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Abstract. In this paper, we propose an iteration sequence by using the modified Ishikawa
iteration method in a Banach space. Furthermore, we prove the iteration sequence converges

strongly a concrete common fixed point of two asymptotically ¢-nonexpansive mappings.

1. INTRODUCTION

Let E be a Banach space, E* be the dual space of E. (-,-) denotes the
duality pairing of E and E*. The function ¢ : E X F — R is defined by

oy, ) = lyll* — 2{y, Jo) + |||,

for all x,y € F, where J is the normalized duality mapping from F to E*. Let
C be a closed convex subset of F/, and let T' be a mapping from C' into itself.
We denote by F(T') the set of fixed points of T'. A point p in C'is said to be an
asymptotic fixed point of T [10] if C' contains a sequence {x,, } which converges
weakly to p such that nll—>nc;lo (xn,—Txy,) = 0. The set of asymptotic fixed points of

T will be denoted by F(T). From [2, 14], we can find the following definitions:
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The mapping 7' is said to be closed if for any sequence {z,} C C such
that lim z, = x¢ and hm Tz, = yo, then Txy = yo. The mapping T is

n—o0

called nonexpansive if ||Ta: — Tyl < ||z —y| for all z,y € C and quasi-
nonexpansive if F(T) # () and ||z — Ty| < |z — y|| for all z € F(T) and
y € C. T is said to be asymptotically nonexpansive if there exists a sequence
kn, C [1,00) with k, — 1 as n — oo such that ||T"z — T"y| < knllz — yll,
Va,y € C,¥n > 1. T is said to be asymptotically quasi-nonexpansive if F'(T") #
() and there exists a sequence k, C [l,00) with k, — 1 as n — oo such
that ||z — T™y|| < knllz —y||, Vo € F(T), y € C, Vn > 1. T is said to be
relatively nonexpansive if F(T) = F(T) and ¢(p, Tz) < ¢(p, ) for all z € C
and p € F(T). T is said to be relatively asymptotically nonexpansive, if
F(T) = F(T) # 0 and there exists a sequence k, C [1,00) with k, — 1 as
n — oo such that ¢(p, T"z) < kné(p,x) for all x € C,p € F(T) and n > 1.
T is said to be ¢—nonexpansive if ¢(Tz,Ty) < ¢(z,y) for all x,y € C. T
is said to be quasi-p—nonexpansive if F(T) # () and ¢(p,Tz) < ¢(p,x) for
all z € C and p € F(T). T is said to be asymptotically ¢—nonexpansive
if there exists a sequence k, C [1,00) with k, — 1 as n — oo such that
o(T"x, T™y) < kpo(x,y) for all z,y € C. T is said to be asymptotically quasi-
¢-nonexpansive if F(T) # () and there exists a sequence {k,} C [1,+00) with
kn, — 1 as n — oo such that ¢(p, T"x) < kn,¢(p,x) for all z € C, p € F(T)
and n > 1.

Remark 1.1. ([14]) The class of (asymptotically) quasi-¢-nonexpansive map-
pings is more general than the class of relatively (asymptotically) nonexpansive
mappings which requires the restriction: F(7') = F(T).

Remark 1.2. In the framework of Hilbert spaces, (asymptotically) ¢-nonexpa-
nsive mappings are reduced to (asymptotically) nonexpansive mappings.

Two classical iteration processes are often used to approximate a fixed point
of a nonexpansive mapping. The first one is introduced in 1953 by Mann [8]
which is well-known as Mann’s iteration process and is defined as follows:

{ xg € C chosen arbitrarily,

Tny1 = uxn+ (1—ap)Tx,, n>0, (1.1)

where the sequence {a,, } is chosen in [0, 1]. Twenty-one years later, Ishikawa
[6] enlarged and improved Mann’s iteration (1.1) to the new iteration method,
it is often cited as Ishikawa iteration process which is defined recursively by

xg € C chosen arbitrarily,

Yn = Bnmn + (1 - Bn)Txna (1'2)
Tpg1l = pp+ (1 —an)Ty,, n>0,

where «;, and f3,, are sequences in the interval [0, 1].
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Both iterations processes (1.1) and (1.2) have only weak convergence, in
general Banach space (see [4], for more details). As a matter of fact, process
(1.1) may fail to converge while process (1.2) can still converge for a Lipschitz
pseudo-contractive mapping in a Hilbert space [3].

Some attempts to modify the Mann iteration method so that strong con-
vergence is guaranteed have recently been made. Nakajo and Takahashi [12]
proposed the following modification of the Mann iteration method for a single
nonexpansive mapping 7' in a Hilbert space H:

xg = z€C,
Yn = QpIn + (1 - Oén)T.Z'n,
Cn = {z€C:|z—wnll <z —=nl}, (1.3)
Qn = {z€C:(xp—2z2—1,) >0},
Tnt1 = FPo,ng.x n=01,2--,

where Px denotes the metric projection from H onto a closed convex subset
K of H. They proved that if the sequence {a,,} is bounded above from one,
then {z,} defined by (1.3) converges strongly to Pp(r)x.

In 2006, Martinez-Yanes and Xu [9] has adapted Nakajo and Takahashi’s
[12] idea to modify the process (1.2) for a single nonexpansive mapping 7" in
a Hilbert space H :

( ro € C,

Zn = BuTn+ (1 - Bn)Txna

Yn = QpTp+ (1 - an)TZna

Crn = {veC:|lyn—ol* <l —ol* + (1 = an) (|2l (1.4)
_HanQ +2(zn — 2, 0))},

Qn = {vel:{(xy,—v,x9—zy) >0},

= PCnﬂanO'

Tn41

They proved that if {a, } and {8, } are sequences in [0, 1] such that a,, <1—¢
for some 0 € (0,1] and B, — 1, then the sequence {z,} generated by (1.4)
converges strongly to Pp(r)zo.

In 2007, Plubtieng and Ungchittrakool [13] have again modified the process
(1.2) for two asymptotically nonexpansive mappings. More precisely, they
proved the following theorem.

Theorem PU. Let C be a bounded closed convex subset of a Hilbert space
H and let S,T : C' — C be two asymptotically nonexpansive mappings with
sequences {s,} and {t,} respectively. Assume that o, < a for all n and for
some 0 < a < 1 and S, € [b,c] forallnand 0 < b < ¢ < 1. If F :=
F(S)NF(T) # 0, then the sequence {x,} generated by



492 Y. Liu and G. Zhang

zg € C' chosen arbitrarily,

Yn = QnTp + (1 - an)TnZn)

Zn = ﬁnxn + (1 - /Bn)Sn:Ena
Crn={veC:|yn—v|?* < |lan —v|* + 6.},
Qn={velC:(x,—v,x9—xp) >0},

Tnt+1 = Po, N Q.20

where 0, = (1 — ay,)[(t2 — 1) + (1 — Bn)t2(s2 — 1)](diamC)? — 0 as n — oo,
converges in norm to Prxg.

(1.5)

The ideas to generalize the processes (1.3)-(1.5) from Hilbert space to Ba-
nach space have recently been made. By using available properties on uni-
formly convex and uniformly smooth Banach space, Matsushita and Taka-
hashi [10] presented their ideas as the following method for a single relatively
nonexpansive mapping 7' in a Banach space F :

xg = x€C(,
yn = J HanJrn + (1 —ay)JTxy,),
H, = {2€C:¢(z,yn) < d(z,24)}, (1.6)
W, = {z€C:(xy,— 2 Jox—Jz,) >0},
Tn4+1 — HHnan:r,n:O,l,Q,.-- s

where a;, C [0,1), limsup o, < 1, and g, qw, is the generalized projection
n—00

from C into Hy, (| W,,. They proved {z,} converges strongly I1p1zo.

Qin and Su [15] proposed the following modified Ishikawa iteration process
for a single relatively nonexpansive mapping 7" in a Banach space F :

g € C,|
2y = JYBpJzn + (1= Bp)JTxy,),
yn = J YNapJzn + (1 —an)JTz,),

Co = {veC:o(v,yn) < and(v,z) + (L —a)o(v,z)}, )
Qn = {vel:{(x,—v,Jxg— Jx,) >0},
Tpy1 = e, n@,%o,

where «,, C [0,1), limsupa,, < 1, 5, — 1. They proved if T is uniformly

n—oo
continuous, then {z,} converges strongly to II F(T)T0-

In 2009, Liu et al. [7] generalized the modified Ishikawa iteration process
(1.7) for two relatively nonexpansive mappings 7" and S in a Banach space
without assuming the uniform continuity on T or S.

Very recently, Qin et al. [14] proposed the following modified Mann iteration
process for a single closed, asymptotically quasi-¢-nonexpansive mapping 7" in
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a uniformly smooth and strictly convex Banach space E which enjoys the
Kadec-Klee property:

g € FE chosen arbitrarily,
c, = C,
r1 = g o, (1.8)
v = J N anJzn + (1 —an)JT zy,), '
C’nJrl = {Z €Cy: ¢(zvyn) < ¢(zv :L‘n) + (kn - 1)Mn}v
Tn+1 = ch+1$07

where M,, = sup{¢(z,zy,) : z € F(T)} foreachn > 1, a,, C [0,1), limsup oy, <
n—oo

1. They proved if T is asymptotically regular and F(T') is bounded, then {z,}
converges strongly to Ilpr)xo.

Inspired and motivated by these facts, our purpose in this paper is to gener-
alize the modified Mann iteration process (1.8) to modified Ishikawa iteration
process for two closed, asymptotically ¢-nonexpansive mappings 7" and S in
a uniformly smooth and strictly convex Banach space E which enjoys the
Kadec-Klee property without assuming asymptotically regularity on T or S.

2. PRELIMINARIES

Let U = {x € E : ||z|]| = 1} be the unit sphere of E. A Banach space
E is said to be strictly convex if |%5¥|| < 1 for all z,y € U and x # y. It

is said to be uniformly convex if lim |z, — y,| = 0 for any two sequences
n—oo
{zn},{yn} in U and H_)m [Z23¥n | = 1. E is said to be smooth provided
n o

Lo N+t ]
t—0 t
if the limit is attained uniformly for z,y € U. A Banach space F is said to have

the Kadec-Klee property if a sequence {z,} of E satisfying that z,, =~ z € E
and [|z,| — ||z||, then x,, — x. It is known that if E is uniformly convex, then
FE has the Kadec-Klee property.

exists for each x,y € U. It is said to be uniformly smooth

When {z,} is a sequence in E, we denote strong convergence of {x,} to
x € F by x, — = and weak convergence by x, — .

We denote by J : E — 2F" the normalized duality mapping from E to 27",
defined by

(@)= {ve B : (v,2) = ol = [l2]?}, Ve k.

The following properties for the duality mapping J can be found in [2]:
(i) If E is an arbitrary Banach space, then J is monotone and bounded.
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(ii) If E is smooth, then J is single-valued and demi-continuous, i.e., J is
continuous from the strong topology of E to the weak star topology of
E*.

(iii) If E is strictly convex, then J is strictly monotone.

(iv) If E is reflexive, then J is surjective.

(v) If Eis uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

(vi) If E is a reflexive and strictly convex Banach space with a strictly
convex dual E* and J* : E* — F is the normalized duality mapping
in B*, then J~! = J* JJ* = I« and J*J = Ig.

(vii) If E is a smooth, strictly convex and reflexive Banach space, then J is
single-valued, one-to-one and onto.

(viii) It is well known that a Banach space E is uniformly smooth if and
only if £E* is uniformly convex. If F is uniformly smooth, then it is
smooth and reflexive.

Let E be a smooth Banach space. The function ¢ : £ x F — R is defined
by
oy, ) = [lyll* - 2(y. Jo) + |||
for all x,y € E. It is obvious from the definition of the function ¢ that

(A1) (=]l = lylD? < oy, z) < (=]l + [lyl))*.
(AQ) QZS(J,‘,y) = ¢(377 Z) + ¢(Zvy) + 2<$ —z,Jz— Jy>
(A3) ¢(z,y) = (z,Jx — Jy) + (y — 2, Jy) < ||lz[|[[Jz — Jy[| + [ly — z[[[|y].

Remark 2.1. From the Remark 2.1 of reference [10], we can know that if E
is a strictly convex and smooth Banach space, then for z,y € E, ¢(y,z) = 0 if
and only if x = y.

Let C be a nonempty closed convex subset of E. Suppose that F is reflexive,
strictly convex and smooth. Then, for any x € E, there exists a unique point
xg € C such that

¢($07 .ZU) = min Qb(y, 113')
yeC

The mapping Ilo : E — C defined by Ilgx = x¢ is called the generalized
projection [1, 10]. In a Hilbert space, IIc = Pc(metric projection).

Let {C,} be a sequence of nonempty closed convex subsets of a reflexive
Banach space E. We define two subsets s — Li,,C,, and w — Ls,C,, as follows:
x € s — LinC,, if and only if there exists {z,,} C E such that {z,,} converges
strongly to « and such that z,, € C,, for all n > 1. Similarly, y € w — Ls,C), if
and only if there exists a subsequence {C,,, } of {C,} and a sequence {y,,} C E
such that {y,,} converges weakly to y and such that y,, € Cy, for all i > 1.
We define the Mosco convergence [16] of C,, as follows: If Cy satisfies that
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Co = s — Li,,C,, = w — Ls,Cy, it is said that {C,} converges to Cj in the

sense of Mosco, and we write Cyp = M — lim C,,. For more details, see [11].
n—oo

Lemma 2.2. ([5]) Let E be a smooth, reflexive and strictly convexr Banach
space having the Kadec-klee property. Let {K,} be a sequence of nonempty

closed convexr subsets of E. If Ko = M — lim K, exists and is nonempty,
n—o0

then {Ilk, x} converges strongly to i, x for each x € E.

Lemma 2.3. ([2, 14]) Let E be a uniformly smooth and strictly convex Banach
space which enjoys the Kadec-Klee property, let C' be a nonempty closed convex
subset of E, and let T' be a closed and asymptotically quasi-¢-nonexpansive
mapping from C into itself. Then F(T) is closed and conver.

Lemma 2.4. ([1]) Let E be a reflexive, strictly conver and smooth Banach
space, let C be a nonempty closed convexr subset of E and let © € E. Then

oy, lloz) + ¢(cx, z) < ¢(y, x)
forally € C.

Lemma 2.5. ([17]) Let E be a uniformly convex Banach space and let r > 0.
Then there exists a continuous strictly increasing convex function g : [0, 2r] —
R such that g(0) = 0 and

[tz + (1= )yl < tllzl|* + (1= t)[lylI* = t(1 = )g(llz — ),
for all x,y € B, and t € [0,1], where B, ={z € E: ||z]| < r}.

Lemma 2.6. Let E be a reflexive, smooth and strictly convex Banach space
such that E and E* have the Kadec-Klee property. Let {x,}, {yn} be two
sequences of E and x,, — T. If ¢(xpn,yn) — 0, then y, — T and ||z, —yn| — 0,
as n — oo.

Proof. Since ¢(xy,yn) — 0, from (A1), we know that |ly,| — ||Z]|. It follows
that ||Jyn| — |[JZ||. This implies that {Jy,} is bounded. We may assume
that Jy, — y* € E*. By the reflexivity of F, we see that JE = E*. This
shows that there exists a y € E such that Jy = y*. It follows that

¢z,y) = |z|* —2(z, Jy) + | Tyl
< lminf (a2 = 20, Jyn) + | Tl

= liminf d’(xna yn) =0,
n—oo
which implies that z = y. This is Jy, — JZ. Since E* satisfies the Kadec-Klee
property, we have Jy, — JZ. Note that J~! : E* — E is demi-continuous, it

follows that y, — Z. Since E satisfies the Kadec-Klee property, we have y,, —
z. Since ||zn —yn|| < ||zn—Z||+ ||Z —ynl|, we also have ILm |zn —yn||=0. O
n—oo
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3. MAIN RESULTS

In this section, we prove a strong convergence theorem of a common fixed
point for two closed and asymptotically ¢-nonexpansive mappings from C into
itself.

Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space
which enjoys the Kadec-Klee property, let C' be a nonempty closed convex
subset of E, let T, S be two closed and asymptotically quasi-¢-nonexpansive
mappings from C into itself with sequences {t,} and {sn} respectively such
that F = F(T)NF(S) # 0 and F is bounded. Let the sequence {x,} be
generated by

( xrg € FE chosen arbitrarily,

Ci = C,
z1 = g o,
up, = J Y BpJzn + (1= B,)J S xy), (3.1)
Zn = chn7 '
yn = J HanJzn + (1 —ay)JTmz,),

Cp+1 = {Z €Cp: ¢(Z,yn) < ¢(Z,$n) + On},

Tpt1 = e, 71,

\
where {an}, {Bn} satisfy:
0<a, <1, limsupa, <1,

n—oo

0< B, <1, lirginfﬂn(l — Bn) >0,

On = (1 = an)[(tn — 1) + (1 = Bn)tn(sn — 1) sup{e(z, an) : z € F'}.
Then lim z, = q, where ¢ = llg,z1,Co = ﬂ Cp and hm |xn — S™ay,|| =

n—oo
lzn, — T"2n|| = 0. Further, if T and S are two closed asymptotzcally ¢-
nonexpansive mappings from C into itself, then ¢ = lpx;.

Proof. The proof will be split into five steps.
Step 1. We show that C,, is closed and convex for each n > 1.

It is obvious that C; = C' is closed and convex. Suppose that C} is closed
and convex for some k. For z € Cy, we see that ¢(z,yx) < &(z,zx) + Oy is
equivalent to

2(z, Jay — Jyr) < llzil* = [yl + Ok
Hence Cg41 is closed and convex. Then, for each n > 1, C,, is closed and
convex.

Step 2. We show that F' C C), for all n > 1.
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It is easy to see that F' C C; = C. Suppose that F' C C for some k. Then
for any p € F' C C, we have

o(p, ) o(p,uy) = ¢(p, J 1 (BeJxg + (1 — By) JS*xy))
P12 — 2Bk (p, Jx) — 2(1 — i) (p, JS*y)
+Brllzel® 4+ (1 — Be) | S* ||

Brd(p,z) + (1 — Br)p(p, SFa)

Brd(p, x) + (1 — Br)skd(p, xk)

é(p, xx) + (1 = Br)(sk — 1)p(p, w1)

INIA

Al

and then

¢(p, Jﬁl(akak + (1 — ak)JTkzk))

1P)1? — 200 (p, Jax) — 2(1 — o) (p, JT* 2,)
tollzel? + (1 — o) || T% 2|2

ak¢(pa ‘Tk) + (1 - ak)(b(pa Tkzk)

ak¢(p7 ‘Tk) + (1 - ak)tkd)(p) Zk)

d(p, zk) + (1 — o) (trd(p, 2) — ¢(p, 1))
o(p, vx) + (1 — o) [t (D, )

+ti(1 = Br)(sk — 1) (p, z1) — ¢(p; 21)]
o(p, zk) + Ok.

Thus, we have p € C41. Therefore we obtain F' C C), for each n > 1.

o(p, Yx)

IA A IA I

IN

Step 3. We show that lim z, =Ilg,z1 = q.

n—oo

Since {C), } is a decreasing sequence of closed convex subsets of E such that
FcCy= ﬂ C,, is nonempty, it follows that M — hm Cp=0Cp= ﬂ Cpn # 0.
By Lemma 2. 2 {zn} = {llg, z1} converges strongly to q= Hcoxl
Step 4. We show that nh_)n;o |xr, — S"xn|| = ||2n — T™2y|| = 0.

Since x,, — ¢, we obtain

lim ¢(zpt1,2,) =0. (3.2)

n—o0

In view of x,41 € Cphi1 and (3.2), we arrive at ¢(zpt1,Yn) < O(Tpt1,Tn)
+0, — 0 as n — oco. From Lemma 2.6, we have y, — ¢ and

lim ||z, — ynl| = 0. (3.3)
n—oo
Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim ||Jz, — Jy,| = 0. (3.4)
n—oo
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Notice that ||Jyn, — Jzp|| = (1 — an)(JT" 2y — Jxp,). From the assumption
on {ay,} and (3.4), we see that

lim [|[JT"z, — Jz,|| = 0. (3.5)
n—oo

Since Jx, — Jq, we have JT"z, — Jq. The demi-continuity of J=!: E* — E
implies that 7™z, — ¢. Notice that

Tzl = llglll = IITT" 20l = | gll| < [[JT" 20 — Jgl| = 0.
It follows from the Kadec-Klee property of E, we obtain
T"z, — q, as n — oo. (3.6)
Since ||T" 2, — xp|| < [|[T"2n — q|| + [lg — x|, from (3.6), we have
lim ||[T"z, — x| = 0. (3.7)

n—oo
Since {x,} is bounded, ¢(p, S"xz,) < s,é(p,xn), where p € F, we also ob-
tain {Jx,}, {JS™z,} are bounded, then there exists r > 0 such that {Jz,},
{JS"x,} C B,. Therefore Lemma 2.5 is applicable and we observe that

= HpH2 — 2(p, BnJzn + (1 — Bn)JS"xp) + BnHanHQ
+(1 = B[ TS™ x| = Bu(1 = Bu)g([|Jxn — JS™2all)  (3.8)
¢(p, xn) + (1 = Br)(sn — 1)o(p, 1)
—Bn(L = Bn)g(| Jzn — JS"20|)

and hence
o(Pyyn) < and(p,rn) + (1 — an)tnd(p, zn)
= o(p,n) + (1 — an)(tnd(p, 2n) — ¢(p, Tn)) (3.9)
< ¢(pa SUn)+9n_(1_an)tnﬁn(1_ﬁn)g(”‘]xn_JSn‘Tn”)'
That is

(1= an)tnfn(l = Bu)g([[Jan = JS"xn]) < &(p,n) = ¢(Psyn) + On- (3.10)
From (3.3), (3.4), we have

= 2(p, Jyn — Jxn) + (lzall + [lynl) (2]l = llynll)
— 0.

By limsup o, < 1, lirginf Bn(1 = B,) >0, 60, — 0 and (3.10), we have
n oo

n—oo

g([|[Jxn — JS"xy||) — 0.
From the properties of the function g, we obtain

li_>m |Jzpn — JS"z,|| = 0. (3.11)
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Since Jx,, — Jq, we have JS™z,, — Jq. Since J~! is demi-continuous, we

obtain S"x,, — ¢. Since ||S"x,|| = ||JS" x| — [|Jql|l = |l¢||, by the Kadec-

klee property of E, we obtain that S"x,, — ¢. Since |[S"z,, — x| < [|S" 2y, —

qll + [lg — znl|, we have

lim ||S"x, — x,|| = 0. (3.12)
[e.9]

n—
Since
| Jup — Jxn|| = (1 — Bu)||JS" xpn — Jzy|| — 0, (3.13)

therefore, Ju,, — Jq. Hence ||u,| — |¢|. By the demi-continuity of J—!, we
have u, — ¢. It follows from the Kadec-klee property of E that u, — ¢. Since
[tn = nll < [lun — gl + lg = 2all, we have

nlggo |un, — zp|| = 0. (3.14)
From (A3), (3.13) and (3.14), we have
nhﬁ\nolo d(Tn,un) = 0. (3.15)

Since ¢(xn, zn) = ¢(xn, Houy) < ¢(2p, uy), from (3.15), we have ¢(xy, 2,,) —
0. From Lemma 2.6, we have

lim 2z, =¢ and lim |z, — z,|| =0. (3.16)
n—oo n—oo
Since ||zp — T"zn|| < ||2n — Znl| + |20 — T™2y]|, from (3.16) and (3.7), we have
lim ||z, —T"z,| = 0. (3.17)
n—oo

Step 5. If T, S are two closed and asymptotically ¢-nonexpansive mappings
from C' into itself, we show that ¢ = Ilpx;.

We first show that ¢ € F. From (3.11), (3.12) and (A3), we obtain
lim ¢(zy,S"z,) =0. (3.18)

n—oo

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.17)
we have

H_)m | Jz — JT" 2] = 0. (3.19)
It follows from (A3), (3.17) and (3.19) that
li_}m d(T"zn, 2n) = 0. (3.20)

From (3.16), the continuity of J and the definition of ¢, we have

lim ¢(zp41,2n) =0. (3.21)
n—oo
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It follows from (A2) that

¢(Zm TZn)
= ¢(zn7 Zn—i—l) + Qs(zn—&—la Tzn) + 2<Zn — Zn+1, Jzn-‘,-l - JTZTL>
= ¢(2n; 2n41) + (2041, Tn+lzn+1) + ¢(Tn+1zn+17 Tz) (3.22)

+2(zna1 — T 2y, JT" M2y — JT2,)
+2(zn, — 2n+1, Jznt1 — JTzp).

By ¢(Tn+1zn+17Tn+lzn) < tn+1¢(zn+17 Zn>7 ¢<Tn+1zanzn) < tl(b(Tnzm zn)u
(3.21) and (3.20), we have

lim ¢(T" 201, T 2,) =0 and  lim ¢(T"'2,,T2,) =0.  (3.23)

n—oo n— o0
It follows from (3.6), (3.23) and Lemma 2.6 that
lim |72, — Tz, = 0. (3.24)
n—oo

By (A2), we have
AT 21, Tzn) = (T zppy, TV 2n) + H(T™ 2, Tz

+2(T" 2 — Tz, JT 2, — JT2y,). (3.25)
Combining (3.25), (3.24), (3.23), (3.17) with (3.22), we have
lim ¢(zy,T2,) = 0. (3.26)
n—o0
Since z, — ¢, by Lemma 2.6, we have
lim ||z, — Tz,|| = 0. (3.27)
n—oo

Similarly, from z, — ¢, (3.2), (3.12), (3.18) and Lemma 2.6, we can obtain
li_>m 1Sz, — x| = 0. (3.28)

Since z, — ¢ and z, — ¢, by the closedness of S and 7" and (3.27), (3.28), we
have g € F.
Next, we show that ¢ = IIpx;. Since ¢ = Ilg,z1 € F and F' is a nonempty

o
closed convex subset of Cp = [ C,, we conclude that ¢ = IIpx;. O
n=1

Remark 3.2. Theorem 3.1 is a version of Theorem PU in Banach space. The
hybrid projection algorithm considered in Theorem 3.1 is simpler than that
of Theorem PU, because we can remove the set “Q),,”. In addition, we do not
assume that C is bounded as in Theorem PU, but the common fixed point set
of T and S is bounded instead.

Remark 3.3. Theorem 3.1 is different from Theorem 2.1 of the [14] in the
following senses:
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(a) We develop Theorem 2.1 of the [14] from a single closed, asymptot-
ically quasi-¢-nonexpansive mapping to two closed asymptotically ¢-
nonexpansive mappings.

(b) We remove the asymptotically regularity on 7" or S as in Theorem 2.1
of the [14].

Corollary 3.4. Let E be a uniformly smooth and strictly convexr Banach space
with the Kadec-Klee property, let C' be a nonempty closed convez subset of F,
let T, S be two closed and quasi-p-nonexpansive mappings from C into itself

such that F = F(T)(F(S) # 0. Then the sequence {xy} generated by

( g € FE chosen arbitrarily,

C'1 = C7
r1 = g o,
up, = J Y BpJzn + (1 — Bn)JSzy), (3.28)
zn = lloupy,
U = J N anJzn + (1 — an)JTz,),

Cnr1 = {2€Ch:d(2,yn) < O(2,20)},

Tn+l = ch+1xla

\

where {an},{Bn} satisfy:
0<a,<1, limsupa, <1,

n—oo
0<pn<1, liminfpB,(1-48,) >0,
n—oo
converges strongly to llpxy.
Proof. From the definition of quasi-¢-nonexpansive mappings, we see that

every quasi-¢-nonexpansive mapping is asymptotically quasi-¢-nonexpansive
with the constant sequence {1}. From the proof of Theorem 3.1, we have

F c C, for all n > 1, lim z, = Ig,z; = ¢, where Cy = () C, and

n—oo

n=1
lim |z, — Sxn|| = ||z — T"2n]| = 0. By the closedness of S and T, we
n—oo
have ¢ € F. Since ¢ = Ilg,x1 € F and F' is a nonempty closed convex subset
oo
of Cp = () Cp, we conclude that ¢ = Hpx;. O
n=1

Remark 3.5. Corollary 3.4 improves Theorem 3.1 of [7] in the following
senses:

(a) Since T and S are two quasi-¢-nonexpansive mappings, we remove the
restrictions F(T') = F(T) and F(S) = F(S).
(b) The hybrid projection algorithm considered in Corollary 3.1 is simpler

than that of Theorem 3.1 of [7], because we can remove the set “Q,,”.



502

Y. Liu and G. Zhang

(¢) The uniformly smooth and strictly convex Banach spaces with the
Kadec-Klee property considered by Corollary 3.4 are more general than
the uniformly smooth and uniformly convex Banach spaces considered
by Theorem 3.1 of [7].
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