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Abstract. In this paper, a couple of hybrid fixed point theorems with PPF dependence are

proved in a Banach algebra involving three systems of operators and they are then applied to

some nonlinear hybrid functional differential equations of delay and neutral type for proving

the existence of PPF dependent solutions under certain mixed Lipschitz and compactness

type conditions. Our abstract results as well as considered functional differential equations

are new to the literature in the subject of nonlinear analysis.

1. Introduction

In recent papers [1, 7], the authors proved some fundamental fixed point
theorems for nonlinear operators in a Banach space satisfying the conditions
of linear contractions, wherein the domain and range of the operators are not
same. The fixed point theorems of this kind are called PPF dependent fixed
point theorems and are useful for proving the existence (and uniqueness) of
solutions of nonlinear functional differential and integral equations which may
depend upon the past, present and future. The properties of a special mini-
mal or Razumikhin or D-class of functions are employed in the development of
existence theory of PPF dependent solutions for certain nonlinear equations
in abstract spaces. In this paper, we prove some new hybrid fixed point theo-
rems with PPF dependence involving three systems of nonlinear operators in a

0Received March 31, 2014. Revised June 12, 2014.
02010 Mathematics Subject Classification: 47H10, 34K10.
0Keywords: Hybrid fixed point theorem, PPF dependence, Banach space, functional dif-

ferential equations, existence theorem.



504 B. C. Dhage

Banach algebra and discuss some of their applications to nonlinear functional
hybrid differential equations for proving the existence of PPF dependent solu-
tions. Our hybrid fixed point theorems as well as existence theorems include
some known results concerning the PPF dependence as special cases.

Given a Banach space E with norm ‖ · ‖E and given a closed and bounded
interval I = [a, b] in R, the set of real numbers, let E0 = C(I, E) denote the
Banach space of continuous E-valued continuous functions defined on I. We
equip the space E0 with the supremum norm ‖ · ‖E0 defined as

‖φ‖E0 = sup
t∈I
‖φ(t)‖E . (1.1)

Let c ∈ I be arbitrarily fixed. The minimal or Razumikhin class or D-class
of functions (cf. [1, 7]) is defined as

Mc =
{
φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E

}
. (1.2)

A Razumikhin class of functionsMc is said to be algebraically closed w.r.t.
difference if φ − ξ ∈ Mc whenever φ, ξ ∈ Mc. Similarly, Mc is topologically
closed if it is closed in the topology of of E0 generated by the norm ‖ · ‖E0 .
Similarly, other notions such as compactness and connectedness for Mc may
be defined.

Let T : E0 → E. A point φ∗ ∈ E0 is called a PPF dependent fixed point
of T if Tφ∗ = φ∗(c) for some c ∈ I and any statement that guarantees the
existence of PPF dependent fixed point is called a fixed point theorem with
PPF dependence for the mappings T .

As mentioned in Bernfield et al. [1], the minimal class of functions plays a
significant role in proving the existence of PPF dependent fixed points with
different domain and range of the operators. Very recently, generalizing a
fixed point theorem of Bernfield et al. [1], the present author in Dhage [4]
proved first some fixed point theorems with PPF dependence in the setting of
nonlinear contractions of the operators in Banach spaces.

Definition 1.1. A nonlinear operator T : E0 → E is called a nonlinear
(B,W)- contraction if there exists an upper continuous function from the right
ψ : R+ → R+ such that

‖Tφ− Tξ‖E ≤ ψ(‖φ− ξ‖E0) (1.3)

for all φ, ξ ∈ E0, where ψ(r) < r, r > 0. T is called B-contraction if there ex-
ists a nondecreasing function ψ : R+ → R+ which is continuous from right and
satisfies (1.3). Finally, T is calledM-contraction if there exists a nondecreas-
ing function ψ : R+ → R+ that satisfies satisfies (1.3), where lim

n→∞
ψn(t) = 0,
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t > 0. We say T is nonlinear contraction if it is either a nonlinear (D,W) or
B or M-contraction on E0 into E.

Note that every contraction is a nonlinear (D,W)-contraction and every
nonlinear B-contraction isM-contraction. However, the converse of the above
statements may not be true. The details of different types of contractions
appear in the monographs of Boyd and Wong [2], Browder [3], Granas and
Dugundji [8], Krasnoselskii [9] and Mathowski [10]. The following fixed point
theorem is a slight generalization of a fixed point theorem proved in Dhage [4]
with PPF dependence.

Theorem 1.1. Suppose that T : E0 → E is a nonlinear contraction. Then
the following statements hold in E0.

(a) If Mc is algebraically closed with respect to difference, then every se-
quence {φn} of successive iterates of T at each point φ0 ∈ E0 converges
to a PPF dependent fixed point of T .

(b) If Mc is topologically closed, then φ∗ is the only fixed point of T in
Mc.

Proof. The proof is similar to Theorem 2.3 of Dhage [4] and can be obtained
with appropriate modifications. Hence we omit the details. �

In this paper, we prove some hybrid fixed point theorems with PPF depen-
dence in a Banach algebra using mixed arguments form analysis and topology
and apply them to hybrid differential equations of functional differential equa-
tions of delay and neutral type for proving the existence of solutions with PPF
dependence.

2. PPF dependent hybrid fixed point theory

Throughout subsequent part of this paper, unless otherwise specified, let
E denote a Banach algebra with norm ‖ · ‖E . Then E0 = C(I, E) becomes a
Banach algebra with respect to the norm (1.1) and the multiplication “ · ”
defined by

(x · y)(t) = x(t) · y(t) = x(t)y(t)

for all t ∈ I, whenever x, y ∈ E0. When there is no confusion, we simply write
xy instead of x · y.

While working on fixed point theorems in abstract algebras, the present
author introduced a class of D-functions to define the growth of the operators
in question. We mention that D-functions are in line with the the growth
functions mentioned in Definition 1.1 and are useful in practical applications
to nonlinear differential equations. Here also we employ same notations and
terminologies in what follows.
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Definition 2.1. A mapping ψ : R+ → R+ is called a dominating function or,
in short, D-function if it is upper semi-continuous and nondecreasing function
satisfying ψ(0) = 0. A mapping Q : E0 → E is called strong D-Lipschitz if
there is a D-function ψ : R+ → R+ satisfying

‖Qφ−Qξ‖E ≤ ψ(‖φ(c)− ξ(c)‖E) (2.1)

for all φ, ξ ∈ E. The function ψ is called a D-function of Q on E. If ψ(r) = k r,
k > 0, then Q is called strong Lipschitz with the Lipschitz constant k. In
particular, if k < 1, then Q is called a strong contraction on X with the
contraction constant k. Further, if ψ(r) < r for r > 0, then Q is called strong
nonlinear D-contraction and the function ψ is called D-function of Q on X.

There do exist D-functions and the commonly used D-functions are ψ(r) =

k r and ψ(r) =
r

1 + r
, etc. These D-functions have been used in the theory of

nonlinear differential and integral equations for proving the existence results
via fixed point methods. Another notion that we need in the sequel is the
following definition.

Definition 2.2. An operator Q on a Banach space E into itself is called
compact if Q(E) is a relatively compact subset of E. Q is called totally
bounded if for any bounded subset S of E, Q(S) is a relatively compact subset
of E. If Q is continuous and totally bounded, then it is called completely
continuous on E.

Note every compact operator is totally bounded but the converse may not
be true. Our main hybrid fixed point theorem with PPF dependence is the
following result in a Banach algebra E.

Theorem 2.1. Let E be a Banach algebra and let Ai, Cj : E0 → E and
Bi : E → E for 1 ≤ i ≤ k and 1 ≤ j ≤ l be three systems of operators such
that for each i and j,

(a) Ai is bounded and strong D-Lipschitz with the D-function ψAi,
(b) Cj is strong D-Lipschitz with the D-function ψCj ,
(c) Bi is continuous and compact, and

(d)
k∑
i=1

MiψAi(r) +
l∑
i=j

ψCj (r) < r if r > 0,

where Mi = ‖Bi(E)‖ = sup{‖Bix‖ : x ∈ E}.
Further, if the minimal class of functionsMc is topologically and algebraically
closed with respect to difference, then for a given c ∈ [a, b] the operator equation

k∑
i=1

AiφBiφ(c) +

l∑
i=j

Cjφ = φ(c) (2.2)
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has a PPF dependent solution.

Proof. Let ξ ∈ E0 be fixed and let c ∈ [a, b] be given. Define an operator
Tξ(c) : E0 → E by

Tξ(c)(φ) =
k∑
i=1

AiφBiξ(c) +
l∑
i=j

Cjφ. (2.3)

Clearly, Tξ(c) is a strong nonlinear B-contraction on E0. To see this, let φ1, φ2 ∈
E0. Then,

‖Tξ(c)(φ1)− Tξ(c)(φ2)‖E

≤
k∑
i=1

‖Aiφ1 −Aiφ2‖E ‖Biξ(c)‖E +

l∑
i=j

‖Cjφ1 − Cjφ2‖E

≤
k∑
i=1

‖Bi(E)‖E ψAi(‖φ1(c)− φ2(c)‖E) (2.4)

+
l∑

j=1

ψCj (‖φ1(c)− φ2(c)‖E)

≤
k∑
i=1

Mi ψAi(‖φ1(c)− φ2(c)‖E) +
l∑
i=j

ψCj (‖φ1(c)− φ2(c)‖E).

This shows that Tξ(c) is a strong nonlinear D-contraction and hence nonlinear
D-contraction on E0. By Theorem 1.1, there is a unique PPF dependent fixed
point φ∗ ∈ E0 such that

Tξ(c)(φ
∗) = φ∗(c) or

k∑
i=1

Aiφ
∗Biξ(c) +

l∑
j=1

Cjφ
∗(c) = φ∗(c). (2.5)

Next, we define a mapping Q : E → E by

Qξ(c) = φ∗(c) =

k∑
i=1

Aiφ
∗Biξ(c) +

l∑
j=1

Cjφ
∗. (2.6)

It then follows that

‖Qξ1(c)−Qξ2(c)‖E

=
k∑
i=1

‖Aiφ∗1Biξ1(c)−Aiφ∗2Biξ2(c)‖E +
l∑

j=1

‖Cjφ∗1 − Cjφ∗2‖E

≤
k∑
i=1

‖Aiφ∗1 −Aiφ∗2‖E ‖Biξ1‖E +
k∑
i=1

‖Aiφ2‖E ‖Biξ1(c)−Biξ2(c)‖E
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+
l∑

j=1

‖Cjφ∗1 − Cjφ∗2‖E

≤
k∑
i=1

Mi ψAi(‖φ∗1(c)− φ∗2(c)‖E) +
k∑
i=1

Ki ‖Biξ1(c)−Biξ2(c)‖E

+
l∑

j=1

ψCj (‖φ∗1(c)− φ∗2(c)‖E)

≤
k∑
i=1

Mi ψAi(‖φ∗1(c)− φ∗2(c)‖E) +
l∑

j=1

ψCj (‖φ∗1(c)− φ∗2(c)‖E)

+
k∑
i=1

Ki ‖Biξ1(c)−Biξ2(c)‖E (2.7)

where Ki is a bound of Ai on E0. Since each Bi is compact, if {Biξn(c)} is any
sequence in E, then {Biξn(c)} has a convergent subsequence. Without loss of
generality, we may assume that {Biξn(c)} is convergent. Hence, {Biξn(c)} is
a Cauchy sequence. From inequality (2.7), we obtain

‖Qξm(c)−Qξn(c)‖E

≤
k∑
i=1

Mi ψAi(‖φ∗m(c)− φ∗n(c)‖E) +
l∑

j=1

ψCj (‖φ∗m(c)− φ∗n(c)‖E)

+
k∑
i=1

Ki ‖Biξm(c)−Biξn(c)‖E .

Taking the limit superior in above inequality yields

lim sup
m,n→∞

‖Qξm(c)−Qξn(c)‖E

≤
k∑
i=1

Mi lim sup
m,n→∞

ψAi(‖Qξ∗m(c)−Qξ∗n(c)‖E)

+

l∑
j=1

lim sup
m,n→∞

ψCj (‖Qξ∗m(c)−Qξ∗n(c)‖E)

+
k∑
i=1

Ki lim sup
m,n→∞

‖Biξm(c)−Biξn(c)‖E
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≤
k∑
i=1

Mi ψAi

(
lim sup
m,n→∞

‖Qξ∗m(c)−Qξ∗n(c)‖E
)

+
l∑

j=1

ψCj

(
lim sup
m,n→∞

‖Qξ∗m(c)−Qξ∗n(c)‖E
)
.

Hence,

lim
m,n→∞

‖Qξm(c)−Qξn(c)‖E = 0.

As a result, {Qξn(c)} is a Cauchy sequence. Since E is complete, {Qξn(c)}
has a convergent subsequence. Now a direct application of Schauder fixed
point principle yields that there is a point ξ ∈ E0 such that Qξ∗(c) = ξ∗(c).

Consequently

k∑
i=1

Aiξ
∗Biξ

∗(c) +

l∑
j=1

Cjξ
∗ = ξ∗(c). This completes the proof

of Theorem 2.1. �

Theorem 2.2. Let E be a Banach algebra and let Ai : E0 → E and Bi, Cj :
E → E for 1 ≤ i ≤ k and 1 ≤ j ≤ l, be three systems of operators such that

(a) Ai is bounded and strong D-Lipschitz with the D-function ψAi,
(b) Bi is continuous and compact,
(c) Cj is continuous and compact, and

(d)
k∑
i=1

MiψAi(r) < r if r > 0,

where Mi = ‖Bi(E)‖ = sup{‖Bix‖ : x ∈ E}.
Further, if the minimal class of functions Mc is algebraically closed with re-
spect to difference and topologically closed, then for a given c ∈ [a, b] the oper-
ator equation

k∑
i=1

AiφBiφ(c) +

l∑
j=1

Cjφ(c) = φ(c) (2.8)

has a PPF dependent solution.

Proof. The proof is similar to Theorem 2.2 with appropriate modifications. �

Remark 2.1. If we consider Theorems 2.1 and 2.2 in a closed, convex and
bounded subset of the Banach algebra E, then condition of the boundedness
of the operator Ai is not required because in that case the boundedness of Ai
follows immediately from the strong Lipschitz condition.
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Remark 2.2. If we take ψAi(r) = Lir
Ki+r

and ψC|(r) = qj r, then hypothesis (d)

of the above hybrid fixed point theorem takes the form
∑k

i=1
Li

Ki+r
+
∑l

j=1 qj <

1 for each real number r > 0. Similarly, if ψAi(r) = Li r, and ψCj (r) =
qjr
Nj+r

,

then hypothesis (d) of the above hybrid fixed point theorem takes the form∑k
i=1 Li +

∑l
j=1

qj
Nj+r

< 1 for each real number r > 0.

In view of above remark, we obtain the following special cases of Theorems
2.1 and 2.2 as corollaries which are applicable to various nonlinear equations
in the subject of nonlinear analysis.

Corollary 2.1. Let E be a Banach algebra and let Ai, Cj : E0 → E and
Bi : E → E for 1 ≤ i ≤ k and 1 ≤ j ≤ l, be three systems of operators such
that for each i and j,

(a) Ai is bounded and strong Lipschitz with the Lipschitz constant `i,
(b) Cj is strong Lipschitz with the Lipschitz constant qj,
(c) Bi is continuous and compact, and

(d)

k∑
i=1

Mi`i +

l∑
j=1

qj < 1, where Mi = ‖Bi(E)‖ = sup{‖Bix‖ : x ∈ E}.

Further, if the minimal class of functionsMc is topologically and algebraically
closed with respect to difference, then for a given c ∈ [a, b] the operator equation
(2.2) has a PPF dependent solution.

Corollary 2.2. Let E be a Banach algebra and let Ai : E0 → E and Bi, Cj :
E → E for 1 ≤ i ≤ k and 1 ≤ j ≤ l, be three systems of operators such that
for each i and j,

(a) Ai is bounded and strong Lipschitz with the Lipschitz constant `i,
(b) Bi is continuous and compact,
(c) Cj is continuous and compact, and

(d)
k∑
i=1

Mi`i < 1, where Mi = ‖Bi(E)‖ = sup{‖Bix‖ : x ∈ E}.

Further, if the minimal class of functions Mc is algebraically closed with re-
spect to difference and topologically closed, then for a given c ∈ [a, b] the oper-
ator equation (2.6) has a PPF dependent solution.

Notice that Theorem 3.1 includes the following interesting fixed point results
involving a couple of systems of operators satisfying the mixed conditions and
which are useful in applications to nonlinear perturbed differential and integral
equations. We mention that these results are also new to the literature on
abstract fixed point theory on the lines of Dhage [4, 5] and Krasnoselskii [9].
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Theorem 2.3. Let E be a Banach space and let Ai : E0 → E and Bj : E →
E for 1 ≤ i ≤ k and 1 ≤ j ≤ l be two systems of operators such that for each
i and j,

(a) Ai is bounded and strong D-Lipschitz with the D-function ψAi,
(b) Bj is continuous and compact, and

(c)

k∑
i=1

ψAi(r) < r if r > 0.

Further, if the minimal class of functionsMc is topologically and algebraically
closed with respect to difference, then for a given c ∈ [a, b] the operator equation

k∑
i=1

Aiφ+

l∑
i=j

Bjφ(c) = φ(c) (2.9)

has a PPF dependent solution.

Theorem 2.4. Let E be a Banach algebra and let Ai : E0 → E and
Bi : E → E for 1 ≤ i ≤ k be two systems of operators such that for
each i,

(a) Ai is bounded and strong D-Lipschitz with the D-function ψAi,
(b) Bj is continuous and compact, and

(c)

k∑
i=1

MiψAi(r) < r if r > 0,

where Mi = ‖Bi(E)‖ = sup{‖Bix‖ : x ∈ E}.
Further, if the minimal class of functionsMc is topologically and algebraically
closed with respect to difference, then for a given c ∈ [a, b] the operator equation

k∑
i=1

AiφBiφ(c) = φ(c) (2.10)

has a PPF dependent solution.

3. Applications

In this section, we apply the abstract results of the previous section to
functional differential equations for proving the existence of solutions under a
weaker Lipschitz condition. Given a closed interval I0 = [−r, 0] in R for some
real number r > 0, let C denote the space of continuous real-valued functions
defined on I0. We equip the space C with supremum norm ‖ · ‖C defined by

‖φ‖C = sup
θ∈I0
|φ(θ)|. (3.1)
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It is clear that C is a Banach space with respect to this norm called the
history space of the problems under consideration.

Given the closed and bounded interval J = [−r, T ] in R, let C(J,R) denote
the Banach space of continuous and real-valued functions defined on J with
the usual supremum norm ‖ · ‖. Given a function x ∈ C(J,R), for each
t ∈ I = [0, T ], define a function t→ xt ∈ C by

xt(θ) = x(t+ θ), θ ∈ I0, (3.2)

where the argument θ represents the delay in the argument of solutions.

Now we are well equipped with the necessary details to study the nonlinear
problems of functional differential equations.

3.1. Functional differential equation of delay type. Given a function
φ ∈ C, consider the perturbed or a hybrid differential equation of functional
differential equations of delay type (in short HDE),

d

dt

[
x(t)− k(t, x(t))

f(t, x(t))

]
=

k∑
i=1

gi(t, xt)

x0 = φ

 (3.3)

for all t ∈ I, where f : I × R→ R \ {0} and g : I × C → R are continuous.

By a solution x of the HDE (3.3) we mean a function x ∈ C(J,R) that
satisfies

(i) the function t 7→ x− k(t, x)

f(t, x)
is continuous in I for each x ∈ R, and

(ii) x satisfies the equations in (3.3) on J ,

where C(J,R) is the space of continuous real-valued functions defined on J =
I0 ∪ I.

The HDE (3.3) is a generalization of the much studied functional differential
equation

x′(t) =
k∑
i=1

gi(t, xt)

x0 = φ

 (3.4)

and includes the new HDEs

d

dt
[x(t)− k(t, x(t))] =

k∑
i=1

gi(t, xt)

x0 = φ

 (3.5)
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and

d

dt

[
x(t)

f(t, x(t))

]
=

k∑
i=1

gi(t, xt)

x0 = φ.

 (3.6)

as special cases. Therefore, the existence results of this paper include the
existence results for the above hybrid functional differential equations.

We consider the following hypotheses in what follows.

(H1) There exist real numbers Li > 0 and Ki > 0 such that

|gi(t, x)− gi(t, y)| ≤ Li|x(0)− y(0)|
Ki + |x(0)− y(0)|

for all t ∈ I and x, y ∈ C.
(H2) The function f is uniformly continuous and there exists a real number

Mf > 0 such that

0 < |f(t, x)| ≤Mf

for all t ∈ I and x ∈ R.
(H3) The function h is uniformly continuous and there exists a real number

Mh > 0 such that

|h(t, x)| ≤Mh

for all t ∈ I and x ∈ R.

Remark 3.1. If Li < Ki in hypothesis (H1), then it reduces to the usual
Lipschitz condition of g, namely,

|gi(t, x)− gi(t, y)| ≤ (Li/Ki)|x(0)− y(0)|

for all t ∈ I and x, y ∈ C.

Theorem 3.1. Assume that the hypotheses (H1) through (H3) hold. Further-
more, if

k∑
i=1

LiT max{Mf , 1} r
Ki + r

< r, r > 0,

then the HDE (3.3) has a solution defined on J .

Proof. Set E = C(J,R). Then E is a Banach algebra with respect to the usual
supremum norm ‖ · ‖E and the multiplication “ · ” defined by

(x · y)(t) = x(t) · y(t) = x(t)y(t)

for all t ∈ I, whenever x, y ∈ E.
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Define a set of functions

Ê = {x̂ = (xt)t∈I : xt ∈ C, x ∈ C(I,R) and x0 = φ}. (3.7)

Define a norm ‖x̂‖
Ê

in Ê by

‖x̂‖
Ê

= sup
t∈I
‖xt‖C . (3.8)

Clearly, x̂ ∈ C(I0,R) = C. Next we show that Ê is a Banach space. Consider

a Cauchy sequence {x̂n} in Ê. Then, {(xnt )t∈I} is a Cauchy sequence in C for
each t ∈ I. This further implies that {xnt (s)} is a Cauchy sequence in R for
each s ∈ [−r, 0]. Then {xnt (s)} converges to xt(s) for each t ∈ I0. Since {xnt }
is a sequence of uniformly continuous functions for a fixed t ∈ I, xt(s) is also

continuous in s ∈ [−r, 0]. Hence the sequence {x̂n} converges to x̂ ∈ Ê. As a

result, Ê is Banach space.

Now the HDE (3.3) is equivalent to the nonlinear hybrid integral equation
(in short HIE)

x(t) =


h(t, x(t)) +

[
f(t, x(t))

](φ(0)− k(0, φ(0)

f(0, φ(0))

+
k∑
i=1

∫ t

0
gi(s, xs) ds

)
, if t ∈ I,

φ(t), if t ∈ I0.

(3.9)

Consider the operators A : Ê → R, B : C(J,R) → R and C : C(J,R) → R
defined by

Aix̂ = Ai(xt)t∈I =


φ(0)− k(0, φ(0)

f(0, φ(0))
+

∫ t

0
gi(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0,
(3.10)

Bx(t) =

{
f(t, x(t)), if t ∈ I,
1, if t ∈ I0,

(3.11)

and

Cx(t) =

{
k(t, x(t)), if t ∈ I,
0, if t ∈ I0.

(3.12)

Then the HIE (3.9) is equivalent to the operator equation

k∑
i=1

Aix̂ Bx̂(0) + Cx̂(0) = x̂(0). (3.13)
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We shall show that the operators Ai, B and C satisfy all the conditions of

Theorem 2.2. First we show that Ai is a bounded operator on Ê into E. Now

for any x̂ ∈ Ê, one has

‖Aix̂‖E ≤ ‖Ai(0)‖E + ‖Ai(xt)t∈I −Ai(0)‖E

≤ ‖Ai(0)‖E +

∣∣∣∣∫ t

0
gi(s, xs) ds−

∫ t

0
gi(s, 0) ds

∣∣∣∣
≤ ‖Ai(0)‖E +

∫ t

0

Li|xs(0)− 0|
Ki + ‖xs(0)− 0‖C

ds

≤ ‖Ai(0)‖E +

∫ t

0

Li‖x̂(0)‖
Ê

Ki + ‖x̂(0)‖
Ê

ds

≤ ‖Ai(0)‖E + LiT,

which shows that Ai is a bounded operator on Ê with bound ‖Ai(0)‖E +LiT .

Next, we prove that A is a strong D-Lipschitz on Ê. Then,

‖Aix̂−Aiŷ‖E = ‖Ai(xt)t∈I −Ai(yt)t∈I‖

=

∣∣∣∣∫ t

0
gi(s, xs) ds−

∫ t

0
gi(s, ys) ds

∣∣∣∣
≤
∫ t

0

Li|xs(0)− ys(0)|
Ki + |xs(0)− ys(0)|

ds

≤
∫ t

0

Li‖x̂(0)− ŷ(0)‖
Ê

Ki + ‖x̂(0)− ŷ(0)‖
Ê

ds

= ψAi(‖x̂(0)− ŷ(0)‖E)

for all x̂, ŷ ∈ Ê, where ψAi(r) =
LiTr

Ki + r
. Hence, Ai is a strong D-Lipschitz on

Ê with D-function ψAi .

Next, we show that B is compact and continuous operator on C(J,R). Let
{xn} be a sequence in C(J,R) such that xn → x as n→∞. Then by continuity
of f ,

lim
n→∞

Bxn(t) = lim
n→∞

f(s, xn(s)) = f(s, x(s)) = Bx(t)

for all t ∈ I. Similarly, if t ∈ I0, then lim
n→∞

Bxn(t) = 1 = Bx(t). This shows

that {Bxn(t)} converges to Bx(t) point-wise on J . But {Bxn(t)} is a sequence
of uniformly continuous functions on J , so Bxn → Bx uniformly. Hence, B is
a continuous operator on E into itself.

Secondly, we show that B is compact. To finish, it is enough to show that
B(E) is uniformly bounded and equi-continuous set in E. Let x ∈ E be
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arbitrary. Then,

|Bx(t)| ≤ |f(s, x(s))| ≤Mf

for all t ∈ J , and |Bx(t)| ≤ 1 for all t ∈ I0. From this it follows that

|Bx(t)| ≤ max{Mf , 1} = M∗

for all t ∈ J , whence B is uniformly bounded on E.

To show equi-continuity, let t, τ ∈ I. Then, from the uniform continuity of
f it follows that

|Bx(t)−Bx(τ)| ≤ |f(t, x(t))− f(τ, x(τ))| < ε

uniformly for all x ∈ C(J,R). If τ ∈ I0 and t ∈ I, then τ → 0 and t → 0
whenever, |τ − t| → 0. Whence it follows that

|Bx(t)−Bx(τ)| ≤ |Bx(τ)−Bx(0)|+ |Bx(t)−Bx(0)| → 0 as t→ τ

uniformly for all x ∈ C(J,R). From this, it follows that B(E) is an equi-
continuous set in E. Now an application of Arzella-Ascoli theorem yields that
B is a compact operator on E into itself. Similarly, it can be shown that the
operators C is also a compact and continuous operator on E into itself.

Finally,
k∑
i=1

MψAi(r) =
k∑
i=1

LiT max{Mf , 1} r
Ki + r

< r

for all r > 0 and so, all the conditions of Theorem 2.1 are satisfied. Moreover,
here the minimal class M0, 0 ∈ [−r, T ] is C([0, T ],R) which is topologically
and algebraically closed with respect to difference. Hence, an application of
Theorem 2.2 yields that integral equation (3.9) has a solution on J with PPF
dependence. This further implies that the HDE (3.3) has a PPF dependent
solution defined on J . This completes the proof. �

3.2. Functional differential equation of neutral type. Given a function
φ ∈ C, consider the perturbed or a hybrid functional differential equation of
neutral type (in short HDE)

d

dt

[
x(t)−

∑l
j=1 hj(t, xt)∑k

i=1 fi(t, xt)

]
= g(t, x(t))

x0 = φ

 (3.14)

for all t ∈ I, where fi : I ×C → R \ {0}, hj : I ×C → R and g : I ×R→ R are
continuous.

By a solution x of the FDE (3.14) we mean a function x ∈ C(J,R) that satisfies
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(i) the function t 7→
y −

∑l
j=1 hj(t, y)∑k

i=1 fi(t, y)
is continuous in I for all y ∈ C,

and
(ii) x satisfies the equations in (3.14) on J ,

where C(J,R) is the space of continuous real-valued functions defined on J =
I0 ∪ I.

The HDE (3.14) is again a generalization of the functional differential equa-
tion of neutral type

d

dt
[x(t)− h(t, xt)] = g(t, x(t))

x0 = φ

 (3.15)

and contains the following HDE of neutral type

d

dt

[
x(t)∑k

i=1 fi(t, xt)

]
= g(t, x(t))

x0 = φ

 (3.16)

as special cases which is also new to the literature.

We consider the following hypotheses in what follows.

(H4) There exist real numbers Li > 0 and Ki > 0 such that

|fi(t, x)− fi(t, y)| ≤ Li|x(0)− y(0)|
Ki + |x(0)− y(0)|

for all x, y ∈ C.
(H5) There exists a real number Mg > 0 such that

|g(t, x)| ≤Mg

for all t ∈ I and x ∈ R.
(H6) There exist real numbers qj > 0 and Nj > 0 such that

|hj(t, x)− hj(t, y)| ≤ qj |x(0)− y(0)|
Nj + |x(0)− y(0)|

for all x, y ∈ C.

Theorem 3.2. Assume that the hypotheses (H4) through (H6) hold. Further-
more, if

k∑
i=1

Li

[∥∥∥∥φ−∑l
j=1 h(0,φ)∑k

i=1 f(0,φ)

∥∥∥∥
C

+MgT

]
r

Ki + r
+

l∑
j=1

qjr

Nj + r
< r,
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then the HDE (3.14) has a solution defined on J .

Proof. Set E = C(J,R). Clearly, E is a Banach algebra with respect to the
norm and the multiplication as defined in the proof of Theorem 3.1. Define a

set of functions Ê by (3.7) which is equipped with the norm ‖x̂‖
Ê

defined by

(3.8) Clearly, x̂ ∈ C(I0,R) = C. It can be shown as in Theorem 3.1 that Ê is
Banach space.

Now the HDE (3.13) is equivalent to the nonlinear hybrid integral equation
(in short HIE)

x(t) =



l∑
j=1

hj(t, xt) +
k∑
i=1

[
fi(t, xt)

](φ−∑l
j=1 h(0, φ)∑k

i=1 f(0, φ)

+

∫ t

0
g(s, x(s)) ds

)
, if t ∈ I,

φ(t), if t ∈ I0.

(3.17)

Consider three operatorsAi, B : Ê → R, B : C(J,R)→ R and Cj : C(J,R)→
R defined by

Aix̂ = Ai(xt)t∈I =

{
fi(t, xt), if t ∈ I,
1, if t ∈ I0,

(3.18)

Bx(t) =


φ−

∑l
j=1 hj(0, φ)∑k

i=1 fi(0, φ)
+

∫ t

0
g(s, x(s)) ds, if t ∈ I,

φ(t), if t ∈ I0,

(3.19)

and

Cj x̂ = Cj(xt)t∈I =

{
hj(t, xt), if t ∈ I,
0, if t ∈ I0.

(3.20)

Then the HIE (3.14) is equivalent to the operator equation

k∑
i=1

Aix̂ Bx̂(0) +

l∑
j=1

Cj x̂ = x̂(0). (3.21)

We shall show that the operators Ai, Bi and Cj satisfy all the condition of

Theorem 2.1. First we show that Ai is bounded on Ê.
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‖Aix̂‖ ≤ ‖Ai(0)‖E + ‖Ai(xt)t∈I −Ai(0)‖
≤ |fi(t, 0)|+ |fi(t, xt)− fi(t, 0)|

≤ Fi +
Li|xt(0)− 0|

Ki + |xt(0)− 0|

≤ Fi +
Li‖x̂(0)‖

Ê

Ki + ‖x̂(0)‖
Ê

= Fi + Li,

for all x̂ ∈ Ê, where Fi = supt∈I |fi(t, 0)|. Hence, Ai is bounded on Ê with
bound Fi + Li.

Next, we show that Ai is a strong D-Lipschitz on Ê. Then,

‖Aix̂−Aiŷ‖E = ‖Ai(xt)t∈I −Ai(yt)t∈I‖ = |fi(t, xt)− fi(t, yt)|

≤ Li|xt(0)− yt(0)|
Ki + |xt(0)− yt(0)|

≤
Li‖x̂(0)− ŷ(0)‖

Ê

Ki + ‖x̂(0)− ŷ(0)‖
Ê

= ψAi(‖x̂(0)− ŷ(0)‖E)

for all x̂, ŷ ∈ Ê, where ψAi(r) =
Lir

Ki + r
. Hence, Ai is a strong D-Lipschitz

on Ê with D-function ψAi . Similarly, it can be shown that Cj is also a strong

D-Lipschitz on Ê with D-function ψCj (r) =
qjr

Nj + r
.

Next, we show that B is compact and continuous operator on C(J,R). Let
{xn} be a sequence in C(J,R) such that xn → x as n→∞. Then by Lebesgue
dominated convergence theorem,

lim
n→∞

Bxn(t) =
φ−

∑l
j=1 h(0, φ)∑k

i=1 f(0, φ)
+ lim
n→∞

∫ t

0
g(s, xn(s)) ds

=
φ−

∑l
j=1 h(0, φ)∑k

i=1 f(0, φ)
+

∫ t

0
lim
n→∞

g(s, xn(s)) ds

= Bx(t)

for all t ∈ I. Similarly, if t ∈ I0, then lim
n→∞

Bxn(t) = φ(t) = Bx(t). This

shows that {Bxn(t)} converges to Bx(t) point-wise on J . But {Bxn(t)} is a
sequence of uniformly continuous functions on J , So Bxn → Bx uniformly.
Hence, B is a continuous operator on E into itself.

Secondly, we show that B is compact. To finish, it is enough to show that
B(E) is uniformly bounded and equi-continuous set in E. Let x ∈ E be
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arbitrary. Then,

|Bx(t)| ≤

∥∥∥∥∥φ−
∑l

j=1 h(0, φ)∑k
i=1 f(0, φ)

∥∥∥∥∥
C

+

∫ t

0
|g(s, x(s))| ds

≤

∥∥∥∥∥φ−
∑l

j=1 h(0, φ)∑k
i=1 f(0, φ)

∥∥∥∥∥
C

+MgT

for all t ∈ J which shows that B(E) is uniformly bounded set in E. To show
equi-continuity, let t, τ ∈ I. Then,

|Bx(t)−Bx(τ)| ≤
∣∣∣∣∫ t

τ
|g(s, x(s))| ds

∣∣∣∣ ≤Mg |t− τ |.

If τ ∈ I0 and t ∈ I, then τ → 0 and t → 0 whenever, |τ − t| → 0. Whence it
follows that

|Bx(t)−Bx(τ)| ≤ |Bx(τ)−Bx(0)|+ |Bx(t)−Bx(0)| ≤Mg |t− τ |.

From the above inequalities it follows that B(E) is an equi-continuous set in
E. Now an application of Arzelá-Ascoli theorem yields that B is a compact
operator on E into itself. Finally,

k∑
i=1

MiψAi(r) +
l∑

j=1

ψCj (r)

=
k∑
i=1

Li

[∥∥∥∥φ−∑l
j=1 h(0,φ)∑k

i=1 f(0,φ)

∥∥∥∥
C

+MgT

]
r

Ki + r
+

l∑
j=1

qjr

Nj + r

< r

for all r > 0 and so, all the conditions of Theorem 2.1 are satisfied. Again,
here the minimal class M0, 0 ∈ [−r, T ] is C([0, T ],R) which is topologically
and algebraically closed with respect to difference. Hence, an application
of Theorem 2.1 yields that the integral equation (3.17) has a solution on J
with PPF dependence. This further implies that the HDE (3.14) has a PPF
dependent solution defined on J . This completes the proof. �

Remark 3.2. In this paper, we discussed the functional differential equations
involving the past and present data only, however similar results may be ob-
tained for the functional differential equations with the given past, present
and future data of the unknown function. Furthermore, the PPF dependence
theory is useful in the recruitment or selection theory of various organizations
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like, firm, industry and other institutions. The study along this line is def-
initely useful to individual as well as society and some of the results in this
direction will be reported elsewhere.
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