F(T)$ is bounded, then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T)} x_{0}$.

Inspired and motivated by these facts, our purpose in this paper is to generalize the modified Mann iteration process (1.8) to modified Ishikawa iteration process for two closed, asymptotically ϕ-nonexpansive mappings T and S in a uniformly smooth and strictly convex Banach space E which enjoys the Kadec-Klee property without assuming asymptotically regularity on T or S.

2. Preliminaries

Let $U=\{x \in E:\|x\|=1\}$ be the unit sphere of E. A Banach space E is said to be strictly convex if $\left\|\frac{x+y}{2}\right\|<1$ for all $x, y \in U$ and $x \neq y$. It is said to be uniformly convex if $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ for any two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in U and $\lim _{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{2}\right\|=1$. E is said to be smooth provided $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for each $x, y \in U$. It is said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$. A Banach space E is said to have the Kadec-Klee property if a sequence $\left\{x_{n}\right\}$ of E satisfying that $x_{n} \rightharpoonup x \in E$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$. It is known that if E is uniformly convex, then E has the Kadec-Klee property.

When $\left\{x_{n}\right\}$ is a sequence in E, we denote strong convergence of $\left\{x_{n}\right\}$ to $x \in E$ by $x_{n} \rightarrow x$ and weak convergence by $x_{n} \rightharpoonup x$.

We denote by $J: E \rightarrow 2^{E^{*}}$ the normalized duality mapping from E to $2^{E^{*}}$, defined by

$$
J(x):=\left\{v \in E^{*}:\langle v, x\rangle=\|v\|^{2}=\|x\|^{2}\right\}, \quad \forall x \in E .
$$

The following properties for the duality mapping J can be found in [2]:
(i) If E is an arbitrary Banach space, then J is monotone and bounded.
(ii) If E is smooth, then J is single-valued and demi-continuous, i.e., J is continuous from the strong topology of E to the weak star topology of E^{*}.
(iii) If E is strictly convex, then J is strictly monotone.
(iv) If E is reflexive, then J is surjective.
(v) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.
(vi) If E is a reflexive and strictly convex Banach space with a strictly convex dual E^{*} and $J^{*}: E^{*} \rightarrow E$ is the normalized duality mapping in E^{*}, then $J^{-1}=J^{*}, J J^{*}=I_{E^{*}}$ and $J^{*} J=I_{E}$.
(vii) If E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and onto.
(viii) It is well known that a Banach space E is uniformly smooth if and only if E^{*} is uniformly convex. If E is uniformly smooth, then it is smooth and reflexive.

Let E be a smooth Banach space. The function $\phi: E \times E \rightarrow R$ is defined by

$$
\phi(y, x)=\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2}
$$

for all $x, y \in E$. It is obvious from the definition of the function ϕ that
(A1) $(\|x\|-\|y\|)^{2} \leq \phi(y, x) \leq(\|x\|+\|y\|)^{2}$.
(A2) $\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle$.
(A3) $\phi(x, y)=\langle x, J x-J y\rangle+\langle y-x, J y\rangle \leq\|x\|\|J x-J y\|+\|y-x\|\|y\|$.
Remark 2.1. From the Remark 2.1 of reference [10], we can know that if E is a strictly convex and smooth Banach space, then for $x, y \in E, \phi(y, x)=0$ if and only if $x=y$.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive, strictly convex and smooth. Then, for any $x \in E$, there exists a unique point $x_{0} \in C$ such that

$$
\phi\left(x_{0}, x\right)=\min _{y \in C} \phi(y, x)
$$

The mapping $\Pi_{C}: E \rightarrow C$ defined by $\Pi_{C} x=x_{0}$ is called the generalized projection $[1,10]$. In a Hilbert space, $\Pi_{C}=P_{C}$ (metric projection).

Let $\left\{C_{n}\right\}$ be a sequence of nonempty closed convex subsets of a reflexive Banach space E. We define two subsets $s-L i_{n} C_{n}$ and $w-L s_{n} C_{n}$ as follows: $x \in s-L i_{n} C_{n}$ if and only if there exists $\left\{x_{n}\right\} \subset E$ such that $\left\{x_{n}\right\}$ converges strongly to x and such that $x_{n} \in C_{n}$ for all $n \geq 1$. Similarly, $y \in w-L s_{n} C_{n}$ if and only if there exists a subsequence $\left\{C_{n_{i}}\right\}$ of $\left\{C_{n}\right\}$ and a sequence $\left\{y_{n_{i}}\right\} \subset E$ such that $\left\{y_{n_{i}}\right\}$ converges weakly to y and such that $y_{n_{i}} \in C_{n_{i}}$ for all $i \geq 1$. We define the Mosco convergence [16] of C_{n} as follows: If C_{0} satisfies that
$C_{0}=s-L i_{n} C_{n}=w-L s_{n} C_{n}$, it is said that $\left\{C_{n}\right\}$ converges to C_{0} in the sense of Mosco, and we write $C_{0}=M-\lim _{n \rightarrow \infty} C_{n}$. For more details, see [11].
Lemma 2.2. ([5]) Let E be a smooth, reflexive and strictly convex Banach space having the Kadec-klee property. Let $\left\{K_{n}\right\}$ be a sequence of nonempty closed convex subsets of E. If $K_{0}=M-\lim _{n \rightarrow \infty} K_{n}$ exists and is nonempty, then $\left\{\Pi_{K_{n}} x\right\}$ converges strongly to $\Pi_{K_{0}} x$ for each $x \in E$.

Lemma 2.3. ($[2,14])$ Let E be a uniformly smooth and strictly convex Banach space which enjoys the Kadec-Klee property, let C be a nonempty closed convex subset of E, and let T be a closed and asymptotically quasi- ϕ-nonexpansive mapping from C into itself. Then $F(T)$ is closed and convex.

Lemma 2.4. ([1]) Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty closed convex subset of E and let $x \in E$. Then

$$
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x)
$$

for all $y \in C$.
Lemma 2.5. ([17]) Let E be a uniformly convex Banach space and let $r>0$. Then there exists a continuous strictly increasing convex function $g:[0,2 r] \rightarrow$ R such that $g(0)=0$ and

$$
\|t x+(1-t) y\|^{2} \leq t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t) g(\|x-y\|)
$$

for all $x, y \in B_{r}$ and $t \in[0,1]$, where $B_{r}=\{z \in E:\|z\| \leq r\}$.
Lemma 2.6. Let E be a reflexive, smooth and strictly convex Banach space such that E and E^{*} have the Kadec-Klee property. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be two sequences of E and $x_{n} \rightarrow \bar{x}$. If $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$, then $y_{n} \rightarrow \bar{x}$ and $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$.
Proof. Since $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$, from (A1), we know that $\left\|y_{n}\right\| \rightarrow\|\bar{x}\|$. It follows that $\left\|J y_{n}\right\| \rightarrow\|J \bar{x}\|$. This implies that $\left\{J y_{n}\right\}$ is bounded. We may assume that $J y_{n} \rightharpoonup y^{*} \in E^{*}$. By the reflexivity of E, we see that $J E=E^{*}$. This shows that there exists a $y \in E$ such that $J y=y^{*}$. It follows that

$$
\begin{aligned}
\phi(\bar{x}, y) & =\|\bar{x}\|^{2}-2\langle\bar{x}, J y\rangle+\|J y\|^{2} \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|x_{n}\right\|^{2}-2\left\langle x_{n}, J y_{n}\right\rangle+\left\|J y_{n}\right\|^{2}\right) \\
& =\liminf _{n \rightarrow \infty} \phi\left(x_{n}, y_{n}\right)=0
\end{aligned}
$$

which implies that $\bar{x}=y$. This is $J y_{n} \rightharpoonup J \bar{x}$. Since E^{*} satisfies the Kadec-Klee property, we have $J y_{n} \rightarrow J \bar{x}$. Note that $J^{-1}: E^{*} \rightarrow E$ is demi-continuous, it follows that $y_{n} \rightharpoonup \bar{x}$. Since E satisfies the Kadec-Klee property, we have $y_{n} \rightarrow$ \bar{x}. Since $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-\bar{x}\right\|+\left\|\bar{x}-y_{n}\right\|$, we also have $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

3. Main Results

In this section, we prove a strong convergence theorem of a common fixed point for two closed and asymptotically ϕ-nonexpansive mappings from C into itself.

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space which enjoys the Kadec-Klee property, let C be a nonempty closed convex subset of E, let T, S be two closed and asymptotically quasi- ϕ-nonexpansive mappings from C into itself with sequences $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ respectively such that $F=F(T) \bigcap F(S) \neq \emptyset$ and F is bounded. Let the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{align*}
x_{0} & \in E \text { chosen arbitrarily, } \tag{3.1}\\
C_{1} & =C, \\
x_{1} & =\Pi_{C_{1}} x_{0} \\
u_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S^{n} x_{n}\right) \\
z_{n} & =\Pi_{C} u_{n} \\
y_{n} & =J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T^{n} z_{n}\right) \\
C_{n+1} & =\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)+\theta_{n}\right\} \\
x_{n+1} & =\Pi_{C_{n+1}} x_{1}
\end{align*}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
\begin{gathered}
0 \leq \alpha_{n}<1, \quad \limsup _{n \rightarrow \infty} \alpha_{n}<1 \\
0<\beta_{n}<1, \quad \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0 \\
\theta_{n}=\left(1-\alpha_{n}\right)\left[\left(t_{n}-1\right)+\left(1-\beta_{n}\right) t_{n}\left(s_{n}-1\right)\right] \sup \left\{\phi\left(z, x_{n}\right): z \in F\right\} .
\end{gathered}
$$

Then $\lim _{n \rightarrow \infty} x_{n}=q$, where $q=\Pi_{C_{0}} x_{1}, C_{0}=\bigcap_{n=1}^{\infty} C_{n}$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-S^{n} x_{n}\right\|=$ $\left\|z_{n}-T^{n} z_{n}\right\|=0$. Further, if T and S are two closed, asymptotically ϕ nonexpansive mappings from C into itself, then $q=\Pi_{F} x_{1}$.

Proof. The proof will be split into five steps.
Step 1. We show that C_{n} is closed and convex for each $n \geq 1$.
It is obvious that $C_{1}=C$ is closed and convex. Suppose that C_{k} is closed and convex for some k. For $z \in C_{k}$, we see that $\phi\left(z, y_{k}\right) \leq \phi\left(z, x_{k}\right)+\theta_{k}$ is equivalent to

$$
2\left\langle z, J x_{k}-J y_{k}\right\rangle \leq\left\|x_{k}\right\|^{2}-\left\|y_{k}\right\|^{2}+\theta_{k}
$$

Hence C_{k+1} is closed and convex. Then, for each $n \geq 1, C_{n}$ is closed and convex.

Step 2. We show that $F \subset C_{n}$ for all $n \geq 1$.

It is easy to see that $F \subset C_{1}=C$. Suppose that $F \subset C_{k}$ for some k. Then for any $p \in F \subset C_{k}$, we have

$$
\begin{aligned}
\phi\left(p, z_{k}\right) \leq & \phi\left(p, u_{k}\right)=\phi\left(p, J^{-1}\left(\beta_{k} J x_{k}+\left(1-\beta_{k}\right) J S^{k} x_{k}\right)\right) \\
\leq & \|p\|^{2}-2 \beta_{k}\left\langle p, J x_{k}\right\rangle-2\left(1-\beta_{k}\right)\left\langle p, J S^{k} x_{k}\right\rangle \\
& +\beta_{k}\left\|x_{k}\right\|^{2}+\left(1-\beta_{k}\right)\left\|S^{k} x_{k}\right\|^{2} \\
= & \beta_{k} \phi\left(p, x_{k}\right)+\left(1-\beta_{k}\right) \phi\left(p, S^{k} x_{k}\right) \\
\leq & \beta_{k} \phi\left(p, x_{k}\right)+\left(1-\beta_{k}\right) s_{k} \phi\left(p, x_{k}\right) \\
= & \phi\left(p, x_{k}\right)+\left(1-\beta_{k}\right)\left(s_{k}-1\right) \phi\left(p, x_{k}\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
\phi\left(p, y_{k}\right)= & \phi\left(p, J^{-1}\left(\alpha_{k} J x_{k}+\left(1-\alpha_{k}\right) J T^{k} z_{k}\right)\right) \\
\leq & \|p\|^{2}-2 \alpha_{k}\left\langle p, J x_{k}\right\rangle-2\left(1-\alpha_{k}\right)\left\langle p, J T^{k} z_{k}\right\rangle \\
& +\alpha_{k}\left\|x_{k}\right\|^{2}+\left(1-\alpha_{k}\right)\left\|T^{k} z_{k}\right\|^{2} \\
= & \alpha_{k} \phi\left(p, x_{k}\right)+\left(1-\alpha_{k}\right) \phi\left(p, T^{k} z_{k}\right) \\
\leq & \alpha_{k} \phi\left(p, x_{k}\right)+\left(1-\alpha_{k}\right) t_{k} \phi\left(p, z_{k}\right) \\
= & \phi\left(p, x_{k}\right)+\left(1-\alpha_{k}\right)\left(t_{k} \phi\left(p, z_{k}\right)-\phi\left(p, x_{k}\right)\right) \\
\leq & \phi\left(p, x_{k}\right)+\left(1-\alpha_{k}\right)\left[t_{k} \phi\left(p, x_{k}\right)\right. \\
& \left.+t_{t}\left(1-\beta_{k}\right)\left(s_{k}-1\right) \phi\left(p, x_{k}\right)-\phi\left(p, x_{k}\right)\right] \\
\leq & \phi\left(p, x_{k}\right)+\theta_{k} .
\end{aligned}
$$

Thus, we have $p \in C_{k+1}$. Therefore we obtain $F \subset C_{n}$ for each $n \geq 1$.
Step 3. We show that $\lim _{n \rightarrow \infty} x_{n}=\Pi_{C_{0}} x_{1}=q$.
Since $\left\{C_{n}\right\}$ is a decreasing sequence of closed convex subsets of E such that $F \subset C_{0}=\bigcap_{n=1}^{\infty} C_{n}$ is nonempty, it follows that $M-\lim _{n \rightarrow \infty} C_{n}=C_{0}=\bigcap_{n=1}^{\infty} C_{n} \neq \emptyset$. By Lemma 2.2, $\left\{x_{n}\right\}=\left\{\Pi_{C_{n}} x_{1}\right\}$ converges strongly to $q=\Pi_{C_{0}} x_{1}$.
Step 4. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-S^{n} x_{n}\right\|=\left\|z_{n}-T^{n} z_{n}\right\|=0$.
Since $x_{n} \rightarrow q$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{3.2}
\end{equation*}
$$

In view of $x_{n+1} \in C_{n+1}$ and (3.2), we arrive at $\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right)$ $+\theta_{n} \rightarrow 0$ as $n \rightarrow \infty$. From Lemma 2.6, we have $y_{n} \rightarrow q$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.3}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

Notice that $\left\|J y_{n}-J x_{n}\right\|=\left(1-\alpha_{n}\right)\left(J T^{n} z_{n}-J x_{n}\right)$. From the assumption on $\left\{\alpha_{n}\right\}$ and (3.4), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J T^{n} z_{n}-J x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

Since $J x_{n} \rightarrow J q$, we have $J T^{n} z_{n} \rightarrow J q$. The demi-continuity of $J^{-1}: E^{*} \rightarrow E$ implies that $T^{n} z_{n} \rightharpoonup q$. Notice that

$$
\left|\left\|T^{n} z_{n}\right\|-\|q\|\right|=\left|\left\|J T^{n} z_{n}\right\|-\|J q\|\right| \leq\left\|J T^{n} z_{n}-J q\right\| \rightarrow 0
$$

It follows from the Kadec-Klee property of E, we obtain

$$
\begin{equation*}
T^{n} z_{n} \rightarrow q, \text { as } n \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

Since $\left\|T^{n} z_{n}-x_{n}\right\| \leq\left\|T^{n} z_{n}-q\right\|+\left\|q-x_{n}\right\|$, from (3.6), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} z_{n}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, $\phi\left(p, S^{n} x_{n}\right) \leq s_{n} \phi\left(p, x_{n}\right)$, where $p \in F$, we also obtain $\left\{J x_{n}\right\},\left\{J S^{n} x_{n}\right\}$ are bounded, then there exists $r>0$ such that $\left\{J x_{n}\right\}$, $\left\{J S^{n} x_{n}\right\} \subset B_{r}$. Therefore Lemma 2.5 is applicable and we observe that

$$
\begin{align*}
\phi\left(p, z_{n}\right) \leq & \phi\left(p, u_{n}\right) \\
= & \|p\|^{2}-2\left\langle p, \beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S^{n} x_{n}\right\rangle+\beta_{n}\left\|J x_{n}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left\|J S^{n} x_{n}\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S^{n} x_{n}\right\|\right) \tag{3.8}\\
\leq & \phi\left(p, x_{n}\right)+\left(1-\beta_{n}\right)\left(s_{n}-1\right) \phi\left(p, x_{n}\right) \\
& -\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S^{n} x_{n}\right\|\right)
\end{align*}
$$

and hence

$$
\begin{align*}
\phi\left(p, y_{n}\right) & \leq \alpha_{n} \phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right) t_{n} \phi\left(p, z_{n}\right) \\
& =\phi\left(p, x_{n}\right)+\left(1-\alpha_{n}\right)\left(t_{n} \phi\left(p, z_{n}\right)-\phi\left(p, x_{n}\right)\right) \tag{3.9}\\
& \leq \phi\left(p, x_{n}\right)+\theta_{n}-\left(1-\alpha_{n}\right) t_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S^{n} x_{n}\right\|\right) .
\end{align*}
$$

That is

$$
\begin{equation*}
\left(1-\alpha_{n}\right) t_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S^{n} x_{n}\right\|\right) \leq \phi\left(p, x_{n}\right)-\phi\left(p, y_{n}\right)+\theta_{n} . \tag{3.10}
\end{equation*}
$$

From (3.3), (3.4), we have

$$
\begin{aligned}
\phi\left(p, x_{n}\right)-\phi\left(p, y_{n}\right) & =2\left\langle p, J y_{n}-J x_{n}\right\rangle+\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2} \\
& =2\left\langle p, J y_{n}-J x_{n}\right\rangle+\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)\left(\left\|x_{n}\right\|-\left\|y_{n}\right\|\right) \\
& \rightarrow 0 .
\end{aligned}
$$

By $\limsup _{n \rightarrow \infty} \alpha_{n}<1, \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0, \theta_{n} \rightarrow 0$ and (3.10), we have

$$
g\left(\left\|J x_{n}-J S^{n} x_{n}\right\|\right) \rightarrow 0
$$

From the properties of the function g, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J S^{n} x_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

Since $J x_{n} \rightarrow J q$, we have $J S^{n} x_{n} \rightarrow J q$. Since J^{-1} is demi-continuous, we obtain $S^{n} x_{n} \rightharpoonup q$. Since $\left\|S^{n} x_{n}\right\|=\left\|J S^{n} x_{n}\right\| \rightarrow\|J q\|=\|q\|$, by the Kadecklee property of E, we obtain that $S^{n} x_{n} \rightarrow q$. Since $\left\|S^{n} x_{n}-x_{n}\right\| \leq \| S^{n} x_{n}-$ $q\|+\| q-x_{n} \|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|J u_{n}-J x_{n}\right\|=\left(1-\beta_{n}\right)\left\|J S^{n} x_{n}-J x_{n}\right\| \rightarrow 0 \tag{3.13}
\end{equation*}
$$

therefore, $J u_{n} \rightarrow J q$. Hence $\left\|u_{n}\right\| \rightarrow\|q\|$. By the demi-continuity of J^{-1}, we have $u_{n} \rightharpoonup q$. It follows from the Kadec-klee property of E that $u_{n} \rightarrow q$. Since $\left\|u_{n}-x_{n}\right\| \leq\left\|u_{n}-q\right\|+\left\|q-x_{n}\right\|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

From (A3), (3.13) and (3.14), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, u_{n}\right)=0 \tag{3.15}
\end{equation*}
$$

Since $\phi\left(x_{n}, z_{n}\right)=\phi\left(x_{n}, \Pi_{C} u_{n}\right) \leq \phi\left(x_{n}, u_{n}\right)$, from (3.15), we have $\phi\left(x_{n}, z_{n}\right) \rightarrow$ 0. From Lemma 2.6, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=q \text { and } \lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

Since $\left\|z_{n}-T^{n} z_{n}\right\| \leq\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-T^{n} z_{n}\right\|$, from (3.16) and (3.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-T^{n} z_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

Step 5. If T, S are two closed and asymptotically ϕ-nonexpansive mappings from C into itself, we show that $q=\Pi_{F} x_{1}$.

We first show that $q \in F$. From (3.11), (3.12) and (A3), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, S^{n} x_{n}\right)=0 \tag{3.18}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.17) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J z_{n}-J T^{n} z_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

It follows from (A3), (3.17) and (3.19) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(T^{n} z_{n}, z_{n}\right)=0 \tag{3.20}
\end{equation*}
$$

From (3.16), the continuity of J and the definition of ϕ, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(z_{n+1}, z_{n}\right)=0 \tag{3.21}
\end{equation*}
$$

It follows from (A2) that

$$
\begin{aligned}
& \phi\left(z_{n}, T z_{n}\right) \\
& =\phi\left(z_{n}, z_{n+1}\right)+\phi\left(z_{n+1}, T z_{n}\right)+2\left\langle z_{n}-z_{n+1}, J z_{n+1}-J T z_{n}\right\rangle \\
& =\phi\left(z_{n}, z_{n+1}\right)+\phi\left(z_{n+1}, T^{n+1} z_{n+1}\right)+\phi\left(T^{n+1} z_{n+1}, T z_{n}\right) \\
& \quad+2\left\langle z_{n+1}-T^{n+1} z_{n+1}, J T^{n+1} z_{n+1}-J T z_{n}\right\rangle \\
& \quad+2\left\langle z_{n}-z_{n+1}, J z_{n+1}-J T z_{n}\right\rangle .
\end{aligned}
$$

$\operatorname{By} \phi\left(T^{n+1} z_{n+1}, T^{n+1} z_{n}\right) \leq t_{n+1} \phi\left(z_{n+1}, z_{n}\right), \phi\left(T^{n+1} z_{n}, T z_{n}\right) \leq t_{1} \phi\left(T^{n} z_{n}, z_{n}\right)$, (3.21) and (3.20), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(T^{n+1} z_{n+1}, T^{n+1} z_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \phi\left(T^{n+1} z_{n}, T z_{n}\right)=0 \tag{3.23}
\end{equation*}
$$

It follows from (3.6), (3.23) and Lemma 2.6 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n+1} z_{n+1}-T^{n+1} z_{n}\right\|=0 \tag{3.24}
\end{equation*}
$$

By (A2), we have

$$
\begin{align*}
\phi\left(T^{n+1} z_{n+1}, T z_{n}\right)= & \phi\left(T^{n+1} z_{n+1}, T^{n+1} z_{n}\right)+\phi\left(T^{n+1} z_{n}, T z_{n}\right) \\
& +2\left\langle T^{n+1} z_{n+1}-T^{n+1} z_{n}, J T^{n+1} z_{n}-J T z_{n}\right\rangle . \tag{3.25}
\end{align*}
$$

Combining (3.25), (3.24), (3.23), (3.17) with (3.22), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(z_{n}, T z_{n}\right)=0 \tag{3.26}
\end{equation*}
$$

Since $z_{n} \rightarrow q$, by Lemma 2.6 , we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

Similarly, from $x_{n} \rightarrow q$, (3.2), (3.12), (3.18) and Lemma 2.6, we can obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

Since $x_{n} \rightarrow q$ and $z_{n} \rightarrow q$, by the closedness of S and T and (3.27), (3.28), we have $q \in F$.

Next, we show that $q=\Pi_{F} x_{1}$. Since $q=\Pi_{C_{0}} x_{1} \in F$ and F is a nonempty closed convex subset of $C_{0}=\bigcap_{n=1}^{\infty} C_{n}$, we conclude that $q=\Pi_{F} x_{1}$.

Remark 3.2. Theorem 3.1 is a version of Theorem PU in Banach space. The hybrid projection algorithm considered in Theorem 3.1 is simpler than that of Theorem PU, because we can remove the set " Q_{n} ". In addition, we do not assume that C is bounded as in Theorem PU, but the common fixed point set of T and S is bounded instead.

Remark 3.3. Theorem 3.1 is different from Theorem 2.1 of the [14] in the following senses:
(a) We develop Theorem 2.1 of the [14] from a single closed, asymptotically quasi- ϕ-nonexpansive mapping to two closed asymptotically ϕ nonexpansive mappings.
(b) We remove the asymptotically regularity on T or S as in Theorem 2.1 of the [14].

Corollary 3.4. Let E be a uniformly smooth and strictly convex Banach space with the Kadec-Klee property, let C be a nonempty closed convex subset of E, let T, S be two closed and quasi- ϕ-nonexpansive mappings from C into itself such that $F=F(T) \bigcap F(S) \neq \emptyset$. Then the sequence $\left\{x_{n}\right\}$ generated by

$$
\left\{\begin{align*}
x_{0} & \in E \text { chosen arbitrarily, } \tag{3.28}\\
C_{1} & =C, \\
x_{1} & =\Pi_{C_{1}} x_{0} \\
u_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right) \\
z_{n} & =\Pi_{C} u_{n}, \\
y_{n} & =J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T z_{n}\right) \\
C_{n+1} & =\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
x_{n+1} & =\Pi_{C_{n+1}} x_{1}
\end{align*}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
\begin{gathered}
0 \leq \alpha_{n}<1, \quad \limsup _{n \rightarrow \infty} \alpha_{n}<1, \\
0<\beta_{n}<1, \quad \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0
\end{gathered}
$$

converges strongly to $\Pi_{F} x_{1}$.
Proof. From the definition of quasi- ϕ-nonexpansive mappings, we see that every quasi- ϕ-nonexpansive mapping is asymptotically quasi- ϕ-nonexpansive with the constant sequence $\{1\}$. From the proof of Theorem 3.1, we have $F \subset C_{n}$ for all $n \geq 1, \lim _{n \rightarrow \infty} x_{n}=\Pi_{C_{0}} x_{1}=q$, where $C_{0}=\bigcap_{n=1}^{\infty} C_{n}$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=\left\|z_{n}-T^{n} z_{n}\right\|=0$. By the closedness of S and T, we have $q \in F$. Since $q=\Pi_{C_{0}} x_{1} \in F$ and F is a nonempty closed convex subset of $C_{0}=\bigcap_{n=1}^{\infty} C_{n}$, we conclude that $q=\Pi_{F} x_{1}$.

Remark 3.5. Corollary 3.4 improves Theorem 3.1 of [7] in the following senses:
(a) Since T and S are two quasi- ϕ-nonexpansive mappings, we remove the restrictions $F(T)=\hat{F}(T)$ and $F(S)=\hat{F}(S)$.
(b) The hybrid projection algorithm considered in Corollary 3.1 is simpler than that of Theorem 3.1 of [7], because we can remove the set " Q_{n} ".
(c) The uniformly smooth and strictly convex Banach spaces with the Kadec-Klee property considered by Corollary 3.4 are more general than the uniformly smooth and uniformly convex Banach spaces considered by Theorem 3.1 of [7].

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China(11401157).

References

[1] Y. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J., 4 (1994), 39-54.
[2] S. Chang, C. Chan and H. Lee, Modified block iterative algorithm for Quasi- ϕ asymptotically nonexpansive mappings and equilibrium problems in Banach spaces, Appl. Math. Comput., 217 (2011), 7520-7530.
[3] C.E. Chidume and S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363.
[4] A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22 (1975), 81-86.
[5] T. Ibaraki, Y. Kimura and W. Takahashi, Convergence theorems for generalized projections and maximal monotone operators in Banach spaces, Abstr. Appl. Anal., 2003 (2003), 621-629.
[6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
[7] Y. Liu, X. Wang and Z. He, Strong convergence of modified Ishikawa iteration for two relatively nonexpansive mappings in a Banach space, East Asian Math., 25 (2006), 91105.
[8] W. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
[9] C.M. Yanes and H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400-2411.
[10] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134 (2005), 257-266.
[11] U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3 (1969), 510-585.
[12] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379.
[13] S. Plubtieng and K. Ungchittrakool, Strong convergence of modified Ishikawa iteration for two asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 67 (2007), 2306-2315.
[14] X. Qin, S. Huang and T. Wang, On the convergence of hybrid projection algorithms for asymptotically quasi- ϕ-nonexpansive mappings, Computers Math. Applic., 61 (2011), 851-859.
[15] X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 1958-1965.
[16] Z. Wang, Y. Su, D. Wang and Y. Dong, A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math., 235 (2011), 2364-2371.
[17] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.

[^0]: ${ }^{0}$ Received March 27, 2014. Revised June 4, 2014.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 09,47 \mathrm{H} 05,47 \mathrm{H} 06,47 \mathrm{~J} 25,47 \mathrm{~J} 05$.
 ${ }^{0}$ Keywords: Asymptotically ϕ-nonexpansive mapping, generalized projection, modified Ishikawa iteration, common fixed point, normalized duality mapping.

